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Abstract—We consider energy efficient base station sleeping
and clustering problems in cooperative cellular networks where
clusters of base stations jointly transmit to users. Our key idea
of energy saving is to exploit a spatio-temporal fluctuation of
traffic demand, which is to use minimal energy to provide
capacity only slightly greater than varying traffic demand. Then,
energy saving is possible without capacity loss. However, it is
highly challenging to design traffic-aware algorithms without the
future traffic demand information. To overcome this, we develop
algorithms using queue instead of the future traffic information.
For BS clustering problem, we propose an optimal algorithm that
has polynomial complexity. For BS sleeping problem, which is a
complex combinatorial problem, we propose two algorithms; One
finds an optimal solution with reduced complexity compared to
the exhaustive search, and the other finds a near-optimal solution
with polynomial complexity. Through extensive simulations we
show that the proposed algorithms can save significant energy
when traffic load is low.

I. INTRODUCTION

The great popularity of smartphones, tablets, and laptops,
which are wirelessly connected to Internet, has caused an
exponential traffic increase in cellular networks [1]. In or-
der to provide sufficient capacity, a large number of base
stations have been deployed, which leads substantial energy
consumption. Studies in [2], [3] show that base stations already
use about 60-80% of total energy consumption in cellular
networks, and thus, energy efficiency of base stations is
becoming a vital design goal in cellular networks.

In order to reduce energy consumption in base stations, there
have been extensive attempts to develop energy-efficient re-
source management schemes, e.g., transmit power control [4],
CPU speed scaling control [5], BS sleeping [6]-[10] and so
on. Especially, BS sleeping techniques, in which underutilized
base stations are allowed to sleep and traffic load of the
sleeping BSs are transferred to neighbor BSs, has great poten-
tial to save energy by reducing static power consumption of
BSs. The reason is that BSs are typically deployed to provide
higher capacity than peak traffic volume but they are actually
underutilized most of the time [11], [12]. Evaluations using
a real traffic trace show that turning on/off BSs can possibly
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save a tremendous amount of energy (up to 90%), under simple
sleeping schemes. The key question is then when and which
base stations should go to sleep.

The goals of existing schemes for energy-efficient BS sleep-
ing are mostly classified into two categories; i) minimizing
energy consumption while satisfying static minimum data
rate or QoS requirements [6], [7], and ii) maximizing energy
efficiency defined as data rate per power consumption [8], [10].
These works are much more energy efficient than schemes
focusing only on capacity, but it is hard to say that they are
adapting well to spatio-temporal fluctuation of traffic demand,
which is a key factor to save energy in our thinking.

The concept of adapting to spatio-temporal fluctuation of
traffic demand is as follows; If the network capacity is greater
than traffic demand, energy for the remaining capacity would
be wasted. Thus, by fitting capacity to the traffic demand,
energy saving is possible without performance loss. However,
since traffic demand is not static and varies over time and
space, the capacity also has to change adaptively to the traffic
demand. Fig. 1(a) shows a simple example of traffic adaptive
BS sleeping and user association without energy waste, which
uses only minimal BSs to support varying traffic demand.

If the future traffic dynamics are availabe, the algo-
rithms [6], [7] minimizing energy consumption while guar-
anteeing minimum rate can ideally adapt to spatio-temporal
traffic fluctuation, as shown in Fig. 1(a). However, it is a
very strong assumption that the future traffic dynamics are
known. Instead, the algorithms can be applied also with a
relaxed assumption such that the average traffic demand is
known. However, in the case of the average traffic demand,
they cannot adapt to temporal fluctuation of traffic and waste
energy consumption, as shown in Fig. 1(b). Thus, our goal is to
develop a new traffic-aware algorithm without any additional
information of traffic, which is challenging.

