
In-network Data Aggregation Route Strategy Based 
on Energy Balance in WSNs 

Bin Zhang, Wenzhong Guo*, Guolong Chen 
College of Mathematics and Computer Sciences 

Fuzhou University 
Fuzhou 350108, China 

zhangb2366@163.com, guowenzhong@fzu.edu.cn, 
fzucgl@163.com  

Jie Li 
Faculty of Engineering, Information and Systems 

University of Tsukuba 
Tsukuba Science City, 305-8573, Japan 

lijie@cs.tsukuba.ac.jp

 
Abstract—In-network data aggregation in wireless sensor 

networks (WSNs) can reduce data redundancy in the process of 
data gathering and therefore decrease energy consumption. Since 
aggregation cost sometimes can not be neglected in some realistic 
applications, it is important how to construct an effective route 
strategy which optimizes not only communication cost but also 
aggregation cost. In addition, we further study how to adaptively 
adjust route structure to avoid some nodes’ premature death. To 
solve the above problems, we introduce heuristic algorithms 
based on discrete particle swarm optimization (DPSO). And the 
notions of mutation and crossover operators in genetic algorithm 
are incorporated into the discrete procedure of PSO, which can 
not only keep the diversity of population, but also make offspring 
population maintain the preferable characteristics. Experimental 
results show that our algorithms can effectively reduce energy 
consumption and trade off energy consumption and network 
lifetime, compared with other tree routing algorithms. 

Keywords—WSNs; route; data gathering; data aggregation; 
PSO 

I.  INTRODUCTION 

WSNs are one of the most important technologies changing 
the world in that such networks could provide a variety of 
applications. The basic function of WSNs is to collect and 
return data from each sensor node in respective monitored area, 
so data gathering is a key operation for WSNs to extract useful 
information from the operating environment. Recent studies [1, 
2, 19] show that data aggregation, a process dealing with 
several data to obtain what data are more suitable for user 
needs, is particularly useful in eliminating the data redundancy 
and reducing the communication load. Since wireless sensor 
nodes are powered by batteries and usually deployed in some 
harsh environments, it is unrealistic to replace the batteries. 
Therefore it is a critical problem how to construct a route 
structure with data aggregation to improve the energy 
efficiency and extend the lifetime of network. 

Energy-efficient routing algorithm for data gathering is a 
major concern in WSNs. Routing tree structures were adopted 
in many previous works [3, 4, 5, 7, 8] to collect data: a sensor 
node transmits its data and the data from its child nodes to its 
parent node. In [3], the authors considered the problem of 
correlated data gathering by a network with a sink node and a 
tree-based communication structure, and proved that 
minimum-energy data gathering problem is NP-complete and 

declared that the optimal result is between Shortest Path Tree 
(SPT) and Traveling Salesman Problem (TSP). In [4], the 
authors proposed an optimal algorithm called MEGA for 
foreign-coding and an approximate algorithm called LEGA for 
self-coding. In MEGA, all nodes first send their gathered data 
to the sink node via the Minimum Spanning Tree (MST) and 
then each encoding node sends its respective encoded data to 
the sink node through the SPT rooted at the sink. In LEGA, the 
sink node broadcasts its packet to its neighbor nodes and each 
node sends its data to the sink node by the constructed SLT. By 
constructing the Shallow Light Tree (SLT), LEGA achieves a 
2(1+ 2 )-approximation of the optimal data gathering route. 
Khan and Pandurangan [5] proposed a scheme, called NNT, 
which is a variant of using greedy algorithm to construct 
minimum Steiner tree. NNT builds a slightly suboptimal tree 
with low energy complexity, and it is proved that NNT can be 
used to design a simple dynamic algorithm for maintaining a 
low-cost spanning tree. 

However, those above literatures only pay attention to 
transmission cost in building routing tree, neglecting the cost in 
aggregating correlated data. In some practical applications, 
aggregation cost may be greater than transmission cost, such as 
image aggregation [6]. Therefore, in addition to transmission 
cost, aggregation cost can significantly affect routing decisions 
when involving data aggregation. Luo [7] put forward the 
MFST algorithm, which is applied to collect data with 
aggregation by an energy-efficient method in WSNs. MFST 
takes both transmission cost and aggregation cost into account, 
and chooses aggregation nodes based on the quantity of data 
generated by each node. Luo [8] further proposed an improved 
algorithm of MFST, called AFST. AFST dynamically decides 
whether to proceed with data aggregation when each relay 
node transmits data, rather than merely optimize data 
transmission route. 

