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Abstract—We investigate the downlink multi-user MIMO
(MU-MIMO) scheduling problem in the presence of imper-
fect Channel State Information at the transmitter (CSIT)
that comprises of coarse and current CSIT as well as finer
but delayed CSIT. This scheduling problem is characterized
by an intricate ‘exploitation - exploration tradeoff’ between
scheduling the users based on current CSIT for immediate
gains, and scheduling them to obtain finer albeit delayed
CSIT and potentially larger future gains. We solve this
scheduling problem by formulating a frame based joint
scheduling and feedback approach, where in each frame
a policy is obtained as the solution to a Markov Decision
Process. We prove that our proposed approach can be made
arbitrarily close to the optimal and then demonstrate its
significant gains over conventional MU-MIMO scheduling.

I. INTRODUCTION

Multiple Input Multiple Output (MIMO) technology is
essential for the emerging 4G-LTE wireless communica-

tion systems. In the downlink of such a system, which

typically has several active users, multiple antennas
enable simultaneous transmissions to multiple users by

allowing the transmitter (base-station) to transmit (along

directions in a signal space) in a manner which ensures
that each user can receive its intended signal along at-

least one interference-free dimension (a.k.a. the Multi-

user MIMO principle) [1]. The number of active users is
generally greater than the maximum supportable number

of simultaneous transmissions, which in turn is equal to
the number of transmit antennas at the base-station (BS).

Consequently, only a subset of users can be selected

for the MU-MIMO transmission and hence proper user
scheduling is important to achieve a desired network

utility (e.g., throughput, fairness).

The usual assumption made in existing literature on
MU-MIMO scheduling is that the BS can obtain the

channel state information from all users with sufficient
accuracy and with negligible delay. Such information,

referred to as the Channel State Information at the Trans-

mitter (CSIT), is crucial to ensure that each scheduled
user is not dominated by co-channel interference. Typi-

cally, the BS obtains CSIT by broadcasting a sequence

of pilot symbols, and the users in turn estimate their
CSI and feedback their quantized estimates to the BS.

This feedback process introduces two sources of imper-

fections to the CSIT. (1) Estimation and quantization

errors (due to limited training and finite codebooks);

(2) Delays (due to user processing speeds and less
flexible scheduling on the feedback channel).The impact

of erroneous CSIT on MU-MIMO performance has been
analyzed in [2] and utility maximization for MU-MIMO

with erroneous CSIT has been considered in [4]. Delay in

the CSIT has hitherto been addressed by using prediction
based approaches but their drawback is that they have

to assume a model for channel evolution, which is

significantly difficult to obtain in practice and they also
require the delay to be small enough to allow for useful

prediction.

For the scenario where the number of users is small
enough so that user scheduling is unnecessary, referred

to here as the static scenario, Maddah-Ali and Tse

proposed a scheme, namely the MAT scheme [5], that
utilizes CSIT that is error-free albeit completely out-

dated. Their seminal work revealed that the outdated

CSI is an important resource that, when combined with
the eavesdropped information at the users, can provide

a considerable performance gain in terms of degrees
of freedom. Recently, the MAT scheme was extended

(for the static scenario) to the hybrid CSIT case by

also incorporating coarse and current CSIT [6] to obtain
further system gains. However, in the ubiquitous setting

where user scheduling is important, such hybrid CSIT

needs to be exploited wisely since it is costly to obtain
even delayed but error-free CSI feedback from all users

for making the scheduling decisions. Indeed, the problem

is quite different and more challenging than the static
case. User scheduling for the MAT scheme has been

considered in [3] but their suggested method is akin to

the myopic approach discussed later in this paper.
In this paper, we study MU-MIMO downlink schedul-

ing with hybrid CSIT, erroneous as well as delayed,
where the time axis is divided into separate schedul-

ing intervals. We consider the realistic scenario where

current and coarse CSIT is obtained from all users
while more accurate (not necessarily perfect) but delayed

CSIT is obtained only from the scheduled users. The

scheduling problem is hence characterized by an intricate
‘exploitation - exploration tradeoff’, between scheduling

the users based on current CSIT for immediate gains,



and scheduling them to obtain finer albeit delayed CSIT
and potentially larger future gains. The contributions of

the paper are listed as follows.

• We tackle the aforementioned ‘exploitation - ex-
ploration tradeoff’ by formulating a frame based joint

scheduling and feedback approach, where in each frame

a policy is obtained as the solution to a Markov Decision
Process (MDP), the latter solution being determined via

a state-action frequency approach [10][11].

• We consider a general utility function and associate

a virtual queue with each user that guides the achieved

utility for that user. Based on MDP solutions and virtual
queue evolutions, we show that our proposed frame-

based joint scheduling and feedback approach can be

made arbitrarily close to the optimal.

In the following we use (.)T , (.)† for the transpose

and conjugate transpose, respectively. Moreover, [A,B]
and [A; B] are used to denote column-wise and row-
wise concatenation of matrices A and B, respectively.

