
Experimental Comparison of Linear Prediction
Schemes for Multi-User MIMO Systems

Toshiki Tanaka∗, Hidekazu Murata∗, Susumu Yoshida∗, Koji Yamamoto∗,
Daisuke Umehara†, Satoshi Denno‡, Masahiro Morikura∗

∗Graduate School of Informatics, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
Email: contact-h25e@hanase.kuee.kyoto-u.ac.jp

†Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
‡Graduate School of Natural Science and Technology, Okayama University

3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan

Abstract—In a multi-user multiple-input multiple-output (MU-
MIMO) system, zero-forcing precoding can completely eliminates
inter-user interference when the perfect channel state informa-
tion is available at the base station. However, in time-varying
channels, the transmission performance of MU-MIMO systems
is severely degraded due to inter-user interference. In this paper,
channel prediction is employed for channel tracking, and in-lab
experiments are carried out to confirm its performance. The bit
error rate (BER) performance is measured and compared with
the computer simulation results. Both in-lab experiments and the
computer simulations show that channel prediction improves the
BER performance.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) techniques are em-
ployed in the current and future wireless communication
systems. This technique utilizes multiple antennas at a base
station (BS) and a mobile station (MS). Multiple antennas can
provide spatial diversity and spatial multiplexing effects.

Multi-user MIMO (MU-MIMO) techniques have been stud-
ied because it can achieve capacity enhancement even for
a mobile station having few antennas [1]. In MU-MIMO
systems, the computational complexity required for mobile
stations can be reduced with precoding at the BS. For pre-
coding, downlink channel state information (CSI) is required.
Downlink channel estimation methods have been studied in
[2] [3]. In this paper, a simple two-way channel estimation
method [4] [5] is used. Measurement experiments of MU-
MIMO systems have been reported [6] [7] [8].

However, time difference between channel estimation and
precoding results in performance degradation in time-varying
channels. Channel prediction is employed to compensate for
this degradation [9] [10]. One of channel prediction techniques
is linear prediction. Performance evaluation of MU-MIMO
systems with linear extrapolation using measurement data have
been reported [11].

In this paper, the system performance of a MU-MIMO
system with the linear prediction is evaluated in term of bit
error rate (BER). The sample matrix inversion (SMI) algorithm
and the recursive least squares (RLS) algorithm are employed
in order to calculate the tap weight vector of linear predictor.
In-lab experiments are conducted using a fading emulator.

II. SYSTEM MODEL

We considered a MU-MIMO transmission system. In this
paper, we assume a BS is equipped with M antennas and N
MSs are each equipped with a single antenna. In MU-MIMO
systems, the received signal y(t) ∈ CN×1 at time t is given
with the transmit signal m(t) ∈ CM×1 at time t by

y(t) = H(t)m(t) + n(t), (1)

where H(t) ∈ CN×M is the channel matrix at time t. One
way of dealing with inter-user interference is ZF precoding.
Psuedoinverse of H(t) with m(t) at a transmitter results in
y(t) = m(t) + n(t) at the receiver. When H(t) is known at
the transmitter, ZF precoding imposes the constraint that all
interference terms be zero.

The problem is the difference between the estimated channel
matrix H(n) and the H(n+τ), where τ is the time difference
between estimation and transmission. In this paper, Ĥ(n+1) is
obtained by the linear prediction, and then the channel matrix
H(n + τ) for precoding is calculated based on H(n − 1),
H(n), and Ĥ(n + 1).

A. Channel Estimation

In the MU-MIMO transmission system under consideration,
the BS is able to find the knowledge of the downlink channel
based on uplink channel coefficients and round-trip channel
coefficients by the two-way estimation method (echo-MIMO)
[4] [5]. This method can reduce the required computational
complexity of the MS because the signal processing for
channel estimation is performed at the BS. To know both
uplink and round-trip channel coefficients, the BS sends the
training signal, and then MSs repeat and send its received
signal back to the BS [4] described in Fig. 1.