In this paper, we also include aggregation cost in [7] as 
another dimension to the space of routing optimization for 
correlated data. In order to minimize the total energy 
consumption, an optimal routing algorithm requires jointly 
optimizing both transmission cost and aggregation cost. On the 
one hand, since this problem is NP-hard, we design a heuristic 
algorithm based on DPSO to find approximations to the 
minimum cost tree. On the other hand, considering that nodes 
on the constructed tree consume respective energy unevenly so 



that some nodes may deplete energy earlier ending up with 
premature death while others’ energy is surplus, causing the 
imbalance of energy consumption, which motivates us to 
design an adaptive aggregation strategy that not only optimizes 
current communication load, but also puts additional stress on 
each node’s remaining energy to effectively prolong the 
lifetime of network. The problem is a multi-objective 
optimization problem, which is NP-hard as well, and we adopt 
the phenotype sharing function to appraise the routing tree. 
Finally our algorithms are compared with other classical tree 
routing algorithms, such as SPT, MST, SLT and Greed 
algorithm to construct minimum Steiner tree, and an extensive 
set of simulations show that proposed algorithms can 
effectively decrease energy consumption and achieve a good 
balance between energy consumption and the lifetime of 
network. 

The rest of this paper is organized as follows: In section 2, 
the system model and problem formulation are described in 
detail, and then we present our proposed methodology and 
strategy in section 3. In section 4, we compare our algorithms 
with other algorithms and evaluate the performance of them. 
Finally, concluding remarks are made in section 5. 

II. SYSTEM MODEL AND PROBLEM FORMULATION 

A. Network Model 

In this paper, we consider a wireless sensor network 
composed of n nodes uniformly and randomly distributed in 
the areas of monitored regions. Since typical mode of 
communication in data aggregation involves multiple data 
source nodes and one sink node, without lost of generality we 
assume there are k(k≤n) source nodes and one sink node. Node 
u can receive the data from node v if node u is within the 
communication range of node v; otherwise, they have to 
communicate with each other through multi-hop wireless links 
[9]. We model a WSN as an undirected graph G(V,E), where V 
is a finite set of sensor nodes, and E is defined as the wireless 
connection between nodes. 

B. Correlation and Data Aggregation 

As mentioned previously, data from multiple child nodes 
along the routing tree can be aggregated in order to reduce the 
communication load of network. The aggregation process is 
essential a process of data compression and the compression 
ratio is related to data correlation and redundancy. Due to the 
uncertainty of the ratio in different application scenarios, [7] 
used an abstract parameter ρ to denote the data reduction ratio 
due to aggregation. To be more specific, if node u is a child 
node of node v in the constructed routing tree and u transmits 
its data to v, we can summarize the aggregation function at 
node v as 

       1 uv uvv u v x                 

where  and  v  v  denote the data amount of node v 

before and after aggregation respectively, and  0,1uvx   

denotes whether aggregation process occurs between node u 
and node v. That is to say, if node v is an aggregation point, 

the data amount of v after aggregating income data of node     
u is        1 uvv u v      ; otherwise,       v u v    . 

C. Energy Model 

Here, we will jointly consider two aspects of costs: 
communication cost and aggregation cost. 

We will use the following radio communication model[10] 
to calculate the energy consumption for sending and receiving 
data. The energy model can be respectively represented by the 
formula (2) and formula (3): 

     uv
2,TE u v d    u               

   ,RE u v u                       

where α is the energy consumed by each sending node to send 
each bit of data, or each receiving node to receive each bit of 
data. β is the energy consumption in the amplification circuit 
for forwarding each bit of data. duv is the distance between 
node u and node v.  u  is the data amount transmitted from 

node u. So for edge e= (u, v), the communication cost  t e  of 

edge e is given by 

     2 u2uvt e uvd                

Here we discuss two node types: aggregation points and 
non-aggregation points. If node v is a non-aggregation point, it 
will merely consume energy to transmit data and receive data; 
if not, it should further consume energy to aggregate its own 
data and the data from its child nodes. That is to say, besides 
communication cost, in this paper we also include an 
aggregation cost model which is presented in [8]. And we use 
formula (5) to represent the cost for fusing the data of node u 
and v. 

      uvf e q  u  v                    

where q indicates average unit aggregation cost and it is 
dependent on the type of data to be aggregated and data 
correlation.  u  and  v  are data amount from u and v 

own data amount before aggregation. 