‖A‖ is used to denote the Frobenius norm of the matrix

A.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the downlink MU-MIMO scheduling

problem with one Base Station (BS) and N users. The

BS is equipped with Mt transmit antennas and employs
linear transmit precoding. Each user is equipped with

a single receive antenna. Time is divided into intervals

and we let hi[k] ∈ IC1×Mt , i = 1, · · · , N denote the
channel state vector seen by user i in interval k. In

each interval, a subset of users can be simultaneously

scheduled. Further, since each user has only one receive
antenna, it can achieve at-most one degree of freedom

(i.e., its average data rate per channel use can scale

with SNR as log(SNR)). On the other hand, the system
can achieve at-most Mt degrees of freedom in that

the total average system rate can scale with SNR as

Mt log(SNR). For notational convenience we assume
that in each interval two users can be simultaneously

served, hence limiting the achievable system degrees of

freedom to 2. All results can however be extended to the
general case without this restriction.

A. Conventional MU-MIMO scheme

Conventional MU-MIMO scheme relies on estimates

of the user channel states (that are available at the BS) for
the current interval. Indeed, perfect CSIT for the current

interval enables the BS to transmit simultaneously to
both scheduled users without causing interference at

either of them. However, in the absence of perfect

CSIT such complete interference suppression via trans-
mitter side processing is no longer possible and when

only very coarse estimates for the current interval are

available, conventional MU-MIMO breaks down and in-
fact becomes inferior to simple single-user per interval

transmission.

B. Joint Scheduling and Channel Feedback

We consider a joint scheduling and channel feedback

scheme that builds upon a variant of the extended MAT

technique [6]. Specifically, we assume that coarse quan-
tized channel state estimates from all users for the cur-

rent interval are available to the BS, along with limited

finer albeit outdated quantized channel state estimates. In
this context we note that in the FDD downlink only quan-

tized estimates are available to the BS and henceforth

unless otherwise mentioned, we will use “estimates” to
mean “quantized estimates”. The time duration of inter-

est is divided into intervals with each interval comprising
of 3 slots each. The three slots are mutually orthogonal

time-bandwidth slices. For convenience, we assume that

all three slots in an interval are within the coherence time
and coherence bandwidth window so that the channel

seen by each user remains constant over the three slots

in an interval. At the beginning of the kth interval,
whose corresponding slots are denoted by [k, 1], [k, 2]
and [k, 3], the scheduler broadcasts a short sequence of

pilot symbols to all the users. This sequence enables a
coarse estimation of the wireless channel at each of the

N users, which is fed back to the BS after quantization

and is denoted by Ĥ[k] = {ĥi[k], i = 1, · · ·N}, where

ĥi[k] denotes the coarse channel estimate obtained from
user i for interval k. Based on these coarse estimates,

along with its past scheduling and channel state history

(formally introduced next), the scheduler chooses a pair
of users to schedule in the current interval, where in

the first slot a linear combination of new packets is

sent for the selected user pair. Data transmission to the
selected user pair in the current interval also contains

additional pilots that enable a finer estimation of the

channel states seen by that user pair over the current
interval. Note that such finer estimation is crucial for

data detection. However, due to user processing and
feedback delays, we assume that (quantized versions of)

such finer estimates are not available to the BS during the

current interval itself. Because of this constraint, instead
of performing the transmissions in slots 2 and 3 for

interference resolution for the packets sent in Slot 1 of

the current interval, as would be done in the extended
MAT scheme [6], the BS performs transmissions for

interference resolution for packets sent in Slot 1 of the

prior most recent interval when the selected user pair
was scheduled. The scheduling model is illustrated in

Fig. 1.

As mentioned above the scheduler obtains a finer

estimate of the channel states seen by a user pair on

the interval in which they are scheduled, at the end of
that interval.1Let θ = (u1, u2, κ) represent the 3−tuple

denoting the scheduling decision made for the current

interval k such that u1, u2 denote the selected user

1Arbitrary delays in obtaining such finer estimates are also consid-
ered later in the paper.
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Fig. 1. Illustration of the scheduling process.

pair and κ denotes the index of the prior most recent
interval over which that pair was scheduled. We let

Γ[k] be the collection of the most recently obtained

finer channel estimates at the BS for each of the user
pairs and their corresponding interval indices, at the

start of interval k. Thus, the set Γ[k] takes the form

Γ[k] =
{
(h̆i[κi,j ], h̆j [κi,j ], κi,j), 1 ≤ i < j ≤ N

}
,

where (h̆i[κi,j ], h̆j [κi,j ]) denote the finer estimates for
interval κi,j and κi,j denotes the index of the prior

recent-most interval on which pair i, j was scheduled.

At the end of that interval (equivalently at the start of
interval k + 1) the set Γ[k + 1] is obtained by first

setting it equal to Γ[k] and then updating the 3−tuple

corresponding to the pair (u1, u2) selected in interval k
to (h̆u1 [k], h̆u2 [k], k).

