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Abstract—Outage probability computation has been 
extensively studied in cellular radio systems where the 
interference is modeled by a sum of lognormal random 
variables.  Since the sum of correlated lognormal random 
variables distribution does not have a closed-form expression, 
many approximation methods and bounds were proposed in 
the literature. However the accuracy of each method relies 
highly on the region of the resulting distribution being 
examined and the individual lognormal parameters, i.e., mean 
and variance. There is no such method which can provide the 
needed accuracy for all cases. This paper proposes a universal 
yet very simple approximation method for the sum of 
correlated lognormal random variables based on log skew 
normal approximation. Hence, the outage probability is 
accurately computed over the whole range of dB spreads for 
any correlation coefficient. We show that our method provides 
same results as Monte Carlo simulation for all cases. 

Keywords—Correlated Lognormal Sum,      Log Skew Normal,      
Interference,      Outage Probability.  

 

 

I.  INTRODUCTION  

The outage probability represents an important 
performance metric in cellular system. The Signal-to-
Interference-plus-Noise Ratio (SINR) has to be kept above 
certain threshold to guarantee a certain level of quality of 
service (QoS). In wireless communication, lognormal 
shadowing is the dominant contributor to interferences. 
Outage probability computation based on the sum of 
interferers requires providing the sum of lognormal Random 
Variables (RVs) distribution. However, there is no closed-
form expression for this distribution yet. 

Several methods have been proposed in order to 
approximate the sum of correlated lognormal RVs. Since 
numerical methods require a time-consuming numerical 
integration, which is not adequate for practical cases, we 
consider only analytical approximation methods.  Ref. [1] 
gives an extension of the widely used iterative method 

known as Schwartz and Yeh method [2].  Some other 
resources use an extended version of Fenton and Wilkinson 
methods [3-4]. These methods are based on the fact that the 
sum of dependent lognormal distributions can be 
approximated by another lognormal distribution. The non-
validity of this assumption at distribution tails, as shown in 
[5], is the main raison for its fail to provide a consistent 
approximation to the sum of correlated lognormal 
distributions over the whole range of dB spreads. 
Furthermore, the accuracy of each method depends highly 
on the region of the resulting distribution being examined. 
For example, Schwartz and Yeh based methods provide 
acceptable accuracy in low-precision region of the 
Cumulative Distribution Function (CDF) (i.e., 0.01–0.99) 
and the Fenton–Wilkinson method offers high accuracy in 
the high-value region of the CDF (i.e., 0.9–0.9999).  Both 
methods break down for high values of standard deviations. 
Ref [6] proposes an alternative method based on Log 
Shifted Gamma (LSG) approximation to the sum of 
dependent lognormal RVs. LSG parameters estimation is 
based on moments computation using Schwartz and Yeh 
method. Although, LSG exhibits an acceptable accuracy, it 
does not provide good accuracy at the lower region. In this 
paper, we propose to use Log Skew Normal (LSN) 
approximation for outage probability computation in 
correlated lognormal shadowing environment. Simulations 
show that our approximation provides exact results for 
outage probability computation over a wide range of dB 
spread for any correlation factor.   

The rest of the paper is organized as follows: In section 
2, a brief description of the lognormal and log skew normal 
distributions is given. Then we provide LSN parameters 
derivation procedure in order to approximate the sum of 
correlated lognormal distributions. In section 3, we use the 
LSN approximation for outage probability computation. In 
section 4, we validate our approach based on Monte Carlo 
simulations results. The conclusion remarks are given in 
Section 5. 
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II. SUM OF CORRELATED LOGNORMALS USING 

LSN APPROXIMATION 

A. Sum of correlated Lognormals 

Given X, a Gaussian RV with mean 
X  and variance 2

X , 

then XL e is a lognormal RV with Probability Density 
Function (PDF):  
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The first two central moments of L may be written as:  
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Correlated Lognormals sum distribution corresponds to the 
sum of dependent lognormal RVs, i.e: 
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We define 

1 2( , ... )NL L L L


 as a strictly positive random vector 

such that the vector 
1 2( , ... )NX X X X


 with log( )j jX L , 

1 j N   has an n-dimensional normal distribution with 

mean vector 
1 2( , ... )N     and covariance matrix M  with 

(i, j) ( , )i jM Cov X X , 1 ,i j N  . L


is called an n-

dimensional log-normal vector with parameters 


 and M .   