D. Lifetime Model 

Network lifetime [11] is concerned with the period in 
which the network can maintain its desired functionality. It 
can be defined as the time till the first node in the network  
dies, called nodal lifetime; meanwhile it can also be defined as 
the time till a proportion of nodes die. And we will use the 
former “definition” as sensor network lifetime in the 
subsequent discussion in the rest of this paper. 

For each sensor node in the network, its energy 
consumption may involve many factors. For simplicity, here 
we neglect the impact of other secondary factors and only 
attach importance to three main factors: transmitting data, 
receiving data and aggregating data. Therefore for an 
undirected graph G(V,E), the nodal lifetime of node v(v∈V) 
can be described as follow: 



   
, r

T R

E v
l G v

f E E


   
                 

where  rE v  indicates residual energy of node v. 
TE , 

RE  and f  are energy of node v used to transmit data, 

receive data and aggregate data if it is a aggregation point. 
According to previous description, a network ends up with the 
first node depleting its energy. So we can easily formulate 
network lifetime as follows [12]: 

   min ,
v V

l G l G v


                        

From the above formulas, it can be obviously seen what 
kinds of factors are significant to the uneven energy 
consumption issue, helping us to explore a more effective 
algorithm to extend network lifetime in the right direction. 

E. Problem Formulation 

In this paper, we want to achieve two optimization 
objectives. Given an undirected graph G(V,E), source node set 
S and sink node t, we assume  is a connected subgraph of G 

and energy consumption of 'G  is given by 

'G

        
' '

'
fe E e E n

E G f e t e
 

    t e              

' fE  is edge set where the end node of each edge is an 

aggregation point.  is edge set where the end node of each 

edge is a non-aggregation point. Our first goal is find a near-

optimal subgraph  that at least contains node set S and sink 
node t such that 

'nE

*G

*
'arg min 'GG  E G                       

It has been shown that the aforementioned problem is NP-hard 
[8]. 

But without considering the imbalance of energy 
consumption, the constructed routing tree may result in 
premature death of some nodes, energy hole problem [13] and 
so on. On the basis of (9), we further consider nodal remaining 
energy and dynamically adjust routing strategy to balance 
nodal energy, effectively prolonging network lifetime. So our 
second goal is to find a feasible subgragh  considering 
nodal remaining energy such that 

'G

 
 

   *

min '

max '

. . '

E G

l G

s t E G E G




 

               

Notice that ε denotes maximal permissible times of energy 

consumption of  to  and it is a variable that is set by us. 
Above problem is a multi-objective optimization problem, 
which is NP-hard as well because the solving of optimal 

subgraph  is NP-hard. 

'G *G

*G

III. ALGORITHM 

A. Basic Particle Swarm Optimization 

PSO is a population based search problem, where each 
particle is defined as a potential solution to a problem in a D-
dimensional space, with the ith particle represented as Xi =  
(Xi1, Xi2, …, XiD). Each particle adjusts its position according 
to its own flying experience and its neighboring particles’ 
flying experience, close to the minimum. Algorithm records 
two “best” values: one is historically best position  (pbest) of 
each particle and the best position (gbest) of all particles in the 
population. Based on these two values, each particle updates 
its velocity according to the following equations: 

   1
1 1 2 2    t t t

id id id id gd idv w v c r p x c r p x        t

1t

  

1t t
id id idx x v                                   

where t is the iteration index, d is the number of dimensions, w 
is inertia weight, c1 and c2 are acceleration factors, r1 and r2 
are random numbers in the range [0…1]. 

B. Discrete Particle Swarm Optimization 

Since the previously mentioned optimization goals are not 
only NP-hard but also discrete problems, standard PSO is no 
appropriate for those above problems and some modifications 
must be done to the standard PSO. 