The set of user channel states are assumed to be i.i.d.
across intervals and the channel states of any two distinct

users are assumed to be mutually independent. Given a
particular initial rough estimates of the channel states of

the user pair selected in interval k, (ĥu1 [k], ĥu2 [k]), the

distribution of the finer channel estimates in the same
interval is described by the conditional distribution

P (h̆u1 [k], h̆u2 [k]
∣
∣
∣ĥu1 [k], ĥu2 [k]) (1)

where the conditional probability depends on the types

of channel estimators, quantization, training times and
powers, etc. We let Ccoarse (Cfine) denote the finite sets

or codebooks of vectors from which all coarse (fine) es-

timates are selected. Let |Ccoarse| and |Cfine| denote their
respective cardinalities and clearly |Cfine| ≥ |Ccoarse|.

C. Expected Transmission Rates (Rewards)

During the current interval k, formed by slots

[k, 1], [k, 2] & [k, 3], once a pair of users is selected,
the scheduler specifies transmit precoding matrices or

vectors for each slot in the interval.

1) Slot 1: For slot 1, the overall transmit precoding
matrix is denoted by the matrix [Wu1 [k],Wu2 [k]], where

Wu1 [k],Wu2 [k] ∈ ICMt×2. Let xu1 [k] = Wu1 [k]su1 [k],
xu2 [k] = Wu2 [k]su2 [k], where su2 [k], su2 [k] denote

the 2 × 1 symbol vectors containing symbols formed

using the new packets intended for user u1 and u2,
respectively, and where E[sui

[k]s†
ui

[k]] = I, i ∈ {1, 2}.

Then, the signal transmitted in slot-1 is xu1 [k] + xu2 [k]

so that the received signals at both users are

yu1 [k, 1] = hu1 [k](xu1 [k] + xu2 [k]) + nu1 [k, 1], (2)

yu2 [k, 1] = hu2 [k](xu1 [k] + xu2 [k]) + nu2 [k, 1]. (3)

Note that the allocated transmission power for scheduled

user ui is the norm ‖Wui
[k]‖2. We assume that the

maximum average (per-slot) transmission power budget
at the BS is P . Thus, the corresponding power constraint

is ‖Wu1 [k]‖
2 + ‖Wu2 [k]‖

2 ≤ P . Notice that the pre-
coding matrix [Wu1 [k],Wu2 [k]] seeks to facilitate the

transmission of new packets to users u1 and u2 and

thus must be designed based on the available coarse

estimates (ĥu1 [k], ĥu2 [k]), since the corresponding finer

estimates for that interval are not yet available to the

scheduler. Accordingly, we assume that this precoding
matrix can be obtained as the output of any arbitrary but

fixed (time-invariant) mapping from Ccoarse × Ccoarse to

ICMt×4, when the coarse estimates (ĥu1 [k], ĥu2 [k]) are

given as an input. Note that assuming the mapping to

be fixed is well suited to systems where the so-called
“precoded pilots” are not available so that the choice of

precoders needs to be signalled to the scheduled users.

A fixed mapping (which is equivalent to one codebook
of transmit precoders) then allows for efficient signaling.

2) Slot 2: In slot 2 of the interval, an interference

resolving packet for a pending previous transmission

involving users (u1, u2), sent in interval κ < k, is
transmitted. In particular, the transmitted signal vector

over the Mt antennas is

z[k, 2]
(
h̆u1 [κ] Wu2 [κ]su2 [κ]

︸ ︷︷ ︸

xu2 [κ]

)
,

where z[k, 2] ∈ ICMt×1 is a precoding vector. Note that

h̆u1 [κ]xu2 [κ] is a scalar, so the average power constraint

E[‖z[k, 2]h̆u1 [κ]xu2 [κ]‖
2] ≤ P can also be written as

‖z[k, 2]‖2
∥
∥
∥h̆u1 [κ]Wu2 [κ]

∥
∥
∥

2

≤ P. The received signals

in slot 2 at both users are therefore

yu1 [k, 2] = hu1 [k]z[k, 2]
(
h̆u1 [κ]xu2 [κ]

)
+ nu1 [k, 2] (4)

yu2 [k, 2] = hu2 [k]z[k, 2]
(
h̆u1 [κ]xu2 [κ]

)
+ nu2 [k, 2]. (5)

3) Slot 3: In slot 3 of the interval, similarly, the

transmitted signal is

z[k, 3]
(
h̆u2 [κ] Wu1 [κ]su1 [κ]

︸ ︷︷ ︸

xu1 [κ]

)
.

so that the power constraint is

‖z[k, 3]‖2
∥
∥
∥h̆u2 [κ]Wu1 [κ]

∥
∥
∥

2

≤ P . The received

signals in slot 3 at both users are therefore

yu1 [k, 3] = hu1 [k]z[k, 3]
(
h̆u2 [κ]xu1 [κ]

)
+ nu1 [k, 3] (6)

yu2 [k, 3] = hu2 [k]z[k, 3]
(
h̆u2 [κ]xu1 [κ]

)
+ nu2 [k, 3]. (7)