The BS equipped with M antennas sends a round-trip
training signal to N MSs. A round-trip training signal y at
MSs is given by

y = Hdownm + nMS, (2)

where m is a round-trip training signal at the BS. Training
signals transmitted from antennas are orthogonal. MSs send
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Fig. 1. The figure shows two-way channel estimation. First, a BS sends a
training signal for round-trip to MSs. Second, MSs send back the received
signal and a training signal to the BS. The BS receives signals from MSs.
We can estimate Hround by a signal for round-trip and Hup by a training
signal from MSs.

the received signal y together with a training signal m back
to the BS. Then the BS receives signals ŷ and y′ from MSs
given by

ŷ = Hupy + nBS

= Hroundm + n̂ (3)
y′ = Hupm + nBS, (4)

where Hround = HupHdown as round-trip channel matrix and
n̂ = HupnMS + nBS as round-trip noise. At the BS, we use
the linear least squares channel estimation method [4][12] for
both Hup and Hround given by

H ′
up = E[y′m†] (5)

H ′
round = E[ŷm†], (6)

where [·]† denotes pseudo inverse. Then H ′
down is given by

H ′
down = H ′†

upH ′
round. (7)

III. LINEAR PREDICTION AND APPLICATION FOR ZF
PRECODING

In this paper, we use SMI algorithm and RLS algorithm for
the linear prediction. The linear prediction is based on a k
tap transversal filter shown in Fig. 2. Let the tap-input vector
x(i) ∈ Ck×1 and the tap weight vector w(n) ∈ Ck×1. The
predictor output x(n + 1) is given by

x(n + 1) = wH(n)x(n). (8)

A. Sample Matrix Inversion

SMI algorithm is based on the Wiener solution. Cost func-
tion L(n) at time n is given by

L(n) =
n∑

i=n−m

|e(i)|2, (9)
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Fig. 2. Transversal filter.

where e(i) is the difference between the desired response d(i)
and the predictor output y(i) and m is the number of iterations
for correlation estimation. The error signal e(i) is given by

e(i) = d(i) − y(i)
= d(i) − wH(n)x(i), (10)

where y(i) is produced by x(i) and w(n), for which the cost
function L(n) attains its minimum value. If R(n) ∈ Ck×k is
invertible, w(n) is defined by

w(n) = R−1(n)r(n), (11)

where the correlation matrix R(n) and the cross-correlation
vector r(n) ∈ Ck×1 are given by

R(n) =
n∑

i=n−m

x(i)xH(i)

r(n) =
n∑

i=n−m

x(i)x∗(i + 1), (12)

where [·]∗ denotes complex conjugation.

B. Recursive Least Squares

RLS algorithm is the method of least squares to develop the
recursive algorithm. It introduces a forgetting factor into the
definition of the cost function L̂(n) given by

L̂(n) =
n∑

i=1

λn−i|e(i)|2, (13)

where λ is the forgetting factor. If R̂(n) ∈ Ck×k is invertible,
the tap weight vector ŵ(n) ∈ Ck×1 is defined by

ŵ(n) = R̂−1(n)r̂(n), (14)

where the correlation matrix R̂(n) and the cross-correlation
vector r̂(n) ∈ Ck×1 are given by

R̂(n) =
n∑

i=1

λn−ix(i)xH(i)

= λR̂(n − 1) + x(n)xH(n) (n = 1, 2, . . .) (15)

r̂(n) =
n∑

i=1

λn−ix(i)x∗(i + 1)

= λr̂(n − 1) + x(n)x∗(n + 1) (n = 1, 2, . . .).(16)
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Fig. 3. Transfer function model of linear prediction filter.