1) Representation of particles 
As our objective is to construct an efficient routing tree 

structure, we adopt Prufer sequence in literature [14] to 
represent a labeled tree T whose vertexes are numbered from 1 
to n. 

Procedure: Encoding 
Step 1: Let j be the smallest labeled leaf vertex in the T. 
Step 2: Set k to be the first digit in the Prufer sequence if  

k is incident to j. 
Step 3: Remove j and the edge connecting j and k from T. 
Step 4: Repeat above steps till only one edge is left and 

produce the Prufer sequence in order. 

Procedure: Decoding 
Step 1: Let P be a Prufer sequence, and Q be the set of all 

vertexes not included in P. 
Step 2: Let j be the vertex with smallest label in Q, and     

k be the leftmost digit in P. Add the edge connecting j and      
k into the tree. Remove j from Q and k from P. If k does not 
occur anywhere in Q, put it into Q. 

Step 3: Repeat above steps till no digits are left in P. 
Step 4: If no digits remain in P, there are exactly two 

vertexes in Q. Add the edge connecting remaining vertexes 
into the tree. 

2) Discrete procedure of PSO 
The notion of mutation operator in GA [15, 16] is 

incorporated into the first part of (11). 
1

11
1

1

( ),
( , )

, otherwise

t
it t

i i t
i

M X r
A F X w

X






 w  


        



where F1 indicates the mutation operator with the probability 
of w. 

The second and third parts of (11) all adopt the notion of 
crossover operator in GA. 

2 1

12

( ),
( , )

, otherwise

t
p it t

i i t
i

C A r c
B F A c

A

   


           

3

23

( ),
( , )

, otherwise

t
g it t

i i t
i

C B r c
X F B c

B

   


2

2

           

where F2 and F3 indicate the crossover operators with the 
probability of c1 and c2 respectively. 

Then we can get the following formula: 
1

1 13 2( ( ( , ), ), )t t
i iX F F F X w c c               

3) Fitness value function 
The mutation and crossover operators can not only 

preferably keep the diversity of population, but also make 
offspring population keep the preferable characteristics. The 
difficulty of DPSO is how to define the fitness function of 
individuals. 

For the problem (9), we just use the energy consumed by 
the constructed tree, namely the formula (8), to evaluate 
relative merits of each particle. 

But the problem (10) is a multi-objective optimization one, 
so we can not merely use single objective value like energy or 
lifetime to evaluate the particle. To our knowledge, there are a 
lot of methods to deal with multi-objective optimization 
problems such as the weighted-sum method, the utility-
function method and so on. In this paper, Pareto method in [17] 
is adopted to comprehensively compute the fitness of the 
particle. 

Definition 1 Target Distance fdij: fdij is the distance 
between the two particles i and j. Supposed that the distance 
has m dimensions which are noted as f1dij、f2dij、…、fmdij 
respectively, and 

   
       

1 2 1 1

2 2 , .

i j
ij m

i j i j
m m

fd f dij f dij f dij f x f x

f x f x f x f x i

     

     



 j

      

Definition 2 Dominance Measure D(i): D(i) denotes the 
state of domination the ith particle with respect to the current 
population, and 

   
1

,
p

j

D i nd i j


                        

where nd(i,j) is one if particle j dominates particle i, and zero 
otherwise. 

Definition 3 Sharing Function sh(fdij): 

  1,

0,
ij s

ij

if fd
sh fd

otherwise


 


            

where  σs is a sharing parameter. 
Definition 4 The Neighbor Density Measure N(i):  N(i) 

associated with particle i is defined as 

  
1

p

ij
j

N i sh fd


                         

Definition 5 The Fitness of A Given Particle F(i): F(i) is 
then defined as 

       1 1F i D i N    i             

Since the value of formula (21) may be multi-value, we 
should choose proper leader particles from personal best and 
global best with same values to direct the movement              
of particle. A proper mechanism of choosing leader particles 
[18] can help to find more Pareto solutions in a shorter time. 

C. Algorithm Overview 

The overview of our strategy can be described as follow: 
Begin

Initialize network, 
swarm and relative 

parameters

i=1

Get particle Xi
t by operations 

of Mutation, SelfCross and 
SocialCross

Construct routing tree by 
particle Xi

t and compute 
energy consumption

Update pbesti and 
gbest if necessary

i=size?i=i+1 No

Stop?