Notice that the precoding vectors z[k, 2], z[k, 3] seek

to facilitate the completion of a pending transmission



to users u1 and u2 and thus must be designed based

on the available coarse estimates (ĥu1 [k], ĥu2 [k]), as

well as the available estimates for interval κ which
are (h̆u1 [κ], h̆u2 [κ]) and (ĥu1 [κ], ĥu2 [κ]). Accordingly,

we assume that these two vectors can be obtained

as the output of an arbitrary but fixed mapping from

C2
fine ×C4

coarse to ICMt×2
. An example of mapping rules

to obtain the precoding matrices and vectors is given

later in the section on simulation results.
Next, in order to compute the average rates (rewards)

we assume that the channel state vectors hui
[κ],hui

[k]
are known perfectly to user ui, i ∈ {1, 2} (each user

of course also knows the quantized estimates it has fed
back to the base-station). In addition, user u1 (u2) is

also conveyed the finer estimate h̆u2 [κ], (h̆u1 [κ]) via

feed-forward signaling before the start of interval k.
For simplicity, the feedback and feedforward signaling

overheads are ignored in this work. Then, by the end of
slot 3, from (2), (4) and (6), at user u1, we have

yu1 [κ, 1] −
yu1 [k, 2]

hu1 [k]z[k, 2]
= hu1 [κ]xu1 [κ]

+(hu1 [κ] − h̆u1 [κ])xu2 [κ]

+nu1 [κ, 1] −
nu1 [k, 2]

hu1 [k]z[k, 2]
,

yu1 [k, 3] = (hu1 [k]z[k, 3])
︸ ︷︷ ︸

δu1 [k]

h̆u2 [κ]xu1 [κ] + nu1 [k, 3], (8)

where the additive noise variables
nu1 [k, 1], nu1 [k, 2], nu1[k, 3] are i.i.d. circularly

symmetric complex Gaussian variables with zero-mean

and unit variance, CN (0, 1). Notice that the interference

term (hu1 [κ] − h̆u1 [κ])xu2 [κ] is independent of the

desired signal as well as the additive noise. Letting

herror
u1

[κ] = hu1 [κ]− h̆u1 [κ], the noise plus interference

covariance for user u1, denoted by Γu1 [k], is therefore
[
1 + ‖herror

u1
[κ]Wu2 [κ]‖

2 + 1
|hu1 [k]z[k,2]|2 0

0 1

]

.

Define Gu1 [k] =
[

hu1 [κ]Wu1 [κ]; δu1 [k]h̆u2 [κ]Wu1 [κ]
]

and note that Gu1 [k] ∈ IC2×2. Fur-

ther, let Hcsi((u1, u2), (κ, k)) =
{h̆u1 [κ], h̆u2 [κ], ĥu1 [κ], ĥu2 [κ], ĥu1 [k], ĥu2 [k]} denote

the set of channel state information at the scheduler
for user pair u1, u2 over intervals κ, k. Then, using (8)

the instantaneous information rate, denoted as Iu1 [k] is
given by

Iu1 [k] =
1

3
log
∣
∣I + Γ

−1
u1

[k]Gu1 [k]G
†
u1

[k]
∣
∣ , (9)

where the fraction 1/3 is to account for the fact that

three slots are needed to obtain this rate. Then, (an

optimistic value for) the average information rate that
can be achieved via rateless coding (cf. [9]) is given by

Ropt
u1

[k] = E
[
Iu1 [k]

∣
∣Hcsi((u1, u2), (κ, k))

]
. (10)

A more conservative rate that is appropriate for conven-
tional coding, denoted as Rconv

u1
[k], is given by

rθ,u1

(

1 − Pr
(

Iu1 [k] < rθ,u1

∣
∣
∣ H

csi((u1, u2), (κ, k))
))

, (11)

where rθ,u1 denotes the rate assigned (using any fixed

mapping) to user u1 in θ before transmission of new
packets for the pair (u1, u2) in interval κ, based on

the available coarse estimates ĥu1 [κ], ĥu2 [κ]. The rates
corresponding to (10) or (11) can be derived in a similar

manner for user u2.
Note that in deriving the average rate in (10) or

(11) we have assumed a simple albeit sub-optimal fil-

tering at the user to suppress the interference from the
transmission intended for the co-scheduled user. For

completeness, we provide the average rate expressions

for the case when the user employs the optimal linear
filter and for brevity we only consider the optimistic rate

for user u1. Towards this end, we collect the observations
received by user u1 as

[
yu1 [κ, 1]
yu1 [k, 2]
yu1 [k, 3]

]

= Fu1 [k]xu1 [κ] + F̃u1 [k]xu2 [κ] +

[
nu1 [κ, 1]
nu1 [k, 2]
nu1 [k, 3]

]

,

where

Fu1 [k] =





hu1 [κ]
0

δu1 [k]h̆u2 [κ]