The initial value of R̂(n) and r̂(n) are

R̂(0) = δI

r̂(0) = 0, (17)

where δ is a small positive value. In (15), the following
equation is held [13]:

R̂−1(n) = λ−1[R̂−1(n − 1) − k(n)xH(n)R̂−1(n − 1)], (18)

where the gain vector k(n) ∈ Ck×1 is given by

k(n) =
λ−1R̂−1(n − 1)x(n)

1 + λ−1xH(n)R̂−1(n − 1)x(n)
. (19)

By rearranging (18),

k(n) = [λ−1R̂−1(n − 1) − λ−1k(n)xH(n)
R̂−1(n − 1)]x(n)

= R̂−1(n)x(n). (20)

From (15), (18) and (20) , we have

w(n) = R̂−1(n)r(n)
= R̂−1(n)[λr(n − 1) + x(n)x∗(n + 1)]
= w(n − 1) − k(n)xH(n)w(n − 1)
+ k(n)x∗(n + 1). (21)

The update of RLS algorithm is given by (18), (19), (21).
Then, we can predict the future value x̂(n + 1).

C. Threshold technique

In SMI or RLS algorithm, the estimated correlation matrix
becomes imperfect when channel variation is too slow or
the number of samples for correlation matrix estimation is
small. In this condition, the tap weight vector w(n) =
[w0, w1, . . . , wk−1]T diverges, which results in severe per-
formance degradation. Thus, It is necessary to avoid the
unexpected value of the tap weight vector. Introducing a
threshold for the tap weight vector coefficient is a simple
way to avoid this performance degradation. When the absolute
value of wk−1 exceeds 1, it is considered that the linear
prediction does not work properly and should not be used
at time n. Fig. 3 shows a transfer function model of linear
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Fig. 4. BER performance curves for 2×2 MU-MIMO with channel prediction
in computer simulations. Introducing a threshold of tap weight vector results
in that BER performance is improved especially in high SNR region.

prediction. In Fig. 3, prediction error e(z) is given by

e(z) = x(z)(1 − (z−1H(z))

e(z)/x(z) = 1 − (z−1(
k−1∑
i=0

wiz
−i))

= 1 −
k−1∑
i=0

wiz
−i−1. (22)

The absolute value of wk−1 should be kept less than 1.
Otherwise, linear prediction does not work because a zero of
e is outside unit-circle and this filter works for a zero of e.
It is introduced that this system is only stable when absolute
value of wk−1 is kept less than 1. Fig. 4 shows the impact
of the threshold on the BER performance of 2×2 MU-MIMO
with linear prediction by computer simulations.

D. Channel prediction for precoding

In time-varying channels, time difference τ between chan-
nel estimation and precoding at the BS causes performance
degradation in precoding. In this paper, the channel matrix
H(n + τ) is estimated with H(n− 1), H(n) and Ĥ(n + 1)
which is obtained by the linear prediction. Ĥ(n + τ) is given
using second-order interpolation by

Ĥ(n + τ) =
τ(τ − 1)

2
H(n − 1) − (τ + 1)(τ − 1)

H(n) − τ(τ + 1)
2

Ĥ(n + 1). (23)

IV. IN-LAB EXPERIMENTS

The MU-MIMO transmission performance measurements
were conducted using a fading emulator. In this paper, a
BS equipped with M = 2 antennas and N = 2 MSs each
equipped one antenna are considered. The fading emulator
emulates eight channels and these channels are used as a
2×2 MU-MIMO channel. These channels are i.i.d. Rayleigh
fading channels and direction-of-arrival distributions of these
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channels are uniform. In experiments, emulated channels are
used for both uplink and downlink.

A. Experimental system

1) BS equipment: Fig. 5 shows the BS equipment. Two
modular RF signal generators (SGs), two modular RF signal
analyzers (SAs), an FPGA board, and a modular PC are
contained in the BS equipment. In two SGs or two SAs, the
same local oscillator is used. Fig. 6 shows the block diagram
of the BS equipment. An SG consists of a 16-bit DAC and a
vector modulator. An SA consists of a downconverter and a 16-
bit ADC. In SA, the received signal is translated to low IF by
the downconverter, and then digitized by the ADC. The digital
low IF signal is demodulated and recorded in the onboard
memory. For the local oscillator, a 10 MHz reference is used.