Another difficulty of BS sleeping problem is that it is
tightly coupled to the problem determining which BSs should
communicate with users. For example, in order to turn off
an underutilized BS, existing users of the BS have to find
new BSs to communicate with. In general, a user should
communicate with only one BS (i.e., single-BS association),
but now it is also possible that a user communicates with
multiple BSs simultaneously, due to the advanced BS cooper-
ation techniques such as coordinated multi-point (CoMP) [13]
and distributed antenna systems (DAS) [14]. These techniques
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Fig. 1. Spatial and temporal traffic fluctuation and traffic adapting BS sleep mode and association controls; Each user can associate with only one BS, and

an active BS provides static link capacity to the associated user.

can significantly mitigate the edge user effect (e.g., see [15])
that arises in single-BS association paradigms. The BS co-
operation may require additional energy for signal processing
and backhauling, but they can significantly improve spectral
efficiency. Thus, enabling the BS cooperation has the potential
for improving energy efficiency [8], [10], and we also consider
scenarios in which a user can communicate with multiple BSs
simultaneously.

Then, the problem is to make decisions jointly on BS
sleeping and BS clustering, aiming to save energy via adapt-
ing to spatio-temporal traffic fluctuation which is unknown
beforehand. Here, BS clustering is to form sets of BSs that
will jointly transmit to users. We consider the user-centric
clustering [16], [17] allowing that each user individually forms
a BS cluster, which is the most general setting.

The main contributions are summarized as follows:

1) First, we develop BS sleeping and clustering algorithms
to save energy via adapting to spatial and temporal traffic
fluctuation. To be aware of traffic variations without the
future traffic demand information, we use queue dynamics.
For example, if the network capacity is excessive compared
to traffic demand, then queues decrease and energy saving
is possible by turning off BSs. Reversely, if the network
capacity lacks, then queues increase and more BSs are
activated to provide sufficient capacity. That way, our
algorithms can save energy without capacity loss.

Next, we analyze the optimality and complexity of pro-
posed algorithms. We show that the clustering algorithm
finds an optimal solution for given BS sleep state with
polynomial computation complexity (Section IV-A). For
the sleeping problem, we define a sleeping weight repre-
senting whether or not to turn off a BS and propose two BS
sleeping algorithms using the sleeping weight. One finds
an optimal solution with reduced complexity compared
to the exhaustive search (Section IV-B). The other finds
a near-optimal solution using a greedy manner which
requires only polynomial complexity. We also provide the
performance gap between the greedy algorithm and the
optimal algorithm (Section IV-C).

3) Finally, we verify the performance of our algorithms

2)

through extensive simulations. As expected, our algorithms
achieve optimality or near-optimality with drastically re-
duced computing time compared to the exhaustive search
(Section V-B). Also, our algorithms can adapt unknown
traffic demand without the loss of capacity and save energy
up to 80% when traffic demand is low (Section V-C).

II. SYSTEM MODEL

We consider a cooperative wireless network consisting of a
set S of disjoint cell sites. Each cell site s € S has a central
coordinator (or a processing unit), a set B, of base stations
(or radio units) and a set K, of users. Each base station and
user are included in only one cell site. We denote the whole
BS set by B = UgzecsBs, the whole user set by K = UgesKs,
and the cell site of user k by s(k). Base stations have a sleep
mode to reduce energy consumption and a joint transmission
function by cooperating with other BSs in the same cell site.
We assume a slotted system, and the time slot index is denoted
by t. At the start of each time slot, we decide which BSs go to
sleep mode and how to form a cluster for each user, and during
the time slot, actual transmissions occur under the given BS
sleep mode and clustering state. We assume that the length of
a time slot is sufficiently large compared to a time scale of
user scheduling.

A. Achievable Data Rate

The achievable data rate during each time slot depends not
only on BS sleep mode and BS clustering but also on user
scheduling and precoder design for the joint transmission. The
underlying scheduling and precoding policy is assumed as
follows. In each cell site, only one user can receive data at
a time, and users share time resource independently of BS
sleep mode and clustering (e.g., round-robin scheduling). As
a precoding policy for the joint transmission, the maximal
ratio combining (MRC) method is used, which maximizes
the desired signal strength in a multi-antenna system without
considering interference [18]. This assumption enables to ex-
press the achievable data rate as a function of sleep mode and
clustering decision in closed form and helps identify properties
of optimal solutions. There may exist other scheduling and
precoding policies that perform better with our BS sleeping
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and clustering, however we leave this issue as future study.
Also, we assume the downlink case since we consider an
energy consumption of BSs.