 , F̃u1 [k] =





hu1 [κ]

hu1 [k]z[k, 2]h̆u1 [κ]
0





For this model, we can determine the instanta-
neous information rate that can be achieved via op-

timal filtering using (9) but where where Γu1 [k] =
I + F̃u1 [k]Wu2 [κ]W

†
u2

[κ]F̃ †
u1

[k] and Gu1 [k] =
Fu1 [k]Wu1 [κ]. The average information rate can then

determined as before using (10).
We assume that either conventional coding is em-

ployed for all users or rateless coding is employed and
accordingly let Rui

[k], 1 ≤ i ≤ 2 denote the average

rate, henceforth referred to also as the service rate,

obtained over interval k. We also note here that the
scheduling scheme (policy) is preceded by an initial set-

up phase comprising of N(N − 1)/2 intervals in which

new packets are transmitted successively to each user
pair without any accompanying interference resolution

packets. For notational convenience, we assume that the

scheduling policy starts operating from interval with
index 0 using the initial set Γ[0] determined by the set-up

phase.

D. Incorporating one-shot transmissions and feedback

delays

We first consider the case of one-shot transmissions.
To enable one-shot transmission of packets to any

pair in any interval k, we define an action θ in which

u1, u2 is the pair but κ = φ to capture the fact that
the intended transmission is one-shot and hence does

not seek to resolve any pending previous transmission.



Then, in all three slots of that interval transmission
is done as in conventional MU-MIMO relying only

on the available current estimates Ĥ [k]. In particular,

a transmit precoder [wu1 [k],wu2 [k]] ∈ ICMt×2 is

formed based on {ĥu1 [k], ĥu2 [k]} using a technique
such as zero-forcing [8]. Defining Ione−shot

u1
[k] =

log
(
1 + |hu1 [k]wu1 [k]|

2/(1 + |hu1 [k]wu2 [k]|
2)
)
, the

corresponding average rates obtained for user u1

(similarly for user u2) are given by

E
[

Ione−shot
u1

[k]
∣
∣
∣ ĥu1 [k], ĥu2 [k]

]

, (12)

or

rθ,u1

(

1 − Pr
(

Ione−shot
u1

[k] < rθ,u1

∣
∣
∣ ĥu1 [k], ĥu2 [k]

))

.

In addition at the end of interval k, we simply set Γ[k+
1] = Γ[k] since no pending packets are completed or

introduced.

Recall that so far we have assumed that upon choosing

action θ for interval k, the finer estimates h̆u1 [k], h̆u2 [k]
are available at the start of interval k + 1 (representing
a unit delay). In practical systems there can be a delay

of several intervals in obtaining such finer estimates. As-

suming that these delays are fixed and known in advance,
they can be accommodated by expanding the definition

of a state. In particular, we can define 4−tuples such as

(i, j, κi,j , di,j) where di,j ≥ 0 measures the remaining

delay after which finer estimates h̆i[κi,j ], h̆j [κi,j ] will

be available. At any interval k selecting the action
(i, j, κi,j , di,j) with di,j > 0 (di,j = 0) constrains the

interference resolution to be based only on the coarse

estimates ĥi[κi,j ], ĥj [κi,j ], ĥi[k], ĥj [k] (on both coarse

and fine estimates Hcsi((i, j), (κi,j , k))). Upon selecting

this action the 4−tuple in Γ[k+ 1] corresponding to the
pair i, j is set to be (i, j, k, di,j = Di,j) where Di,j is

the maximum delay (starting from k + 1) after which

the finer estimates will be available. If that action is not
selected, it is updated in Γ[k + 1] as (i, j, κi,j , di,j =
max{0, di,j − 1}). For convenience in exposition the

aforementioned two extensions are not considered below.

E. System State and Throughput Region

Define the system state at the start of an interval j
as S[j] = {Γ[j], Ĥ[j]} and let θ[j] denote the decision

(action) taken in that interval. Then, at each interval k, a

scheduling policy ψ takes as input all the history up-
to interval k, comprising of states {S[j]}kj=0 and all

decisions {θ[j]}k−1
j=0 , to output a decision θ[k]. Under

a particular policy ψ, the throughput of the nth user is

denoted as

rψn = lim
J→∞

1

J

J−1∑

t=0

E
[
Rψn [t]

]
∀ n, (13)

where Rψn [t] = Rn[t]1(n ∈ θ[t]) and the expectation is

over the initial state and the evolution of the states and

decisions in the subsequent intervals. Note that in (13)
for simplicity we have assumed that the limit exists for

the selected policy. In case the limit does not exist, we

can consider any sub-sequence for which the limit exists.
Let Ψ be the set of all policies. The throughput region

that is of interest to us is defined as the closure of the
convex hull of the throughput vectors achievable under

all policies in Ψ, i.e.,

Λ = CH
{
r : ∃ψ ∈ Ψ s.t., r = rψ

}
,

where CH{·} denotes closure of the convex hull. For

each throughput vector r, we obtain a utility value U(r),
where U(·) is the non-negative component-wise non-

decreasing and concave utility function. For convenience,

we also assume that the utility is continuous (and hence
uniformly continuous) in the closed hypercube [0, b]N

for each finite b ∈ IR+. The objective then is to max-

imize the network utility within the throughput region,
i.e., maxr:r∈Λ U(r).