B. Log Skew Normal Distribution 

The standard skew normal distribution was firstly 
introduced in [7] and was independently proposed and 
systematically investigated by Azzalini [8]. The random 
variable X  is said to have a scalar ( , , )SN     distribution 

if its density is given by:  
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With  is the shape parameter which determines the 
skewness,   and   represent the usual location and scale 

parameters and ,   denote, respectively, the PDF and the 

CDF of a standard Gaussian RV.  
The CDF of the skew normal distribution can be easily 
derived as:  
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Where function T(x, )  is Owen’s T function expressed 

as:  
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A fast and accurate calculation of Owen’s T function is 
provided in [9]. 
Similar to the relation between normal and lognormal 

distributions, given a skew normal RV X  then 1010
dBX

L    is 
a log skew normal distribution. The CDF and PDF of L can 
be easily derived as:   
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C. Log Skew Normal Parameters Derivation 

Let L


be an n-dimensional log-normal vector with 
parameters   and M .  We define 1B M   as the inverse 

of covariance matrix. According to [5], opt  is defined as 

the following nonlinear equation: 
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Such nonlinear equation can be solved using different 
mathematical utility (e.g. fsolve in Matlab).  A starting 

solution guess 0  to (11) may be used in order to converge 

rapidly (only few iterations are needed): 
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Optimal location and scale parameters opt , opt  are 

obtained according to
opt  as: 
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III. OUTAGE PROBABILITY COMPUTATION 

We consider a homogeneous hexagonal network made 
of M rings around a central cell. Fig. 1 shows an example of 
such a network with the main parameters involved in the 
study: R, the cell range (1.5 km), Rc, the half-distance 
between BS. We focus on a mobile station (MS) u and its 
serving Base Station (BS),

iBS , surrounded by M interfering 

BS. For our system model, the SINR with N co-channel 
interferers at the receiver can be written in the following 
way: 
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The path-loss model is characterized by parameters K  
and 2  . 

iP  is  the transmission power of 
iBS ,the term 

i iP Kr   is the mean value of the received power at distance 

ir  from the base station 
iBS .Shadowing effect is 

represented by lognormal random variable 
i,

1 0
, 1 0

u

i uY

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where
,i u is a normal RV, with zero mean and standard 

deviation  , typically ranging from 3 to 12 dB. 

thN is the thermal noise power which can be neglected with 

respect to inter-cell interference. Furthermore, we assume 
that all base stations have identical transmitting powers. As 
we focus on a single User Equipment (UE), we may drop 
the indexes ,i u  and set: 
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The SINR perceived by the UE  u  can be written in the 
following way:  
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The outage probability is defined as the probability for the 
  SINR to be lower than a threshold value : 
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Figure 1. Hexagonal network and main parameters 

 
 
 

The 2015 4th International Workshop on Physics-Inspired Paradigms in Wireless Communications and Networks

547



Introducing the RV:  
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The outage probability is now expressed as:  
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fZ  is a location dependent factor. The numerator is a sum 

of lognormal RVs, which can be approximated by a log 
skew normal RV. For sake of simplicity, we define   as:  
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So that

j is a lognormal RV with mean log( )j jr   and 
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Let R  be the shadowing correlation matrix. We have: 
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The covariance matrix in the normal domain may be written 
as [10,  Eq 11.71]:  
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Let 1B M   the inverse of the covariance matrix. According 
to [5],  can be approximated by a Log Skew Normal 

distribution ( , , )LSN     
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As
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, the correlation factor between ln( )  and 

0ln( ) may be expressed as (see Appendix A):  
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We adopt the multivariate extension for skew normal 
distribution defined in [8]. As a quotient of two dependent 

log skew normal RVs, 
fZ  is a log skew normal 
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Thus, the outage probability for a UE located at a distance r 
from its serving BS, can be written, using (20), as: 
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Where  ( ) 1 ( ) 2 ( , )f fQ x x T x     

            ( )x  is the standard normal CDF. 

            ( , )T x   is the Owen’s T function.  

 

IV. VALIDATION 

In this section, we propose to validate our formula for 
outage probability computation and compare it with 
simulation results. Fig. 2 show the outage probability for a 
UE located at cell edge (r=Rc) and inside the cell (r=Rc/2, 
r=Rc/4) with 10dB  , 3.5   and 0.7  . We note that 

fluctuation at the tail of SINR distribution is due to Monte  
 

 

-40 -35 -30 -25 -20 -15 -10 -5 0 5 10
10

-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Outage Probability at r=Rc, =10dB and =3.5

SINR(dB)

O
u
ta

g
e
 P

ro
b
a
b
ili

ty

 

 

Simulation

Analysis

=0.7

=0.5

=0.9

=0.3

=0.1

 Figure 3. Outage probability at cell edge (r=Rc) for different correlation 
coefficients with 10dB  , 3.5   

-20 -15 -10 -5 0 5
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Outage Probability at R=Rc, =3.5 and =0.4

SINR(dB)

O
u
ta

g
e
 P

ro
b
a
b
ili

ty

 

 

Simulation

Analysis

=4dB
=3dB

=6dB

=10dB

 Figure 4. Outage probability at cell edge (r=Rc) for different standard 
deviation values with 3.5  and 0.4   

 
Carlo simulation, since we consider 710 samples at every 
turn. It is obvious that our approximations deliver same 
results as Monte Carlo simulations. 

To look into the effect of correlation coefficient on the 
accuracy of our formula, fig. 3 shows the outage probability 
for a UE located at cell edge with 10dB   and 3.5   for 

different values of correlation coefficients ( 0.1...0.9  ). As 

we can see, proposed formula provides exact Monte Carlo 
simulation results independently of the value of the 
correlation factor. 