We denote the sleep mode indicator of BS b by ¢, which is
1 if active mode and 0 if sleep mode. We assume that each user
individually forms a cluster of BSs in the same cell site for
the joint transmission, and each BS adjusts its transmit power
when it operates as a cluster of user k. Denote by py the
transmit power of BS b to user k. Then, pyi has a constraint
given by

0 <ppr < Ppdp, VbeBs,kekK;seS, 9]

where P, is a transmit power budget of BS b. In this paper,
clustering is to determine the values of py; for Vk € K and
Vs € S.

Under the basic scheduling and precoding policy, the
achievable rate of user k is given by 07, where 0 is a
time fraction allocated to user k£ during the one time slot and
vk 1s an instantaneous rate of user k. Then, 6; must satisfy
> kex, Ok <1,Vs € S, and 6 = 1/|K| in round-robin case.
Using Shannon capacity, the instantaneous rate of user k for
given sleep mode § and clustering p can be approximated as

> GorDok
bEB (k) (2)

6,p) = Blo 1+

where B is the system bandwidth, Gy, is the channel condition
between BS b and user k, Ny is the noise power of user
k and Ij(0,p) is the interference from other cell sites. For
analytical tractability, we approximate the instantaneous rate
by the value derived under the worst case interference, i.e.,
Ik(é,p) = Ilc,worst = ZbEB\BS(M Gkab in (2) Under
this approximation, the data rate of user k depends only on
decisions in its cell site s(k). From now on we focus on a
single cell site.

B. Queuecing Structure

Denote by Ag(t) the traffic arrival rate of user k at time
slot . We assume that Ay (¢) is an i.i.d. process and there is
an upper bound of arrival rates during one time slot such that
Ag(t) < Az, Vk € K and Vi.

Arrival traffic is queued in the central coordinator and
transmitted to each user k with rate v (6(t), p(t))0) at each
time slot ¢. Then, queue dynamics of user k£ at time slot ¢ is
expressed as

qe(t+1) = [qe(t) — 7 (0(t), p()0k] " + A(t),  (3)

where [-]T denotes the projection onto the set of non-negative
real numbers. We call {Ay(t)}rex, feasible arrival if there
exists at least one policy to stabilize all queues.

C. Energy Consumption

We adopt a power consumption model of BS in [19].
Although a base station is comprised of various components
consuming energy such as power amplifier, radio frequency
circuit, processing unit, cooling system, and power supply,

power consumption can be approximated by two types, static
power consumption and dynamic power consumption propor-
tional to transmit power. Then, the power consumption of BS
b for given ¢ and p is expressed as

PS(6,p) = PS°6y + > P{"poibi, )
ke

where P is a static power including the power consumption
of RF circuit, processing, cooling and power supply, and P}/*
is a scaling factor of transmit power reflecting the impact of
power amplifier, cooling and power supply. This simple model
can capture the impact of sleeping and clustering decisions on
power consumption.

III. BASE STATION SLEEPING AND CLUSTERING PROBLEM

Our goal is to minimize energy consumption while sup-
porting traffic demand for every user. The challenge here is
that the traffic demands are unknown. We apply Lyapunov
optimization techniques to acheive this issue.

Let P be the average power consumption in networks and
dj be the average data rate of user k. They are determined
by BS sleeping and clustermg de01s1ons at every time slot,
such that P = hmT%Oo o T, E ZbGB [PES(6(t), p(t))]
and dj, = limy_, o0 + Z i—0 'E [%(5( ), p(t))0g] (if the limits
exist). Let a, be the average arrival rate of user k, i.e.,
ar = limr_ % EZ:OI E [Ag(t)]. Then, the problem can be
expressed as

min P s.t. ap < (Zk-, Vk € K. ®))

Note that we do not use the value of a; for BS sleeping
and clustering decisions. Instead, we use the queue dynam-
ics evolving as (3). If queue stability is guaranteed, i.e.,
lim7 o0 7 S, IV Egr(t)] < o0, Vk € K, the constraint
in (5) is also guaranteed. First, we formulate the BS sleeping
and clustering problem at time ¢ as follows,

[P-SC] BS Sleeping and Clustering Problem

smax > ak®)v(8(t), p(1)6k — V> PP p(t))

ke beB
s.t. 0 < pbk(t) < Pb5b(t), Vb € B,Vk € K, (6)
6b(t) € {Oa l}a Vb e Ba (7N

where V is a constant. Solving [P-SC] at every time slot is
same to solve problem (5) by Lyapunov theorem [20], [21].
Details are in our technical report [22]. Now we focus on
problem [P-SC] for an arbitrary time slot and omit time index
t for simplicity.