III. OPTIMAL FRAME-BASED SCHEDULING POLICY

In this section, we propose a frame based policy

that achieves a utility arbitrarily close to the optimal.

In this policy, the time intervals are further grouped
into separate frames, where each frame consists of T
consecutive intervals. The scheduling decisions in each

frame are based on a set of virtual queues that guide
the achieved system utility towards optimal, as specified

next.

A. Virtual Queue and Virtual Arrival Process

To control the achieved utilities of different users,

a virtual queue is maintained for each user, denoted
as Qn[k], k = 0, 1, · · · & n = 1, · · · , N . At the

beginning of the τ th frame comprising of intervals

{τT, · · · , (τ + 1)T − 1}, where τ ∈ {0, 1, 2, · · · },
the following optimization problem is solved at the

scheduler

max
r:0�r�rmax1

V · U(r) −
N∑

n=1

Qn[τT ]rn, (14)

where rmax, V are positive constants that can be freely

chosen and whose role will be revealed later. We let

r∗[τ ] be the optimal solution to the above problem. Then,
the virtual arrival rate for user n is set as r∗n[τ ] in each

interval in the τ th frame. A scheduling policy, ψ∗
Q[τT ], is

determined and implemented based on the virtual queue
length Q[τT ] obtained at the beginning of that frame.

Letting R
Ψ∗

Q[τT ]
n [k] denote the service rate of user n in

each interval k in the τ th frame under this policy, the
virtual queue is then updated as

Qn[k + 1] =
(

Qn[k] −R
Ψ∗

Q[τT ]
n [k]

)+

+ r∗n[τ ], (15)

for all τT ≤ k ≤ (τ + 1)T − 1 and each user n and

where (x)+ = max{0, x} with Qn[0] = 0 for all n.



B. State-action frequency approach

We now determine the policy Ψ∗
Q[τT ] employed in

the τ th frame. Notice that while the definition of the
system state adopted thus far allows us to compactly

describe any policy, one associated drawback is that the

number of states becomes countably infinite. Fortunately,
there is one aspect that we can exploit. Note that the

average rates obtained upon scheduling a pair of users

i, j on any interval k depends only on the corresponding
coarse and fine channel estimates in interval κi,j (which

we recall denotes the prior recent-most interval over

which that pair was scheduled) and the coarse channel
estimates in interval k but not on those interval indices.

Then, to analyze the average rates offered by any policy,

it suffices to define a finite set of states, S, as fol-
lows. A state s ∈ S is defined as a particular choice

h
p,fine
i ,hp,fine

j ,hp,coarse
i ,hp,coarse

j ,hc,coarse
i ,hc,coarse

j of

coarse and fine channel estimates for each pair i, j,
where the superscripts p, c denote past and current
estimates, respectively. Consequently there are |S| =
(
|Cfine|2|Ccoarse|2

)N(N−1)
2 |Ccoarse|N number of states.

Note that a state S[k] in the previous definition

would map to state s ∈ S which has the choice

h̆i[κi,j ], h̆j [κi,j ], ĥi[κi,j ], ĥj [κi,j ], ĥi[k], ĥj [k] for each

pair i, j. A finite set of actions, A, is defined next to

be the collection of all possible user pairs so that any
a ∈ A uniquely identifies a user pair. Let P (s

∣
∣s′, a)

denote the transition probability, which we note can
be determined using (1) and the facts that the finer

past estimates of pairs not in a do not change and the

current coarse estimates are i.i.d. across intervals. Letting
P(A) define the set of all probability distributions on

A, any policy can be defined as a mapping which

at each interval k takes as input all the history up-to
interval k, comprising of states {s[j]}kj=0 and all actions

{a[j]}k−1
j=0 , to output a distribution in P [A] from which

the action a[k] can be generated. A stationary policy is
one which at any interval k considers only the state s[k]
to output a distribution in P[A] and where the output

distribution depends only on the state s[k] but not on
the interval index k. Under any stationary policy the

sequence {s[k]}∞k=0 is a Markov Chain.

With these definitions in hand, we let Rn(s, a) denote

the achieved transmission rate for user n when action a
is taken and the system state is s. Denote the state action

frequencies by {x(s, a)}s∈S,a∈A, where we note that

each x(s, a) lies in the unit interval [0, 1] and represents
the frequency that the system state is at s and action a
is taken. The state action frequencies need to satisfy the

normalization equation

∑

s,a

x(s, a) = 1,

and the balance equation

∑

a

x(s, a) =
∑

s′,a

P (s
∣
∣s′, a)x(s′, a).

