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Abstract—Mobile cloud computing (MCC) has been proposed
to offload heavy computing jobs of mobile devices to cloud servers
managed by cloud service provider (CSP), which enables the
mobile devices to save energy and processing delay. Heretofore,
cloud offloading policies in mobile devices and pricing/scheduling
in CSP have been independently addressed. This paper is first
to jointly account for both sides of mobile users and CSP
in a unified mobile cloud computing framework. By invoking
“Lyapunov drift-plus-penalty” technique, we propose dual-side
control algorithms for the mobile users and CSP in two different
scenarios: (i) In non-cooperation scenario, we propose a NC-UC
algorithm for the mobile users and a NC-CC algorithm for the
CSP to minimize each cost for given delay constraints. (ii) In
cooperation scenario, we suggest a CP-JC algorithm for both
cloud users and CSP to minimize the sum costs of them for given
delay constraints. Trace-driven simulations demonstrate that NC-
UC saves minimum 63 % of cost by trading 8MB of average queue
lengths when compared with the existing algorithms, and NC-CC
achieves 71% of profit gain when compared with the same delay
of existing scheme; moreover, the cooperation enables them to
save additional costs and delays.

I. INTRODUCTION

According to the forecasts of Cisco [1], 11.2EB of mobile
data traffic will be generated in 2017, which is 7-folds higher
than that in 2013, mainly due to high quality of the multimedia
contents which also require high processing resources. To
cope with such computation-intensive applications, the Mobile
Cloud Computing (MCC) has been proposed as an emerging
technology to offload the computing-intensive jobs (e.g., face
recognition or video transcoding) in mobile devices to cloud
service provider (CSP). The MCC is already widely utilized
as a form of commercial cloud services, e.g., Windows Azure
[2], Amazon EC2 [3] and Google cloud platform [4]. ABI
research forecasts that more than 240 million mobile business
users will use cloud services driving $5 billion in revenues by
the end of 2015 [5].

The MCC has two kinds of benefits for mobile users: (i) It
enables mobile devices to save local processing energy. Be-
cause the CPU power is drastically increasing to the increment
of the clock speed [6], heavy processing jobs by local CPU is
extremely big burden for the mobile devices. (ii) It enables the
mobile devices to reduce the processing delay with the help of
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the cloud server of which the processing speed is much faster
than that of mobile devices [7]. However, the mobile users
may not obtain these advantages for free due to the networking
energy to offload the computing jobs to the cloud server and
the expense to use the MCC service. Therefore, the mobile
users should carefully determine the cloud offloading or adjust
local CPU clock frequency to minimize their costs for local
computing (e.g., local processing energy) or cloud computing
(e.g., networking energy and prices managed by the CSP
for the cloud services) while satisfying the processing delay
constraints. For example, let us assume that the achievable data
rate of a mobile device is high, the cloud computing is low-
priced and the processing density, defined as required CPU
clock cycles to process one bit!, of jobs is high. Then, the
mobile user would prefer to offload the computing jobs to the
cloud in order to reduce the user’s costs.

On the other hand, the CSP is able to obtain the benefit from
the mobile users for the MCC service. However, willingnesses
to pay of mobile users are heterogeneous depending on their
network states and the load of computing jobs; hence the
pricing is a challenging problem. Also, they should make a
payment for electricity usage which is time-varying [8] for
operating cloud servers. Thus, the objective of the CSP is to
determine price for the MCC service and adjust processing
amount in cloud servers by selecting the active number of
servers in order to maximize long-term benefits from mobile
users minus payment for electricity usage while satisfying the
processing delay constraints. For example, the CSP decides
the price for the MCC service to earn more money with
considering the willingness to pay of mobile users. Also,
the CSP uses more active servers to process requested jobs
from users when the electricity bill to operate cloud servers is
inexpensive.

Previous studies related to the mobile cloud computing
where the objective is to minimize energy consumption of
user-side (mobile device) under static computing job size
and static wireless channel state scenarios [9]-[11]. However,
arrival of computing jobs and network states of real life are
time-varying, those assumptions have limitations in practice.
Also, those studies do not concern the cost of cloud computing
which directly affects to the offloading decision of users.
In most of previous studies dealing with user-side mobile

'Each workload generally requires different cycles in processing the same
amount of data in bits.
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cloud computing, they assume that the processing capacity of
cloud server is infinite, so that they solve the problem without
considering the processing delay at the cloud, which cannot
capture the real environment in the cloud servers.