In the objective function of [P-SC], there are two terms,
sum of queue-weighted data rates aiming to stabilize queue
length and sum of BS power consumptions aiming to minimize
the power. Since high energy consumption is required to
obtain high data rate, the two terms conflict. The value of
V' determines a compromise between the two objectives.

The optimal sleeping and clustering decision of [P-SC]
saves energy adaptively to spatio-temporal fluctuation of traffic
arrivals. For instance, if there are less traffic arrivals, so queue
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lengths are small, then saving energy becomes more important,
and thus base stations go to sleep and BS cluster sizes are
reduced. Reversely, when high traffic, base stations wake up
and BS cluster sizes are increased to enhance data rates. These
operations can reflect a temporal variation of traffic arrivals.
Also, a queue length of each user is weighted to each user’s
data rate. Then, base stations near the users who have large
queue length more aggressively use energy to increase the
users’ data rate. Thus, if we design BS sleeping and clustering
policy solving [P-SC], then the policy can save the energy
consumption by exploiting both temporal and spatial variation
of traffic arrivals.

IV. TRAFFIC-AWARE ENERGY-SAVING ALGORITHM

We first analyze the properties of the optimal solution in
problem [P-SC] for given BS sleep mode ¢ and propose i) a
clustering algorithm finding an optimal solution in polynomial
time. Next, we define sleeping weight, representing whether or
not to turn off a BS, and analyze its properties. Inspired by the
properties, we propose two BS sleeping algorithms, which are
jointly executed with the clustering algorithm; One is ii) an
optimal sleeping algorithm with reduced complexity, and the
other is iii) a greedy sleeping algorithm finding a near-optimal
solution in polynomial time with provable optimality gap.

A. Base Station Clustering Algorithm

First, given a BS sleep mode 9, the problem [P-SC] can be
formulated as
[P-CL] BS Clustering Problem

max <qu(5,p) -V § P?Pbk) 0.
p s.t. (6)
kek beB

This problem is a convex optimization problem for p, and we
can derive a sufficient and necessary condition for optimality
based on the Karush-Kuhn-Tucker (KKT) condition [23], as
follows

) LG VP~ N+ Mk =0, VbeBVEkEK
2) Aok(0oPy — por) =0, Aprpor =0, Vb€ B,Vk e K
3) 0 < po < Poby, Ao, Mok =0, Vb EBVEEK

where Ty (6,p) = > e GoePor + Ikworst + Ni, and X and
A are the Lagrangian multipliers for constraint (6). Now we
develop a clustering algorithm to find p satisfying the above
KKT conditions in polynomial time.

Let us define the clustering weight of BS b for user k for
given ¢ and p as follows:

GGk _y pra ®)

B
wl?;aL((S’ )= In(2) Tk (9, p)

Using the KKT conditions, it can be shown that the clustering
weights have the following properties only in optimal cluster-

ing p*.
1) wikE (s,
2) wiE(o,

p*) >0 %pzk = Py
p*) =0—=0<pj < Py

3) wGE(6,p*) <0 —pi =0
That is, if a clustering p satisfies these properties, then p is an
optimal clustering. Consequently, we need to find a clustering
p satisfying the above conditions. First, we can obtain the
following result from the definition of the clustering weight.
Lemma 1: Suppose any § and p satisfying constraints (6)
and (7) and two BSs b; and b, such that Gblk/Pb >

G,k /PLY for user k. Then, the clustering weights w (6 D)
and w§ [ (6, p) satisfy the followings;
If wbzk((s p) > 0 then wblk(6 p) Z
If wblk(d, p) <0, then wb2k(6 p) <0
Proof: See our technical report [22]. |

The lemma holds also for the optimal clustering case. This
means that the order of Gpy/ Pbt”” determines whether clus-
tering weights are positive or negative in optimal clustering.
Furthermore, the order is independent to clustering p.