The above two equations form a state-action polytope X

and let x denote any vector of state action frequencies
lying in X . We next define a rate region as

Λ̃ = {R : Rn =
∑

s

∑

a

Rn(s, a)x(s, a), ∀ n & x ∈ X }. (16)

Then, given the virtual queue length q = Q[τT ] we

consider the following linear program (LP),

max
x

∑

s,a

qTR(s, a)x(s, a)

s.t. x ∈ X . (17)

We use x∗ to denote an optimal solution to the linear

program and define R∗ = [R∗
1, · · · , R

∗
N ]T , where

R∗
n =

∑

s

∑

a

Rn(s, a)x
∗(s, a), ∀ n. (18)

Using the Bayesian rule, we can identify the correspond-
ing stationary policy Ψ∗

Q[τT ], which at any interval k in

the τ th frame first maps the state S[k] to its counterpart

s ∈ S . Then, if
∑

a′ x
∗(s, a′) > 0, it chooses action a

using the probabilistic rule

P (pick a at state s) =
x∗(s, a)

∑

a′ x
∗(s, a′)

, ∀ a ∈ A.

On the other hand, if
∑

a′ x
∗(s, a′) = 0, it chooses ac-

tion a arbitrarily. Let Rframe[k], τT ≤ k ≤ (τ+1)T−1,

denote the service rate vectors obtained under this policy

for the intervals in the τ th frame.

We list the following results which can be obtained

using those that have been derived before for weakly
communicating Markov Decision Processes [10],[11].

Lemma 1. The region Λ defined in (13) is identical to

the region Λ̃ defined in (16). Further, for each frame τ
and any given Q[τT ], an optimal solution to the LP in

(17) can be found for which the corresponding policy

Ψ∗
Q[τT ] is also deterministic.

Henceforth, we assume Ψ∗
Q[τT ] to be also determin-

istic.

Lemma 2. For arbitrarily fixed δ > 0 there exists a
large enough frame length To and constants γ, β such
that for each frame length T ≥ To and all Q[τT ]

Pr

(∥
∥
∥
∥
∥

1

T

(
T−1∑

j=0

R
frame[τT + j]

)

− R
∗

∥
∥
∥
∥
∥

> δ

∣
∣
∣
∣
∣
Q[τT ]

)

≤ γ exp(−βT ). (19)



C. Optimality of the frame-based policy

Define Lyapunov function L(Q[τT ]) =
1
2

∑N

n=1Q
2
n[τT ]. Then the T -step average Lyapunov

drift is expressed as

∆T (Q[τT ]) =
1

T
E [L(Q[(τ + 1)T ]) − L(Q[τT ]) | Q[τT ]] ,

where the expectation is over the initial states at interval
τT induced by the policies adopted in the previous

frames and the evolution of the states and decisions in

the τ th frame under the policy Ψ∗
Q[τT ]. Our first result

is the following, the proof of which is included in [13].

Proposition 1. For any given ǫ > 0, there exists a frame
length To such that for all frame lengths T ≥ To the T -
step average Lyapunov drift can be bounded as

∆T (Q[τT ]) ≤ BT −

N∑

n=1

Qn[τT ]Rn +

N∑

n=1

Qn[τT ]r∗n[τ ], (20)

where B is a constant and R = [R1, · · · , RN ]T is any

vector such that R + ǫ1 ∈ Λ.

Consider the ǫ-interior of Λ, i.e., Λǫ = {R : R+ǫ1 ∈
Λ}. Denote ropt

ǫ as the optimal value of the following

optimization problem.

max U(r)

s.t. r ∈ Λǫ; r � rmax1.

Our main result is the following which is proved in [13].

Theorem 1. For any given ǫ > 0, there exists a To such

that for all frame lengths T ≥ To

lim inf
J→∞

U

(

1

J

J−1∑

t=0

E
[
Rframe[t]

]

)

≥ U(ropt
ǫ ) −BT/V.

Thus, by choosing ǫ, framelength T and parameters
V, rmax appropriately, our frame based policy can be

made arbitrarily close to optimal.

For comparison we will use the conventional MU-

MIMO scheduling described in Section II-A. In addition,
we also use the following myopic policy. This policy

operates in a manner similar to the frame based policy

but with the following important differences. Firstly, the
frame-length is set as T = 1 so that the arrival rates

are computed at the start of each interval and the virtual
queues are updated at the end of that interval. Then, at

each interval k the current state S[k] is mapped to its im-

age s ∈ S. Considering the queue length q = Q[k], the
action â = arg maxa∈A qTR(s, a) is selected. Clearly,

this policy does not consider the transition probabilities

(and the possible future evolutions) at all while deciding
an action. Nevertheless, as seen in the following section,

this policy indeed offers a competitive performance.

IV. SIMULATION RESULTS

We consider a narrowband downlink with four single-
antenna users that are served by a BS equipped with four

transmit antennas. All users are assumed to experience

an identical (large scale fading) pathloss factor δ and thus
see an identical average SNR, which models the physical

scenario in which all users are equidistant from the BS.

Further, we model the small-scale fading seen by each
user as Rayleigh fading so the channel response vector of

each user is assumed to have i.i.d. CN (0, δ2) elements.