Other works studied cloud computing to minimize energy
consumption [12] or to maximize profit [13], [14] of cloud-
side (cloud data center). The weakness of those studies is that
they did not strictly model the user-side such as arrival of
computing job, offloading policy of user and willingness to
pay for using the MCC service.

Although there have been several studies about MCC al-
gorithms for user-side and cloud-side, respectively, most of
them did not jointly optimize the sum costs of users and
CSP which is also called social cost. If the users and CSP
cooperate with each other to reduce social cost and distribute
their costs by paying computing price between the users and
CSP appropriately, both sides of them can expect additional
gains in terms of costs. For example, a user does not transfer
computing jobs to the cloud but process locally to reduce
social cost even though offloading is favorable to the user. On
the other side, the CSP process the requested computing job to
reduce processing delay of overall system even though the cost
for operating cloud server is quite high. One work [15] dealt
with the cooperation scenario in terms of pricing among the
users and CSP, however it does not capture real environment of
MCC such as local computing strategy of users. More details
about related works are summarized in a technical report [16].

In this paper, we propose dual-side dynamic controls’ in
mobile cloud computing systems in two scenarios: (i) Users
and CSP do not cooperate with each other, i.e., they are
trying to minimize their own cost for given delay constraints,
respectively. (ii) Users and CSP cooperate with each other
to minimize the social cost for given processing delay con-
straints. To exploit the opportunism of dynamic variations
of wireless conditions, job arrivals and electricity bills, we
invoke “Lyapunov drift-plus-penalty” technique [17] in both
user-side and cloud-side that does not require information
about the distribution of arrivals, network states and electricity
bills, but only needs to know information about the current
states of them. To model realistic cloud system environment,
we consider finite processing capacity of cloud servers, real
processing density of computing jobs, time-varying electricity
bills for operating the cloud servers. We run trace-driven
simulations over real measurements of LTE data rates and
energy consumption of CPU and LTE interface in popular
smartphone models. Our paper is first to concretely model the
strategies of mobile users and CSP simultaneously and reveal
cost-delay tradeoff of dual-side in mobile cloud systems.

The contributions of this paper are summarized as follows.

« We propose dual-side algorithms in MCC which mini-
mize the cost of users by scheduling user-side resources
(cloud offloading or local computing) and selecting CPU
clock speed, called NC-UC, and minimize the cost of CSP

2We define dual-side control as controlling user-side and cloud-side
simultaneously.
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Fig. 1: Framework for mobile cloud computing system

by determining the active cloud servers and selecting the
MCC price, called NC-CC, for non-cooperation scenario.

« We propose a control algorithm, called CP-JC, to min-
imize the social cost by jointly determined control pa-
rameters in dual-side, for cooperation scenario. This
approach is the first to observe the social cost reduction
by cooperation between the users and CSP.

e Through trace-driven simulation, we demonstrate that
NC-UC saves 63% of cost by trading 8MB of average
queue lengths, NC-CC achieves 71% of profit gain when
compared with the same delay of existing schemes;
moreover, the cooperation between cloud users and CSP
enables them to achieve 22% of additional social cost
reduction (10*KB queue length) and 47% of additional
delay reduction (1.1 x 10~3$ social cost).

In the rest of our paper, we describe system model in Section
II. In Section III, we propose two kinds of dual-side control
algorithms. Next, in Section IV, we evaluate our algorithms
by trace-driven simulations. Finally, we conclude our paper in
Section V.

II. SYSTEM MODEL

Job & arrival model. Fig. 1 illustrates our framework for a
mobile cloud computing system. We consider one CSP and [
number of mobile users who subscribe to the MCC service
where ¢ € Z is a user index. We assume a time-slotted
system indexed by ¢ € {0,1,...}. At each time slot, A*(t)
size (in bits) of computing job is arrived for user i and A*(t)
is an independent and identically distributed process where
E [Ai(t)] = A%, We assume that all arrivals in every slot are
bounded, i.e., Ai(t) < A%, for all i € Z. Computing job of
each user has a different processing density +* (in cycles/bit)
which is defined as required CPU cycles to process a unit
bit. We assume that all computing jobs can be separated into
independent and fine-grained tasks, and they are delay tolerant
[9]°. User-side jobs can be served by two types of processing
resources: (i) the local CPU resources in the mobile devices,
(ii) the cloud resources in the CSP.