Based on Lemma 1 and the optimal clustering properties,
we develop Traffic-Aware Energy-Saving (TAES) clustering
algorithm, as shown in Algorithm 1. For user k, BS b has
a high priority for clustering when it provides large signal
strength enhancement per unit power consumption, i.e., large
Ghi/PL*. This metric can be interpreted as an energy effi-
ciency. Thus, base stations are selected as a cluster for user k in
the order of G/ Pbt“", until one of the last two end conditions
is satisfied, i.e., there is no more base station or a clustering
weight becomes negative (lines 6 or 12 in Algorithm 1). Then,
we can prove the following result.

Theorem 1: For given sleep mode §, TAES clustering
algorithm finds the optimal solution of [P-CL].

Proof: See our technical report [22]. [ ]

Algorithm 1 TAES Clustering Algorithm

1: procedure TAES_CLUSTERING_ALGORITHM(S)
2: for each user k£ € K do

3: Initialize ppr, = 0,Vb € B

4: SetC=8 > C: candidate BS set
5: Set T}, = Ik,worst + Nj,

6: while C # () do

7: Set b* = arg maxpec %

8: Set C = C\{b*}

9: if iy Wht > T then

10: if o qecj;tzk > Tj; + Py Gp-1,0p- then
11: Set pb*k = Py« p=

12: else

13: Set Py = 1z VR e

14: Break

15: end if

16: Set Ty, = Tk + po<i G

17: end if

18: end while

19: end for

Solution: p = {pyx }ven kek
20: end procedure
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B. Base Station Sleeping Algorithm: Optimal approach

Now we consider the BS sleeping problem in a situation that
optimal clustering is possible. Denote by f(J, p) the objective
function of [P-SC] ie, f(4,p) Y ke wYR(0, )0k —
V' ven PES(6,p). Let us define the sleeping weight of BS
b as

wit(6) = > [wSE @, p*(6))] " Pob — VP (9)

ke

where p*(6) is an optimal clustering for given 6. Let B4 be an
active BS set and § be the sleep mode vector corresponding
to B4, ie., 6, = 1 if b € BA and §, = 0 otherwise.
For both active BS set and sleep mode vector, we use the
same notation of objective function and sleeping weight, as
f(BA) = £(6,p*(8)) and wit(BA) = wyL(5),Vb € B. Then,
the sleeping weight has following two properties.

Lemma 2: For any active BS set B4 C B, if b € B\B* and

SL(BAU{b}) > 0, then f(B4) < f(B4U{b}). Similarly, if
be BA and wit (BA\{b}) < 0, then f(BA) < f(BA\{b}).

Proof: See our technical report [22]. [ |

Lemma 3: The sleeping weight is a monotonic decreasing
function of &. That is, if o, > d9;,¥b € B, then wl;%(g) <
wyL(8"),Vb € B.

Proof: See our technical report [22]. ]

From Lemma 2 and Lemma 3, we can get an idea to reduce
the search space. Suppose active BS set B4 and BS b such
that b ¢ B4 and wSL(BA U {b}) > 0. By Lemma 2, the
objective function increases when BS b is activated, and it
still holds for any active BS set B# such that B4 C B by
Lemma 3. Conversely, if the objective function increases when
BS b € B4 goes to sleep for given B, then it also increases
for active BS set 54 such that B4 D B*. Then, starting from
the smallest BS active set (or the largest BS active set), we
can iteratively classify BSs into three groups; One is a group
of BSs that have to be activated, another is a group of BSs that
have to be deactivated, and the other is a group of remaining
BSs. Then, we only need to determine sleep modes for the
third group, and thus, the search space can be reduced. The
detailed procedure is represented in Algorithm 2.

It is meaningful to mention that although Algorithm 2
describes only the BS sleep mode control the clustering
algorithm in Algorithm 1 is repeatedly executed to calculate
sleeping weights wa which is a function of the optimal
clustering for a given sleep mode. Thus, it can be said that
the optimal sleeping algorithm finds both BS sleeping and
clustering solutions.

The optimal sleeping algorithm still requires the exhaustive
search over undecided BSs in phase II, but its search space
can be significantly reduced by procedures in phase 1. We
show how much the search space is reduced via simulations in
Section V. In spite of the reduced search space, the algorithm
finds an optimal active BS set.