Yes

Output E(G*)

Yes

No

End

Begin

Initialize network, 
swarm and relative 

parameters

Select leader particles

i=1

Get particle Xi
t by operations 

of Mutation, SelfCross and 
SocialCross

Construct routing tree by 
particle Xi

t and compute 
energy consumption E(G’)

E(G’)<=εE(G*)

No

Compute Energy 
consumption, lifetime and 
fitness, and update pbest

Yes

Update leader particles

i=size?i=i+1 No

Randomly select a Pareto 
solution to compute each 
node’s residual energy

Yes

Stop?

Output lifetime and 
Pareto solusions

Yes

End

No

 

Fig. 1. The flow chart of our strategy 

As we can see, our route strategy is divided into two stages. 
We need to achieve a near-optimal subgraph G* through  
DPSO algorithm and apply E(G*) to optimize network lifetime 
further. 

IV. EXPERIMENTAL STUDY 

In this section, the performances of the improved discrete 
PSO method applied to network optimization in the aspects    
of energy and lifetime are observed through lots of simulations, 
which are implemented in MATLAB. And we compare 
proposed algorithms with other previous tree routing 



algorithms, such as SPT, MST, SLT and Greed Steiner, with 
respect to several metrics. 

TABLE I.  PARAMETER TABLE 

Symbol Definition Value 
σs A sharing parameter whose dimensions 

equal to the number of objectives 
[0.01 0.01] 

α The energy consumed by sending each 
bit of data 

50nJ/bit 

β The energy consumption in the 
amplification circuit for forwarding each 

bit of data 

100pJ/bit/m2 

w0 The data amount sent by each source 
node 

400bit 

rs The correlation range 50m 
ρ The correlation coefficient between two 

nodes in an approximated spatial model 
ρ=1-d/rs while 

d<rs, ρ=0 
otherwise 

rc The maximum communication range of 
each sensor node 

From 15m to 
50m 

n Number of nodes 50 
k Number of source nodes 7 and 15 
q Average unit aggregation cost 20nJ/bit and 

80nJ/bit 
ε Maximal permissible times of energy 

consumption of  to  'G *G
From 1 to 1.5 

E_r The initial energy of each relaying node 2mJ 

A. The First Simulation 

In this simulation, we consider how to construct an optimal 
routing tree with respect to minimum energy consumption.  

Firstly, we set k to be 7, rc to be 20m and q to be 80nJ/bit to 
simulate a network, and the tree structures derived by SPT, 
MST, SLT, Greed Steiner and Our Algorithm are shown in fig. 
2. In each picture, red solid square, black solid circles and 
hollow circles respectively represent the sink node, source 
nodes and other relay nodes. And data aggregation occurs 
where information streams intersect. 

Secondly we set k to be 7 and q to be 20nJ/bit and 80nJ/bit 
respectively. By varying rc from 15m to 50m, we can control 
the connectivity of the network. The results are shown in fig. 3. 

Thirdly we change network structure with k set to 15 and   
q set to 20nJ/bit and 80nJ/bit respectively. The results are 
shown in fig. 4. 

According to above pictures, we can see MST is to 
construct an optimal routing structure for the whole graph, 
wasting precious energy on data aggregation and transmission 
at unnecessary relaying nodes. While SPT is to construct 
shortest paths from the sink node to each source. It is not 
optimal for the subgraph which at least contains the sink node 
and source nodes, resulting in wasting energy on redundant 
data transmissions. As SLT reconstructs the tree structure 
derived by MST, it is a hybrid tree structure balancing MST 
and SPT, achieving a middle performance between them. 
Greed Steiner uses a greedy strategy to construct the Steiner 
minimum tree and achieve better performance. 

 
Without lost of generality, we generate 50 sensor nodes 

randomly distributed in a 50m×50m region with k source nodes 
and one sink node. And we initialize each relative parameter as 
TABLE I. 
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(c) MST                                                                                                               (d) SLT 
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Fig. 2. Routing tree structures 
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(a) q=20nJ/bit                                                                                                    (b) q=80nJ/bit 

Fig. 3. Impact of rc to energy consumption when k=7 
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(a) q=20nJ/bit                                                                                                    (b) q=80nJ/bit 

Fig. 4. Impact of rc to energy consumption when k=15 

However without considering aggregation cost in the process 
of tree construction, so energy consumption of Greed Steiner is 
still relatively high. 