User-side resource model. Typically, modern smartphone
processors have DVFS (Dynamic Voltage and Frequency

3They do not have instantaneous delay constraints.

444



2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

Scaling) capability, so that it adjusts CPU clock speed, i.e.,
st(t) € S, (in cycles/time slot), every time slot where the
set of adjustable CPU clock speeds is defined as S, =
{0, 85,1, 80,2y -+ - Sumax > and si(t) = 0 means to stop
processing the computing job and let CPU be in the idle state.
For simplicity, we regard that all smartphones have the same
sets of adjustable CPU clock speeds. Every time slot, the user
i determines the local CPU clock speed st (t), and computing
resources between local CPU and cloud, which is denoted by

0 () for all users as follows.

o1 = {

Network speed of user 4, u'(t) € (0, ul,], is given every
time slot ¢. We assume that the user is always in cellular
network coverage. We note that uplink data rates of the
network technology are predictable enough by online and
offline estimation exploiting received signal strength indicator
(RSSI) and past data rates history [18].

Cloud-side resource model. The CSP has n(¢) number of
available servers where n(t) € {0, 1, ..., imax }, Which changes
every slot. We assume that cloud-side jobs of the correspond-
ing mobile user can be served by at most only one server
every time slot. The finite processing capacity of unit server
is denoted by s. (in cycles/slot). The CSP determines time-
dependent pricing p(t) € [0,00) (in $/cycle) for using the
MCC service. Every time slot ¢, the CSP determines the cloud
computing price p(t), and selects jobs to process, which is
denoted by 0..(t) = (01(t),02(t),...0L(t)) as follows.

oi(0) = {

In order to capture the fact that the number of selected servers
cannot exceed the number of total servers, we consider a
constraint as follows.

> 0i(t) < n(t) (1)

i€l

1, if the job is transferred to the cloud server,
0, if the job is processed in the local CPU.

1, if the job of user i is selected,
0, otherwise.

Queueing model. For each mobile user, we denote Q’,(t) by
a user-side queue length of computing job for user ¢ (in bits).
For the CSP, we consider / number of cloud-side queues for
each subscriber. These queues are required due to the finite
processing capacity of the cloud servers. Then, we denote
Q' (t) by the cloud-side queue length (in bits) of user i at
time slot ¢. We model queueing dynamics at the user-side and
cloud-side as follows.

Qe+ 1) =@ 0300 " -gi o) + 0]

2
QL +1)= QU0 — 00 % + 00 (0)] G
where [z]* = max(z,0). The amount of departure from

the user-side queue is determined by the control parameters
(6% (t), s (t)). The amount of arrival to and departure from the
server-side queue is determined by control parameters 6! (t)
and 0 (t), respectively. Because the unit of s (¢) in the local

CPU (and s, in the cloud server) is cycles/time slot and that of
the queue lengths is bits, the amount of served workloads from
the queue is s (t) (and s.) divided by ~* for unit agreement.

Cost model. Processing job through the local CPU resources
of a mobile user requires the energy cost which is a function
of CPU clock speed Ec(s!(t)) (in Joule/time slot). On the
other hand, if the computing job is served by cloud resources,
two kinds of costs are required for the mobile user. (i) One
is networking energy En (in Joule/time slot) in transferring
computing job to the cloud. We assume that all mobile users
exploit the same network technology, e.g., 3G or LTE and the
transmit powers of their devices are known to the users [6].
(ii) The other is a pricing cost p(t)y'u(t) which the user has
to pay to CSP for using cloud service. We denote b(t) by an
electricity bill (in $) required in activating one server during
time slot £ which is paid by the CSP.

Then, the costs (in $) of user ¢ and the CSP at time slot ¢
are as follows.

User iz hi,(t) = (1 — 6} (1))’ (t) Ec (51, (1))
0L (@ () Ex +p(0)7 i (1), 4)
he(t) = 3 0L0b() — 3 0L (O I (Op(D). ()

ieT i€
where o(t) (in $/J) is a tradeoff parameter between the price
for using MCC service and the energy consumed in the device
of mobile user ¢ at time slot ¢. This is a user-dependent factor
decided by sensitiveness on price and energy. Furthermore,
it can be changed over time according to charging status of
mobile user. We assume that a(t) is not influenced by past
decisions.