Theorem 2: TAES optimal algorithm in Algorithm 2 finds
the optimal solution of [P-SC].

Proof: See [22]. |

Algorithm 2 TAES Optimal Algorithm

1: procedure TAES_OPTIMAL_ALGORITHM
Phase I:

2: Set BA =0,B° =0,isEnd =0
> BA: active BS set, B°: sleep BS set

3 while isEnd = 0 do
4 Set isEnd = 1
5 for each BS b € B\(B# U B°) do
6: if wy™(B4) <0 then
7 Set B° = B U {b}, isEnd = 0
8 end if
9 end for
10: for each BS b € B\(B* U B°) do
11: if wyL(B\BY) > 0 then
12: Set BA = BAU {b}, isEnd =0
13: end if
14: end for
15: end while

Phase II:

16: Set V* = argmaxgacycp\ps f(V)
Solution: sleep BS set = B\YV*, active BS set = V*
17: end procedure

C. Base Station Sleeping Algorithm: Greedy approach

Although the proposed TAES optimal algorithm finds an
optimal solution, in the worst case where B4 and B in phase I
of Algorithm 2 are empty sets, the complexity of the algorithm
may be as high as that of the exhaustive search. Thus, we now
propose a greedy BS sleeping algorithm.

Our greedy sleeping algorithm is described in Algorithm 3.
The key idea is to sequentially turn off the BS which increases
the objective value the most. In phase I, the algorithm se-
quentially turn off BSs starting from the state that all BSs are
activated. Note that TAES optimal algorithm finds BSs to turn
off starting from the state that all BSs are deactivated. Due
to this difference, there may exist a BS, which increases the
objective value when it becomes active, among BSs, which are
already determined to sleep. Thus, in phase II, the algorithm
finds a set of BSs (denote by Z), which can possibly increase
the objective value, among BSs, which are determined to
sleep in phase 1. Here, the nonempty set Z implies non-zero
gap between greedy and optimal solutions. In phase III, the
algorithm sequentially activates a BS among BSs in Z, which
most significantly increases the objective value. Then, we can
derive the optimality gap as follows.

Theorem 3: Let B* be an optimal active BS set and B4 be
an active BS set of TAES greedy algorithm. Then, a solution of
TAES greedy algorithm has a following performance bound.

FBY) = f(B*) = > wit(B\2)
beZ
where Z is a BS set generated in phase II of TAES greedy

algorithm.
Proof: See our technical report [22]. ]

Corollary 1: If Z is an empty set after phase II of TAES
greedy algorithm, then the greedy solution is optimal.
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Algorithm 3 TAES Greedy Algorithm
1: procedure TAES_GREEDY_ALGORITHM

Phase I:
2: SetC =B > C: candidate BS set for activating
3: Set BA =B
4: while C # () do
5: Set b* = arg minpec wy L (BA\{b})
6: Set C = C\{b*}
7: if wyL(B4) <0 then
8: Set BA = BA\{b*}
9: end if
10: end while
Phase II:
11: Set Z =10 > Z: BS set for checking
12 for each BS b € B\B” do
13: if wy't(B4) > 0 then
14: Set Z =Z U {b}
15: end if
16: end for
Phase III:

17: SetC =2
18: while C # () do

> C: candidate BS set for activating

19: Set b* = argmaxpec f(BA U {b*})
20: if f(BAU{b*}) > f(B*) then

21: Set BA = BAU {b*}, C =C\{b*}
22: else

23: Break

24: end if

25: end while

Solution: sleep BS set =B\B*, active BS set = B4
26: end procedure

D. Complexity of TAES Algorithms

We now analyze the computational complexity of proposed
TAES algorithms. First, it is easy to check that TAES clus-
tering algorithm has O(|K||B|?) complexity. TAES clustering
algorithm is repeatedly used when calculating the sleeping
weight or objective value for a given BS sleep state. Since
the exhaustive search method calculates objective values for
all possible BS sleep states, its compleixty is O (|K||B|?2/51).

On the other hand, TAES optimal algorithm iterates
at most |B|?> in phase I and each iteration requires
O(|K||B|?) complexity for sleeping weight comparison. Af-
ter phase I, the number of BSs requiring to check is re-
duced to |B| — |[BA| — |B®|, and thus, the complexity is
@] (|ICHE>’|2 (|l§’|2 + 20BI=1B%|=1B7]) ) Actually, the com-
plexity of TAES optimal algorithm is equivalent to exhaustive
search in the worst case, i.e., when B4 and B are empty sets.
The effect of search space reduction is shown in Section V-B.