Fig. 4 show the outage probability for a UE located at 
cell edge with 0.4   and 3.5   for different values of 

shadowing standard deviation ( 3, 4, 6,10 dB  ). One can 
see that the outage probability is accurately evaluated over 
the whole range of dB spreads. 

Finally, we examine the effect of pathloss model on the 
accuracy of our approximation. Fig. 5 shows the outage 
probability for a UE located at cell edge with 10dB   and 

0.9   for different values of path loss exponent 

( 2.5, 3.5, 4.5  ). The accuracy of our approximations 
remains the same independently of pathloss model choice.  
 
 

V. CONCLUSION 

In this paper, we proposed a simple and highly accurate 
formula for outage probability computation in correlated 
lognormal shadowing environment. Our formula is based on 
the approximation of the sum of correlated lognormal RVs 
by a log skew normal distribution.  LSN approximation 
provides identical results to Monte Carlo simulations 
independently of system parameters (correlation 
coefficients, standard deviation and pathloss exponent). The 
proposed formula can be used in performances evaluation of 
wireless networks since no more time-consuming Monte 
Carlo simulation is needed. 
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Appendix A: Computation of correlation factor between 

ln( )  and 0ln( )   
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Using the moment generating function of the bivariate skew 
normal distribution, defined in [8], we may write:  
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On the other hand, we have:  
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The correlation factor between ln( )  and 
0ln( ) may be 

expressed as:  
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Appendix B: Difference of two dependent skew normal 
RVs  
 
Given two skew normal dependent random 

variables
2( , ) SN ( , )X Y 


  as defined in [8], i.e. the joint 

distribution of X and Y is giving by:  
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Then the PDF of the difference Z Y X   is given by: 
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Let 1
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x
t






 , for more convenience, we define
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Given the fact that 1
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Let (z )y x
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Using [11, Equation 13]:  
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We may write:  
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Let  (z)zF  denotes the cumulative distribution function of 

the difference Z Y X  , we have:  
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 where  ( , )T x   is the Owen’s T function expressed as:  
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We have then:        

2 2 2
1 2 2 1

2 2 2
1 2 2 1

z z
(z) ( ) 2T( , )

(1 )( )

z
SN( , )

(1 )( )

zF
  

       

 

      

 
  

  




  

 

where  
 

2 2
1 1 2 22        

2 2 1 1 1 2( ) ( )            

2 1   
 

 
 
 

REFERENCES 

 

[1] A. Safak, “Statistical analysis of the power sum of multiple correlated 
log-normal components”, IEEE Trans. Veh. Tech., vol. 42, pp. 58–61, 
Feb. 1993. 

[2] S.Schwartz and Y.S. Yeh, “On the distribution function and moments 
of power sums with log-normal components”, Bell System Tech. J., 
Vol. 61, pp. 1441–1462, Sept. 1982. 

[3] M. Pratesi , F. Santucci , F. Graziosi and M. Ruggieri  "Outage 
analysis in mobile radio systems with generically correlated 
lognormal interferers",  IEEE Trans. Commun.,  vol. 48,  no. 
3,  pp.381 -385 2000. 

[4] A. Safak and M. Safak  "Moments of the sum of correlated log-
normal random variables",  Proc. IEEE 44th Vehicular Technology 
Conf.,  vol. 1,  pp.140 -144 1994. 

[5] M. Benhcine, R. Bouallegue, “Highly accurate log skew normal 
approximation to the sum of correlated lognormals ”, in the Proc. of 
NeTCoM 2014.  

The 2015 4th International Workshop on Physics-Inspired Paradigms in Wireless Communications and Networks

551



[6] C. L. Joshua Lam,Tho Le-Ngoc  " Outage Probability with Correlated 
Lognormal Interferers using Log Shifted Gamma Approximation” , 
Wireless Personal Communications, Volume 41, Issue 2, pp 179-192, 
April 2007. 

[7] O’Hagan A. and Leonard TBayes estimation subject to uncertainty 
about parameter constraints, Biometrika, 63, 201–202, 1976. 

[8] Azzalini A, A class of distributions which includes the normal ones, 
Scand. J. Statist., 12, 171–178, 1985. 

[9] M. Patefield, “Fast and accurate calculation of Owen’s t function,” J. 
Statist. Softw., vol. 5, no. 5, pp. 1–25, 2000. 

[10] N. Balakrishnan Chin-Diew Lai,  Continuous Bivariate Distributions, 
Springer 

[11] Edward W. Ng and Murray Geller, “A Table of Integrals of the Error 
Functions”,  Journal of Research of the National Bureau of Standards, 
B. Mathematical Sciences Vol. 73B, No. 1, January-March 1969 

 

 

 

 

 

 

 

 

 
Figure 2. Outage probability at cell edge (r=Rc) and inside the cell (r=Rc/2, r=Rc/4) with 10dB  , 3.5   and 0.7   

 
 
 

 
 

 
 
 
 
 
 

 

 
 
 
 

 
 

Figure 5. Outage probability at cell edge (r=Rc) for different path loss exponent values with 10dB  and 0.9   
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