CSP:

III. DUAL-SIDE CONTROL ALGORITHM

In this section, we formulate two optimization problems
considering the cost minimization with queuing stability for (i)
non-cooperation case (i.e., the users and CSP try to minimize
their own costs, respectively) and (ii) cooperation case (i.e.,
the users and CSP cooperate with each other to minimize their
social cost). For non-cooperation case, we develop a user-
side control algorithm called NC-UC, a cloud-side control
algorithm, called NC-CC. For cooperation case, we develop
a joint control algorithm, called CP-JC.

A. Problem Formulation

Our objectives and constraints for non-cooperation case of
users, (NC-U), and CSP, (NC-C), and for cooperation case,
(CP), in a mobile cloud computing system are summarized in
Table 1. Control parameters (6., s,, p, 0.) denote as follows.

eu = (G}L(t)7 ei(t)v LR 91{(0)?:03

Sy = (81114(1;)’ Si(t)’ SRR Si(t))?:O’
p=P®)i0 0c=(0:(t),02(t),....00(t))i=0-
The objective (NC-U) is to minimize the cost of user ¢ by
controlling (6, s¢,) for given CSP’s policy. It is constrained

by the queue stability of both user-side and cloud-side in
order to process the jobs within finite time. The objective
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TABLE I: Objectives and Constraints

(NC-U) (NC C) (CP)
o . | -1 . 1
Objective (9111_1"1’1;11_‘) |:Tlgnoo — g E{hu(t)}] , Vi (Elén |:T1311m — Z E{h }} o, Igu C)|:Th—r>noo T Z IE{ ;h )+he( }}
memMImwa]%@ +Q&ﬁ<mlggp§}ﬂZQw&<w mmpEJMZ:qm+q ”<m
t— 00 €T i€
Diez 0e(t) < n(t), Vi, ez 0e(t) Sn(t), VY

(NC-C) is to minimize the cost of CSP by controlling (p, 6..)
for given policy of the user. It is constrained by the queue
stability of cloud-side because interest of the CSP is to process
the received jobs from users within finite time. The objective
(CP) is to minimize the social cost by controlling (6, s, 6.)
with the queue stability constraint of user-side and cloud-side.
Because the cloud computing price p does not affect the social
cost (i.e., the benefits of CSP from users is exactly same as
the payment of users to the CSP), we do not care p in the
cooperation case.

B. Algorithm Design

We design the control algorithms for (NC-U), (NC-C) and
(CP) by invoking “Lyapunov drift-plus-penalty” framework
[17] which has advantages in the sense that it does not require
information about the distributions of job arrivals, network
states and electricity price, but only needs to know information
about the current states of theirs.

Making slot-by-slot objective. First, we define Lyapunov
function and Lyapunov drift function as follows.

oNcuy L) = 3 { QL) + <Qi<t>)2} ©

AL(t) =E{L(t+1) — L(t)|Q,(1),QL(t)} (]

Ny L(t) = %{ Z(Qé(t))?} ®)
€T

AL(t) = E{L(t +1) — L(t)|Qc(t) } 9)

(cPy: L(1) = %{ > ((Qz(t)) - (Qi(t))2

i€l (QZ 2)} (10)

AL(t IE{L t+1) |Qu (t)} (11)

where { 0 e

The Lyapunov functions (6), (8) and (10) are designed to
fairly stabilize queues among users in terms of delay. In (6),
(Q1 (t))? is trying to minimize the processing delay at the user-
side and (Q%(t))? is trying to avoid congestion at the cloud-
side. The function (8) is trying to minimize the processing
delay at the cloud-side. In (10), (Q! (¢))? and (Q%(t))? are
trying to minimize the processing delay at the user-side and
cloud-side, repectively, and (Q?,(t) + Q%(t))* means the CSP
and user ¢ try to minimize the processing delay of waiting jobs
for user 7 because user ¢ and the CSP cooperate with each
other. Then, minimizing Lyapunov drifts (7), (9) and (12) for
each objective function is the same as satisfying the constraints

in Table L.

Next, we define “Lyapunov drift-plus penalty” functions
where the penalty function is the cost during time slot ¢ as
follows.

(NC-Uy: AL)+VE{ L (0)|Qu(1), Q1) }.

)@},

(CP): AL(t)+V]E{ PAGER)
i€l

13)

(NC-C): AL(t)—i—V]E{hc(t (14)

0]Qu(1,Q.0}. 13)

where V' is a non-negative tradeoff parameter that is chosen to
adjust the cost and delay tradeoff, i.e., how much we care about
the cost reduction compared to the processing delay. Then, our
objectives for (NC-U), (NC-C) and (CP) are to minimize the
objective functions (13), (14) and (15) in every time slot ¢,
respectively. The key derivation step is to obtain upper bound
on the Lyapunov drift-plus-penalty.