Consequently the normalized channel response vector
(i.e., channel direction) is isotropically distributed in

IC4×1. Moreover, the channel response vectors evolve in-
dependently across intervals and are independent across

users. In the following simulations, each user quantizes

its channel norm and channel direction separately. In
particular, the channel norm is quantized using a scalar

quantizer which for simplicity we assume to be identical

for both fine and coarse estimates. On the other hand,
to quantize the channel direction, in order to obtain the

finer estimate, the quantization codebook used comprises

of a set independently generated instances of isotropic
vectors in IC4×1 (a.k.a. random vector codebook), where

we note that for large codebook sizes random vector

codebooks have been shown to be a good choice for both
SU-MIMO and conventional MU-MIMO. The quanti-

zation of the channel direction to obtain the coarser
estimate is accomplished using Grasmannian codebooks.

Before offering our results, we consider an interval k
and decision θ and describe the mapping rules alluded

to in Section II-C. We determine a good direction (i.e.,
unit-norm beamforming vector) for multicasting using

the alternating optimization based multicast beamform-

ing design algorithm [12] that takes only the coarse

estimates ĥu1 [k] and ĥu2 [k] as inputs and set
z[k,2]

‖z[k,2]‖
and

z[k,3]
‖z[k,3]‖ to be equal to this direction. The precoding

matrix Wu1 [κ] is obtained by extending the naive zero-

forcing design of conventional MU-MIMO to the model
in (8). In particular at interval κ the BS naively assumes

that coarse estimates ĥu1 [κ], ĥu2 [κ] it has are indeed
equal to their respective exact channels (and hence their

respective finer estimates). Then, at any future interval

k (the knowledge of k is not assumed during interval
κ) when pair (u1, u2) is next scheduled, under the naive

assumption (8) would reduce to

yu1 [κ, 1] −
yu1 [k, 2]

hu1 [k]z[k, 2]
= ĥu1 [κ]xu1 [κ] + nu1 [κ, 1]

−
nu1 [k, 2]

(hu1 [k]z[k, 2])
,

yu1 [k, 3]

(hu1 [k]z[k, 3])
= ĥu2 [κ]xu1 [κ] +

nu1 [k, 3]

(hu1 [k]z[k, 3])
. (21)

To remove dependence on k, all noise
covariances are averaged so that (21) reduces

to a point-to-point MIMO channel with channel
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Fig. 2. Comparison with conventional MU-MIMO

matrix [ĥu1 [κ]; ĥu2 [κ]] and noise covariance

diag{1 + E[1/|hu1 [k]z[k, 2]|2], E[1/|hu1 [k]z[k, 3]|2}.

Notice however that due to the power constraints
these expected values in turn depend on the

choice of precoders Wu1 [κ],Wu2 [κ]. As a further

simplification, we fix these expected values to
be suitable scalars which are determined offline.

The precoder Wu1 [κ] can now be obtained using

the standard point-to-point MIMO precoder design
algorithm [7]. The precoder Wu2 [κ] is computed in an

analogous manner. Finally, the norms of the precoding

vectors are fixed as ‖z[k, 2]‖ =
√
P

‖h̆u1 [κ]Wu2 [κ]‖ and

‖z[k, 3]‖ =
√
P

‖h̆u2 [κ]Wu1 [κ]‖ .

In Fig. 2 we compare the sum rate utility obtained
using conventional MU-MIMO that only uses the current

CSI with that obtained using the myopic scheduling that
uses only the delayed CSI (EMAT with delayed) and the

myopic scheduling that uses the hybrid CSI (EMAT with

hybrid), where for the latter two schemes the average
rates are computed assuming both the sub-optimal and

the optimal filtering. In all cases the channel norms were

assumed to be perfectly quantized whereas a 2-bit coarse
codebook and 5-bit fine codebook were employed to

quantize the channel directions, respectively. As seen

from the figure, the conventional MU-MIMO gets in-
terference limited and the policy using the finer albeit

delayed CSI offers significant gains, which are further

improved by utilizing the hybrid CSI. The improvement
is more marked upon using optimal filtering. We also

compared the sum rates obtained using our proposed
policy and the myopic one, respectively, for a simpler

examples having fewer number of states. We found that

for well designed quantization codebooks, the myopic
policy performs very close to the optimal frame based

policy. This observation coupled with the fact that the

complexity of the myopic policy scales much more
benignly with the system size, makes it well suited to

practical implementation. Additional details and results

are included in [13].

V. CONCLUSIONS

We considered the DL MU-MIMO scheduling prob-

lem with hybrid CSIT and proposed an optimal frame-
based joint scheduling and feedback approach. There are

two important and interesting issues that are the focus

of our current research. The foremost one pertains to
the exceedingly large number of states that are needed

to accommodate practical system sizes which makes

implementation of the frame based policy challenging
even upon using commercial LP solvers. While the

sparse nature of these linear programs can indeed be

exploited, an efficient and significant reduction in the
number states is necessary. The second issue is the

choice of the precoding matrices and vectors. Recall that
in this work we have assumed the choice of precoders to

be pre-determined and fixed for each (state,action) pair.

To fully exploit the precoding gains and the availability
of “precoded pilots” in future networks, we should relax

this restriction. Finally, we remark that incorporating

practical considerations such as delay constraints on
scheduling are other important open issues.
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