As expected, our algorithm almost outperforms all other 
algorithms in different communication ranges. It can adapt 
itself to a variety of situations. In contrast to other algorithms, 
our algorithm can dynamically change route selection and 
decide to select which nodes to perform data aggregation 
according to different network structures and average unit 
aggregation costs, and it can effectively trade off multi-hop 
relay benefiting from high data reduction ratio and single-hop 
transmission benefiting from less unit aggregation cost. 

B. The Second Simulation 

In this simulation, we further consider nodal remaining 
energy. We fix rc to 50m, and set k to be 7 and q to be 
20nJ/bit and 80nJ/bit respectively. 

As previously mentioned, problem (10) is a multi-
objective optimization problem and its Pareto optimal 
solutions are multiple. Fig. 5 presents all Pareto optimal 
solutions in a certain stage where each node is left with 
different energy, with ε to be 1.5 and q to be 20nJ/bit and 
80nJ/bit respectively. 

Furthermore, we study the impact of ε on the performance 
of our algorithm. By varying ε from 1 to 1.5, we can observe 



the change of network lifetime obviously. As shown in fig. 6, with the increase of ε, the network lifetime becomes longer. 
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Fig. 5. Pareto Front when ε=1.5
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Fig. 6. Impact of ε on network lifetime
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Fig. 7. Lifetime ratio of our algorithm to other algorithms

As we see, a small increase of ε may lead to huge extension 
of lifetime. We further compare our algorithm with others. As 
shown in fig. 7, with the increase of ε, the lifetime ratio of our 
algorithm to other algorithms increases drastically. These 
algorithms include not only SPT, MST, SLT and Greed  
Steiner, but also our algorithm adopted in the first simulation. 
While other algorithms throughout use the consistent nodes to 
transmit or aggregate data despite the fact that some nodes own 
little energy and other nodes have vast energy remained, 
resulting in some nodes’ premature death, our algorithm can 
adjust itself to select an optimal route which can balance the 

total energy consumption and nodal remaining energy, 
effectively extending network lifetime. 

V. CONCLUSION 

In this paper, we design discrete PSO-based algorithms to 
construct an optimal routing tree structure in the process of 
data gathering with aggregation, considering not only 
communication cost but also aggregation cost. In addition we 
further adaptively adjust route strategy according to each nodal 
remaining energy. The simulation results show that our 
algorithms can provide a route structure with lower energy 



consumption while considering aggregation cost, and can trade 
off communication load and lifetime while considering nodal 
remaining energy further. 

In future work, we will pursue to optimize more other 
aspects of performance while constructing route structure, such 
as delay and fault-tolerant ability. 

 

ACKNOWLEDGMENT 

This paper is supported by the National Natural Science 
Foundation of China under Grant No. 61103175 and 
No.11271002; the Key Project of Chinese Ministry              
of Education under Grant No.212086 and No. 210110; the 
Technology Innovation Platform Project of Fujian Province 
under Grant No. 2009J1007; the Key Project Development 
Foundation of Education Committee of Fujian Province under 
Grand No. JA11011; the Fujian Province High School Science 
Fund for Distinguished Young Scholars under Grand 
No.JA12016. 

  
[1

 

REFERENCES 
[1] S. Ozdemir and Y. Xiao, “Secure data aggregation in wireless sensor 

networks: A comprehensive overview,” Computer Networks, vol. 53, no. 
12, pp. 2022-2037, Aug. 2009. 

[2] S. Mohanty and D. Jena, “Secure Data Aggregation in Vehicular-Adhoc 
Networks: A Survey,” Procedia Technology, vol. 6, pp. 922-929, 2012. 

[3] R. Cristescu, B. B. Lozano, M. Vetterli and R. Wattenhofer, “Network 
Correlated Data Gathering With Explicit Communication: NP-
Completeness and Algorithms,” IEEE/ACM TRANSACTIONS ON 
NETWORKING, vol. 14, no. 1, pp. 41-54, FEB. 2006. 

[4] P. V. Rickenbach, “Energy-Efficient Data Gathering in Sensor 
Networks [D],” Swiss: ETH ZURICH, 2008. 