Deriving an upper bound. We derive upper bounds of (13)-
(15) using queuing dynamics (2), (3) and bounds of computing
job arrivals, CPU and network speeds assumed in Section II.

Lemma 1. Under any possible control variables 0,,(t), s,(t),
0.(t) and p(t), we have:

(
(NC-Cy: AL(t) < By — Z (92@)3 () (1) Q1)
(CP: AL(t) < By — Z GO RACTHO) A0
i€l
-3 (- o0 4 oot - 4'0) Qi
€T
i su(t) i Se i i i
- ;(u —OLO)TE + 0L~ A QL) + QL)
where . _ 5
Br = ((Ana)? + S5 + 200 + 5,
BQ = bl ZZEI ( )2 + (/j‘mdx) )’
By =Yier ((Afnax) e ()7 Ly + 2eae ),

Proof. The proof is presented in the technical report [16]. [

We develop NC-UC, NC-CC and CP-JC algorithms by

finding (NC-U): (6% (t),s!(t)), (NC-C): (0.(t),p(t)) and
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(CP): (0,(t), su(t),0.(t)) which minimize the upper bounds
of (13)-(15) every time slot.

C. Control algorithms for cost minimization of users and CSP
in mobile cloud systems

First, we describe NC-UC and NC-CC algorithms for non-
cooperation case as follows.

Algorithms for non-cooperation case: NC-UC, NC-CC

At each time slot ¢,

Cloud-side control, NC-CC:
1: Find a user set J such that Vb(t) < 22Qi(t),Vj € J.
2: Schedule 6.(¢)* by selecting top minZn(t), 71

oH10)
'y] *

(16)

number of user queues where the reference is

3: Select p(t)* = arg minz X(p(t)),
p(t) ez
where X (p(£)) =~ (1) (Vp(t)y'u (1) i ()QL(0)).

User-side control, NC-UC: for each user 1,

a0t min {Va'(OEc(L0) - 2010} >

V(' (t)En+p(t)y'u' (1) — ' () (Qu(t) —Qe(t), (A7)

5: Select 6 (t)* =1 and s!,(t)* = 0.
6: else
7: Select 6 (t)* = 0 and 5 (1)
si(t)*:arg min{Vai(t)EC(si(t))—“—iQi(t)}.
sL(t)ESy Y
8: end

Cloud-side algorithm for non-cooperation case (NC-CC):
Cloud-side queue scheduling 0.(¢)* can be divided into two
steps: 1) Find J which is the set of users whose cloud-side
queue is preferred to be served. In other words, stabilizing
cloud-side queue of user j is more important than the cost
reduction for all j € J. 2) Schedule the maximum n(t)

number of queues in a descending order of % from the
set J where Ll(t) means the workload size in cycles. Step 1)
means the CSP opportunistically stabilize cloud-side queue in
terms of variation of electricity bills, and step 2) means the
CSP fairly schedule cloud-side queues in terms of queueing
delay among users. Next, the CSP selects cloud computing
price p(t)* that minimizes (16) where X*(p(t)) represents the
tradeoff between the profit and queue stability of user ¢. In
other words, the CSP regulates p(t) to maximize cloud com-
puting profit from users, and increases p(t) to stabilize cloud-
side queue by blocking excessive cloud computing requests
from the users. However, we cannot separate problem (16)
into each user and have to check all the p(t) € [0,00) to find
optimal point which requires high complexity. We can find
p(t)* easily without loss of optimality using Lemma. 2

Lemma 2. We can find optimal p(t)* by checking L number
of pricing points which is less than the number of users, I.

Proof. For user i, (17) is a linear function of p(¢). Fig. 2 shows
the two cases of X*(p(t)).

X{p(0)) X' (p(©)))
KA(Q(®) 3
0
p(®) 0 /'/ \ptrans r(®)
Slope
—Vylut(t) |
@) (ii)

Fig. 2: Two cases of X*(p(t)).

2., K@)
Z_E]u"(t)Qi(t)

- z Vyiui(e)
i€l

0

p(t)

2 3 4 4
Ptrans Ptrans Ptrans Ptrans T €

Fig. 3: Example of 3, X*(p(t)) when L = 4.