Finally, TAES greedy algorithm does not search BS states,
and instead, it compares sleeping weights or objective values at
most |B| times in phases I and III. Since the sleeping weights
and objective values are computed at most |B| times for one
comparison, the compleixty is O (|K[|B[*). In Table I, we
summarize the complexity discussed above.

TABLE 1
COMPUTATIONAL COMPLEXITY OF ALGORITHMS
Algorithm ‘ Complexity
TAES Clustering O (IK|1B]?)
TAES Optimal o (|IC|\B\2 (|18|2 + 2“5‘*'3“‘*'55‘)))
TAES Greedy o (IK|18]*)
Exhaustive search o <|ICHB\22|B‘)

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
TAES algorithms in various scenarios. First, we verify that
TAES optimal/greedy algorithms can achieve optimal/near-
optimal value of the one-slot problem [P-SC] with very
low complexity compared to the exhaustive search. Next, we
demonstrate that TAES algorithms save power consumption
without capacity loss by adapting to traffic variation.

A. Simulation Setup

We use a sample network topology composed of 10 BSs
and 20 users in 0.5 x 0.5 km2, in which BSs and users
are randomly located according to the uniform distribution.
For traffic generation, we assume that traffic arrivals follow
a Poisson process with arrival rate A and each arrival file
follows exponential distribution with average size u. We use
homogeneous arrival rate A for all users and change average
file size of each user k, yiy, in order to control traffic load. The
path-loss model is given by 128.1 + 37.61og,,(d) where d is
the distance from BS to user in km. As one of performance
metrics, we measure per-flow delay using Little’s law. Other
simulation parameters are summarized in Table II.

TABLE II
SIMULATION PARAMETER

Parameter H Value
Transmit power budget, P, 02 W
Power consumption model [19]

Transmit power, P;” 4

Circuit Power, Py 2 W
Queue update time length 1 msec
Control time length 10 msec
Simulation time 10 sec
Mean inter-arrival time, 1/\ 20 msec
System bandwidth 10 MHz
Background noise -169 dBm/Hz

The following algorithms are compared with TAES algo-
rithms.

o Throughput optimal policy (Thr. Opt.): In order to max-
imize capacity, all BSs are active and each user forms a
BS cluster with a maximum size.

« Static policy (Static-M): Each user forms a static BS
cluster with size M and each BS goes to sleep when
there is no traffic demand from users who select the BS
as one of cluster BSs.

o Traffic-aware algorithm (Power Min.): Assuming that
we know the average traffic demand of each user k,
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denoted by CY, this policy finds a solution of a power
minimization problem with minimum data rate guarantee
constraints such that

> PPS(8,p) st (8, p)0r > O, Vk € K.
beB

min
8,p 5.L(6),(7)
Due to the complexity problem, we use a greedy method
to determine §.

« Exhaustive search: This policy finds an optimal solution
of [P-SC] by an exhaustive search for §.

e Only clustering: BS clustering is determined by TAES
clustering algorithm and BS sleeping is determined by
on-demand manner same to static-1 policy.

e Only sleeping: BS sleeping is determined by TAES
greedy algorithm while each user forms a BS cluster with
a maximum size.

B. Verification of TAES algorithm

We first examine the complexity and performance of optimal
and greedy TAES algorithms, compared to the exhaustive
search algorithm finding the optimal solution of [P-SC]. As
a metric for the complexity, we use a simulation run time to
compute a solution of [P-SC]. We collect results under various
the number of BSs, the number of users and queue length.
Total 200 queue samples are tested per given the number of
BSs and users. Since the complexity dominantly depends on
the number of BSs and the number of users, the run time
results for varying queue length are averaged.

Fig. 2 shows that the average run time of TAES greedy
algorithm is drastically reduced compared to the exhaustive
search algorithm when the number of BSs is large. In the
TAES optimal algorithm, although the average run time in-
creases exponentially for the number of BSs, it is reduced
compared to the exhaustive search by the effect of the search
space reduction. Especially, when the number of users is 1,
the run time is reduced similarly to TAES greedy algorithm.