[5] M. Khan, G. Pandurangan and V. S. Anil Kumar, “Distributed 
Algorithms for Constructing Approximate Minimum Spanning Trees in 
Wireless Networks,” IEEE TRANSACTIONS ON PARALLEL AND 
DISTRIBUTED SYSTEMS, vol. 20, no. 1, pp. 124-139, 2009. 

[6] M. Chen, V. Leung and S. Mao, “Directional controlled fusion in 
wireless sensor networks,” Mobile Netw. Appl., vol. 14, no. 2, pp. 220-
229, Apr. 2009. 

[7] H. Luo, YH. Liu and S. K. Das, “Routing Correlated Data with Fusion 
Cost in Wireless Sensor Networks,” IEEE TRANSACTIONS ON 
MOBILE COMPUTING, vol. 5, no. 11, pp. 1620-1632, NOV. 2006. 

[8] H. Luo and J. Luo, “Adaptive Data Fusion for Energy Efficient Routing 
in Wireless Sensor Networks,” IEEE TRANSACTIONS ON 
COMPUTERS, vol. 55, no. 10, pp. 1286-1299, OCT. 2006. 

[9] S. Kolli and M. Zawodniok, “A dynamic programming approach: 
Improving the performance of wireless networks,” Journal of Parallel 
and Distributed Computing, vol. 71, no. 11, pp. 1447-1459, NOV. 2011. 

[10] YH. Zhu, WD. Wu, J. Pan and YP. Tang, “An energy-efficient data 
gathering algorithm to prolong lifetime of wireless sensor networks,” 
Computer Communications, vol. 33, no. 5, pp. 639-647, MAR. 2010. 

1] Z. Li, Y. Peng, DJ. Qiao and WS. Zhang, “LBA: Lifetime Balanced 
Data Aggregation in Low Duty Cycle Sensor Networks,” in 
Proceedings of IEEE INFOCOM, pp. 1844-1852, 2012. 

[12] DJ. Luo, XJ. Zhu, XB. Wu and GH. Chen, “Maximizing Lifetime for 
the Shortest Path Aggregation Tree in Wireless Sensor Networks,” in 
Proceedings of IEEE INFOCOM, pp. 1566-1574, 2011. 

[13] J. Jia, J. Chen X. Wang and L. Zhao, “Energy-Balanced Density 
Control to Avoid Energy Hole for wireless sensor network,” 
International Journal of Distributed Sensor Networks, 2012. 

[14] WZ. Guo, J. H. Park, L. T. Yang, A. V. Vasilakos, NX. Xiong and GL. 
Chen, “Design and Analysis of a MST-Based Topology Control 
Scheme with PSO for Wireless Sensor Networks,” in Proceedings       
of IEEE Asia-Pacific Services Computing Conference, pp. 360-367, 
2011. 

[15] WZ. Guo, NX, Xiong, A. V. Vasilakos, GL. Chen and CL. Yu, 
“Distributed k-connected Fault-Tolerant Topology Control Algorithms 
with PSO in Future Autonomic Sensor Systems,” International Journal 
of Sensor Networks, vol. 12, no. 1, pp. 53-62, 2012. 

[16] WZ. Guo, NX. Xiong, HC. Chao, S. Hussain and GL. Chen, “Design 
and analysis of self-adapted task scheduling strategies in wireless sensor 
networks,” Sensors, vol. 11, no. 7, pp. 6533-6554, Jun. 2011. 

[17] GL. Chen, SL Chen, WZ. Guo and HW. Chen, “The Multi-criteria 
Minimum Spanning Tree Problem Based Genetic Algorithm,” 
Information Sciences, vol. 177, no. 22, pp. 5050-5063, Nov. 2007. 

[18] F. Neumann, M. Laumanns, “Speeding Up Approximation Algorithms 
for NP-hard Spanning Forest Problems by Multi-objective 
Optimization,” Electronic Colloquium on Computational Complexity, 
Report No. 29, 2005. 

[19] WZ. Guo, NX. Xiong, A. V. Vasilakos, GL. Chen and HJ. Cheng, 
“Multi-source Temporal Data Aggregation in Wireless Sensors 
Networks,” Journal of wireless Personal Communications, vol. 56, no. 
3, pp. 359-370, 2011. 

 