1
Ptrans

G If s;?tl)lélsu {Va (t)Ec(s,,(t)) i Qu(t)}
A <Va'(t)Eny — p'(t)(Q4(t) — QL(t)),
Then, 0;,(t) = 0 and X"(p(t)) = 0 for all p(t) € [0, c0).
(ii) Else, there exists a price pyans called transition price,
which makes

oie) = {

1,9p(t) € [0, prrans],
O7Vp(t) € (ptransyoo)v

min (Vo' Ee(sl ()~ Q4 (1))

where Ptrans = Vﬁ/ilti (t)
L HO(QL0 - QD) ~ Vel B
Vi (t) '

Then, X*(p(t)) = =Vp(t)y' ' (t) + ' (t)Qe(t), Vp(t) €

[0, pyans] Which is a linear decreasing function and

X¥(p(t)) = 0,Yp(t) € (Purans, o0) Which is constant.
For the I number of users, there exist L number of transition
price points where L. < I. We index transition prices in
ascending order. (i.e., pry < Pl < ..o < pko). For
each interval (pi.,Pide] Where i € {1,2,...,L — 1} it
is enough to check pify to find minimum Y, X(p(t))
value because Y, X*(p(t)) is a superposition of linear and
non-increasing function. Therefore, we have to check only L
(Pirans» @ € {2,..., L} and pL,  + €) number of price points to
find p(¢)*. Fig. 3 shows the example of how to find p(t)* for
multi-user scenario when L = 4. O

User-side algorithm for non-cooperation case (NC-UC):
Each user considers queue lengths of user-side and cloud-side,
network states, and cloud computing price at time slot ¢. The
user decides 6¢ (t) by comparing (13) which represents trade-
off between the user’s cost and queue stability of both user-
side and cloud-side. We can see that the user tries to schedule
0i (t) = 1 (processing by cloud) when the user-side queue
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lengths are much larger than cloud-side one (Q (t) > Q' (t)),
network channel states are good and cloud computing price
is low. This implies the user distributes the computing job
opportunistically to the user-side and cloud-side. If 67 (¢) = 0,
the user increases CPU clock speed to stabilize the user-side
queue when the user-side queue lengths become larger.

Second, we describe a CP-JC algorithm for cooperation case
as follows.

Algorithm for cooperation case: CP-JC

At each time slot ¢,

Cloud-side control:
1: Find a user set J such that Vb(t) < %Q’i(t),Vj eJ.
2: Schedule 0.(t)* by selecting top min(n(t), ||J|)
oHO)

number of user queues where the reference is Foran

User-side control: for each user ¢, :
3 if mln {Va Ec(si(1)— “( )} >

si()es 7
Vo (t) Ex — il (Q ~Qi(t), (18)

4:  Select 9% (t)* =1 and s, (t)* = 0.
5: else
6:  Select 6% (t)* =0 and

sh(t)* —ziré)rél;n{Va )Ec(si(t))—sz‘(f) QL()}.

7: end

where Qi (t) = @, () + 2Q¢(t) and Q5(t) = 2Q.,(t) + QL(t)

Algorithm for cooperation case (CP-JC): A CSP controls
0.(t)* by similar mechanism with NC-CC. However, the CSP
considers both user and cloud-side queues, while NC-CC
considers only cloud-side one. It implies that the CSP also
cares queue stability of user-side to optimize social objective
for the cooperation case. All mobile users schedule 6 (t)*
by similar mechanism with NC-UC, but the computing price
term p(t)y'p'(t) is disappeared (in (18)) that means the user
decides offloading policy with considering only the energy cost
and queue stability. The reason for theses phenomenon is that
the user behaves to minimize the social cost.

IV. TRACE-DRIVEN SIMULATION

In this section, we evaluate the proposed algorithms through
real measurement and trace driven simulations.

A. Real Measurement and Traces

Real energy measurement. We measure the energy con-
sumptions of Galaxy Note smartphone [19] with LTE chipset
using Monsoon power monitor [20]. We measure the energy
consumptions of CPU for several clock speeds (0.1~1.4GHz)
and fit the parameters (x, ¢, p) to the typical CPU energy
consumption model in [6] as follows where At denotes time

duration for one time slot in sec®.

Ec(s,(1)) = (5(s,, ()7 + p) At

4All measurements are done with disabling other components, GPS,
display (and network in CPU measurement).

19)

The measured network energy consumption (LTE) and CPU
energy parameters are 2605mlJ/sec, 0.33 (x), 3.0 (¢) and 0.10
(p), respectively.