Next, we verify the performance of TAES algorithms.
From collected results for testing the complexity, we plot
distributions of objective values achieved by TAES algo-
rithms compared to the optimal value (i.e., achieved objective
value/optimal objective value), as shown in Fig. 3. The optimal
value is obtained from the exhaustive search algorithm. As
it proved, TAES optimal algorithm achieves optimal values
for all scenarios. TAES greedy algorithm achieves optimal
values in most scenarios, and also non-optimal values are
very close to optimal values compared to TAES algorithms
using only one of clustering or sleeping. The greedy algorithm
based on an objective function value' achieves comparable
performance to TAES greedy algorithm, but its performance
bound is unknown.

As a result, TAES optimal algorithm always achieves opti-
mal performance but it may require high complexity while
TAES greedy algorithm achieves near-optimal performance

IThe greedy algorithm based on an objective function value starts from
a state that the entire BSs are sleep and iteratively finds a BS to be active,
which makes the largest objective value when it becomes active.

with very low complexity. Thus, we use TAES greedy algo-
rithm in the subsequent simulations.

= @ = Exhuastive search:1users
= A = Exhuastive search:10users
= M = Exhuastive search:20users

10" - =@== TAES Greedy:1users : e :
== TAES Greedy:10users L s
== TAES Greedy:20users . 2¢ ‘. e

, [| '=O@= TAES Optimal:1users Lol .,‘ -

10" || ' =Am TAES Optimal:10users
 =fJ= TAES Optimal:20users

Average run time [sec]

8 10 12 14
# of BSs

Fig. 2. Complexity comparison of TAES algorithms and the exhaustive search
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Fig. 3. Cumulative distribution function (CDF) of objective values; Samples
are collected from the complexity comparison scenario of Fig. 2.

C. Traffic-aware and energy saving effect

Next, we show that TAES algorithms can reduce power
consumption by adapting to traffic arrivals. We change traffic
arrivals in a manner that the average traffic demand of each
user, Ay, is proportional to its maximum capacity. Then,
traffic loads of all users, which are defined as the average
traffic demand divided by the maximum capacity, are changed
identically. The maximum capacity is achieved when all BSs
are active and each user forms the maximum cluster.

Fig. 4 shows two notable results on traffic-aware algorithms
(only clustering, only sleeping, TAES greedy and Power Min.).
First, traffic-aware algorithms can serve arrivals when the
arrivals are less than the maximum capacity, although delay
increases compared to throughput optimal algorithm, as shown
in Fig. 4(a). Note that the static algorithms cannot serve
all arrivals less than the maximum capacity. Second, traffic-
aware algorithms save more power consumption as traffic load
decreases, as shown in Fig. 4(b). Fig. 4(c) shows that traffic-
aware algorithms determine active BS set and cluster size
adaptively to traffic arrivals. This is why our algorithms out-
perform other algorithms. Power Min. algorithm also jointly
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Fig. 4. Performance comparisons for varying traffic load

controls clustering and sleeping, but it reflects only average
traffic arrivals without consideration of temporal fluctuation.

VI. CONCLUSION

In this paper, we studied the joint BS sleeping and clustering
problem for energy saving in cooperative wireless networks. In
order to exploit spatio-temporal fluctuation of traffic demand,
we use queue dynamics and develop Traffic-Aware Energy-
Saving (TAES) algorithms by applying stochastic optimiza-
tion theory. In TAES algorithms, if the network capacity is
excessive compared to traffic demand (and thus the network
backlog decreases), then energy is saved by turning off BSs.
That way, TAES algorithms save energy without capacity loss
as well as they do not require any information for the future
traffic variations. For BS clustering problem, we proposed an
optimal algorithm that has polynomial complexity. For BS
sleeping problem, we proposed TAES optimal algorithm and
TAES greedy algorithm. TAES optimal algorithm finds an
optimal solution with reduced search space compared to the
exhaustive search. TAES greedy algorithm finds a near-optimal
solution with polynomial complexity with provable optimality
gap. Simulation results show that TAES algorithms can save
energy up to 80% while guaranteeing the maximum capacity
by adapting to traffic variations.
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