2) MSs equipment: Fig. 7 shows MSs equipment. the
universal software radio peripheral (USRP) is used to each
MS equipment. Fig. 8 shows the block diagram of the MS
equipment. It consists of a motherboard and a daughter-
board. A motherboard performs A/D and D/A conversion
and (de)modulation between baseband and low IF. A daugh-
terboard contains RF front end which performs frequency
translation between RF and low IF. Signal processing is done
on an external PC through the Gigabit Ethernet interface. The

Fig. 7. MSs equipment (USRP) .
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same 10 MHz reference as the BS equipment is used and the
synchronization between the BS and MSs is established.

3) Packet structure: Fig. 9 shows the packet structure. A
frame is constructed by three packets. First, a BS transmits
training sequences (TSs) for the round-trip channel at the
time t = 0. The training sequences transmitted from the
BS are orthogonal and transmitted at the same time and
frequency. Each MS sends back the received round-trip TS
by amplify-and-forward relaying with another TS for uplink
channel estimation at t = 2 ms. Both of the two TSs have 16
symbols. We can estimate round-trip channel matrix H ′

round

and uplink channel matrix H ′
up at the BS. The BS estimates
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10
–4

10
–3

10
–2

10
–1

10
0

–10  0  10  20  30  40  50  60

B
it
 e

rr
o

r 
ra

te

Average SNR in dB

w/o prediction

w/ SMI algorithm

w/ RLS algorithm

Fig. 11. BER performance curves for 2×2 MU-MIMO with channel predic-
tion in computer simulations.

downlink channel H ′
down at t = 0 given by (7). A BS predicts

downlink channel at t = 10ms using downlink channel state
information at previous frames, and transmits 80-symbol-long
precoded data at t = 10 ms. The frame duration is 50ms in
order to ensure that the signal processing and data recording
are finished on time in an external Windows PC.

4) Experimental setup: Fig. 10 shows the experimental
setup. The transmit power of TSs is kept constant in the
experiments. The peak power of data packets is high because
of precoding and the linear prediction. The transmit power
is limited by the BS equipment and the transmit power of
precoded data packets is normalized by the peak of the trans-
mit power. The number of prediction taps is two because of
the computational complexity and slow convergence especially
with SMI algorithm. The number of iterations for correlation
estimation is 500 for SMI algorithm and forgetting factor λ is
0.995 for RLS algorithm.

B. Experimental results

In this section, we demonstrate the impact of channel pre-
diction on the BER performance of 2×2 MU-MIMO system.
Fig. 11 shows the BER performance of computer simulations.
Fig. 12 shows the BER performance of in-lab experiments.
Table I shows the major experimental parameters. In computer
simulations, we consider Rayleigh fading channels based on
the Jakes model. The transmit power of TSs in packet 1 and
2 is kept high and constant between in-lab experiments and
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Fig. 12. BER performance curves for 2×2 MU-MIMO with channel predic-
tion in experimental results.

computer simulations. In experiments, the transmit power of
TSs is −15 dBm and the AF gain of the training signal at MSs
for the round-trip channel is 55 dB. The channel prediction
technique enables the BER performance improvement both in
in-lab experiments and computer simulations. With the RLS
prediction method, the BER performance is greatly improved
in computer simulations. In in-lab experiments, there is no
significant difference between the BER performance of RLS
prediction and that of SMI prediction. The reason is now under
investigation, but the phase noise unique to in-lab experiments
is the most possible reason. Also, difficulty in estimating the
correlation matrix may be due to the phase noise.

V. CONCLUSION

By using the MU-MIMO experimental system, we evaluated
the effects of channel prediction. The in-lab transmission
experiments were carried out using a fading emulator. In
time-varying channels, channel prediction improves the system
performance using both SMI algorithm and RLS algorithm.
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