Real traces. We collect the eight numbers of LTE uplink
throughput traces for three network service providers and the
diverse mobility scenarios including fixed location, driving
in downtown, driving in highway and KTX (Korea Train
eXpress). The LTE throughput traces are collected by up-
loading SMB size of dummy files to our private server and
checking transmission time every 1 minute within active time
zones (11:00AM to 10:00 PM). The measured average uplink
throughput is 6.4Mbps. To run the simulation, we use the
uplink throughput traces for the users by randomly selecting
the throughput traces. To generate computing job arrivals of
users, we use a YouTube video size distribution dataset in [21]
and re-scale it, where the average file size is 12.6MB. We use
the real-world traces of electricity bills in California, USA [8]
where the time granularity is 5 minutes.

B. Simulation Setup

We consider a scenario that mobile users who have Galaxy
Note smartphone move around in the LTE coverage. They
run cloud offloadable applications where the jobs arrive as
a Bernoulli process. For simplicity, the processing densities
of all users are set to be the same from 200 to 4000 cy-
cles/bit. We mainly run simulations for the 2000cycles/bit of
processing density which is generally acceptable for video
transcoding, chess game and face recognition applications [9],
[6]. We fix the energy-price tradeoff parameter of all users as
a'(t) = 2.44 x 10~°$/Joule for easy analysis. On the cloud-
side, we assume that the CSP has cloud servers where the
available number of them is time-varying between 1 to the
number of users. The electricity bill is also time-varying [8]
where the average is 5.5 x 107°$ for activating one server.
Detailed simulation parameters are summarized in Table II.

TABLE II: Simulation settings

Number of users 80
Experimental time [hour] 6
Avg. arrival rate [Mbps] 0.96

Avg. electricity price [$/server] 5.5 x 1075

Available # of servers at CSP uniform(1,80]
Capacity of one server [GHz] 4.0
2.44 x 105

Energy-price tradeoff parameter [$/Joule]

As performance metrics, we consider average costs and
queue lengths for the users and CSP. By little’s law [22],
the average delay can be interpreted as the average queue
lengths divided by the average arrival rate. We compare our
algorithms, NC-UC and NC-CC under non-cooperation case
with existing cloud offloading algorithms at user-side [9]-
[11], and cloud-side with flat-pricing and scheduling cloud-
side queue without delay. For all comparing algorithms, CPU
speed is selected by a DVFS scheme [23]. For MAUI [9],
cloud offloading is selected only when the current workloads
can be served within a specified delay. For ThinkAir [10],
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CC and flat pricing algorithms.

cloud offloading is selected only when both delay and network
energy are less than constraints. For OAEP? [11], could of-
floading is selected when the energy efficiency (speed/energy)
of CPU is greater than network resource. CPU only and
Cloud only policies are always using the local computing and
cloud computing, respectively. We also compare our CP-JC
algorithm with (NC-UC+NC-CC) to verify the advantage of
cooperation between the users and CSP.

C. Simulation Results 1 - Non-cooperation Case

Cost-delay tradeoff. Fig. 4 depicts the average cost of users
and the sum of average queue lengths stabilized for user-side
and cloud-side for NC-UC (when the CSP adopts NC-CC) and
existing algorithms. First, we observe the 83% cost savings for
NC-UC by trading only 0.6MB queue lengths. The cost saving
is due to that (i) it saves the CPU energy cost by adjusting
local CPU clock speed and (ii) it opportunistically transfers
computing job to the cloud by taking into account network
states, the price for MCC service and remaining jobs.

Second, we observe that the NC-UC algorithm outperforms
existing algorithms where the cost savings are 63% (8.0MB
queue lengths) for CPU only, 89% (2.1MB queue lengths)
for Cloud only, 91% (2.4MB queue lengths) for MAUI, 94%
(4.7MB queue lengths) for ThinkAir, and 96% (10.7MB queue
lengths) for OAEP. The reason why NC-UC outperforms other
algorithms is that it jointly optimizes cloud offloading and
CPU speed selection by considering the time varying network
states, cloud computing prices and remaining jobs.

SWe denote by OAEP the optimal application execution policy in [11]
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Fig. 6: Avg. social cost and sum of avg. queue lengths for user and
cloud for the non-cooperation (NC-UC+NC-CC) and the cooperation
(CP-IC).

Impact of dynamic pricing and exploiting opportunity
of time-varying electricity bill. We compare flat-pricing
algorithms to our NC-CC when users adopt NC-UC. Fig. 5
demonstrates the average queue lengths and the profit (gained
money paid by users minus electricity bill) of the CSP. For
the flat pricing, as the computing price becomes cheaper, the
cloud-side queue lengths become larger due to the increasing
requests of cloud computing from the users. However, the
average profit of the CSP is not monotonic to the computing
price and the highest profit achievable price is 5x10~12 $/cycle
between 1.5x107! $/cycle and 10~'2 $/cycle. The NC-CC
algorithm achieves 71% of the profit gain compared to the flat-
pricing (5 x 10712 $/cycle) while maintaining similar queue
lengths. It is because NC-CC fully exploits the degree of
willingness to pay of users by time-dependent pricing, and
grabs opportunities time-varying electricity bills which can
save the operating cost of cloud servers with satisfying the
queue stability.

D. Simulation Results 2 - Cooperation Gains

Cost-delay tradeoff. We compare two proposed dual-side
control algorithms when the users and CSP cooperate (CP-
JC) or not (NC-UC+NC-CC). Fig. 6 demonstrates the social
cost (for all users and CSP) and the sum of average queue
lengths stabilized for user-side and cloud-side. Fig. 6(a) reveals
that the social cost for cooperation case (CP-JC) is lower
than that of non-cooperation case (NC-UC+NC-CC) for all
average queue lengths. In Fig. 6(b), the cooperation achieves
22% of cost gain when the average queue lengths are 10*KB
and 47% of delay gain when the average cost is 1.1x10~3$,
compared to the non-cooperation case. As the queue lengths
(the cost) become larger, the cost gain (queue length gain)
becomes smaller because both of control algorithms similarly
operate when the cost-delay tradeoff parameter V is extremely
large or small.

Impact of processing density. Fig. 7 demonstrates the ratio
of computing job processed by the CSP over total volume of
processed jobs as a function of processing density, 7%, from
200 to 4000cycles/bit. We could find two interesting results:
(i) The ratio of jobs processed by the CSP for the cooperation
case is higher than that for the non-cooperation case. It is
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because the users transfer the jobs to the CSP without burden
of computing price and the CSP schedules cloud-side queues
with considering the remaining jobs at the user-side when the
users and CSP cooperate with each other. These phenomenas
make the social cost become smaller which are demonstrated
in the simulation results in Fig. 6.

(ii) As the processing density increases, the ratio increases
to a certain point of processing density marked by red arrow
in Fig. 7 and decreases again from that point. The reasons
are as follows: 1) As the processing density goes higher
to the marked point, it requires faster CPU clock speed
which consumes higher CPU energy than networking energy;
hence the cloud computing is likely to be more preferred
than local computing. 2) As the processing density goes
extremely higher® over the marked point, the cloud servers
may become bottleneck because the cloud servers have finite
processing capacities. Then, the users prefer local computing
rather than cloud offloading; hence the ratio processed by the
CSP decreases again. These interesting results is due to that
we concretely model both of local CPU DVES capability of
mobile users and finite processing capacity of cloud servers,
which were not entirely captured in the previous cloud of-
floading studies, e.g., [11]-[14].

V. CONCLUDING REMARK

In this paper, we explored the cost-delay tradeoffs of
mobile users and cloud service provider (CSP) in mobile
cloud computing systems. We proposed two kinds of dual-
side control algorithms for cost minimization which is com-
posed of energy and pricing cost, for given delay constraints.
This paper is first to study non-cooperation and cooperation
scenarios between the users and CSP, and propose user-side
and cloud-side control algorithms for the non-cooperation and
dual-side control algorithm for the cooperation. Each mobile
user controls resource scheduling of computing jobs and
local CPU clock frequency, and the CSP controls cloud-side
queue scheduling and cloud computing price for using mobile
cloud computing service. Trace-driven simulations based on
real measurement demonstrate that our algorithms for non-
cooperation and cooperation scenarios achieve drastic cost

SNote that there exist computing jobs with extremely high processing
density such as virus scanning (32946~36992cycles/bit) [24] and N-queens
puzzle (87.8~8250cycles/bit) [10].

saving for users and CSP, respectively; moreover, the results
provide us a message that realistic modeling for both of mobile
users, e.g., DVFS capability and the CSP, e.g., finite processing
capacity of cloud servers is essential for the analysis of the
mobile cloud computing.
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