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Abstract—We consider opportunistic spectrum access on a
channel with stochastic traffic carried by network coding. We
show how a secondary user (SU) can leverage the structure
induced by block-based network coding on a primary user’s (PU)
channel to maximize the throughput. Network coding enhances

transmission efficiency and when applied on a PU channel,
it can extend spectrum availability for the SU. We study the
additional gain of spectrum predictability from network coding
and show that the SU can more reliably detect the idle spectrum
under sensing errors if the PU channel carries network-coded
transmissions even when the channel utilization remains the
same. The SU maximizes the throughput by first learning the
PU spectrum parameters with the Baum-Welch algorithm and
then tracking the spectrum holes with the Partially Observable
Markov Decision Process (POMDP) algorithm. We show that
network coding renders the spectrum more predictable, which
leads to a higher SU throughput.
Index Terms—Opportunistic spectrum access, spectrum sens-

ing, network coding, throughput optimization, POMDP.

I. INTRODUCTION

Cognitive radio network paradigm aims at increasing the

spectrum utilization by allowing secondary (unlicensed) users

to access the licensed spectrum while guaranteeing some pro-

tection metric (e.g., throughput or interference level) to the pri-

mary (licensed) users’ transmissions [1]. For opportunistic ac-

cess to the licensed spectrum, the secondary users (SUs) need

to capture the idle times in primary user (PU) transmissions

(also called “spectrum holes”) with reliable spectrum sensing.

Although several sensing techniques have been proposed in the

literature (e.g., energy detectors and cyclostationary detectors

[2]), spectrum sensing remains challenging due to channel

impairments such as fading, path loss, and shadowing, which

may result in erroneous decisions Therefore, it is important to

mitigate sensing errors for both PU protection and to achieve

high SU throughput performance.

Spectrum sensing is typically applied in a “memoryless”

way without exploiting the possible correlation between the

PU spectrum states. Spectrum sensing techniques that exploit
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the memory of PU spectrum dynamics have been proposed

[3], [4], but they are usually limited to the transition of the

PU spectrum between two (idle/busy) states. In this paper, we

study the additional gains of (i) spectrum availability and (ii)

spectrum predictability resulting from the correlation of the PU

states induced by network coding. In a cognitive radio system,

the spectrum availability to the SUs can increase if the PU uses

network coding for their transmissions. Network coding has

emerged as a powerful scheme to improve the throughput by

coding over packet traffic [5] and it is known that it can im-

prove the throughput in both multi-hop [6] and single-hop [7]

networks with low complexity implementation. Therefore, it is

natural to consider its application to PU communications and

the side effect will be more idle time available to the SUs (i.e.,

higher spectrum availability). The second effect of network

coding is that it “shapes” the spectrum and induces a structure

to the PU channel occupancy states such that network-coded

transmissions occur in batches rather than sporadically (i.e.,

higher spectrum predictability). With network coding, the busy

period on the PU channel is lower-bounded by the coding

block size, K , and the idle period must accumulate a block

of K packets to initiate transmissions.

In this paper, we study how the SU can exploit the structure

of the PU’s idle and busy periods induced by network coding

to reliably learn the PU spectrum characteristics and effec-

tively mitigate spectrum sensing errors. Since network coding

results in blocks of busy and idle slots rather than scattered

over time, as illustrated in Figure 1, the PU spectrum becomes

more predictable with network coding. Based on the structural

properties of network-coded spectrum we study constructive

algorithms for the SU that can first estimate the PU spectrum

parameters in single-hop communications and then identify the

idle slots on PU spectrum with high accuracy. Note that the

spectrum predictability gain (i.e., “shaping effect”) is present

even when there is no spectrum availability gain, e.g., when

the PU transmitter has perfect channels to multiple receivers

or there is a single receiver with an imperfect channel where

network coding has no throughput advantage over retransmis-

sions. The goal of this paper is to exploit these two spectrum

effects to mitigate spectrum sensing errors for improving the

SU throughput

Network coding has been studied for spectrum sensing



Fig. 1: Busy/idle periods with and without network coding.

purposes mainly in two directions. First, in [8], network coding

was used in conjunction with collaborative spectrum sensing

to help efficiently disseminate control information among the

SUs. Second, in [9], the correlation among PU spectrum states

due to network coding was used by the SUs to track multiple

PU channels (by assuming that a busy slot will be more likely

followed by another busy slot) and to quickly identify an idle

channel. However, the model in [9] assumes that the SU has

perfect sensing capability and can correctly distinguish an idle

slot from a busy one on the channel it chooses to sense.

In this paper, we relax the idealistic assumption of perfect

sensing by studying the practical case with possible spectrum

sensing errors. While providing some degree of protection to

the PU, the SU pursues the objective of average throughput

maximization. We build a systematic model that represents

the structural effects of block-based network coding on PU

spectrum. We first consider a perfect PU channel such that

there is no spectrum availability gain (i.e., the fraction of the

idle slot is the same independent of coding block size K), and

then extend the model to imperfect PU channels (where the

fraction of idle slots depends on K).

We show that a higher value of K leads to better learning

of the PU spectrum structure via the Baum-Welch algorithm

and then by using the POMDP algorithm we show that the

spectrum predictability due to network coding applied at the

PU can actually improve the SU throughput (and the gain

increases with K), even when the spectrum utilization remains

the same. Then, we consider imperfect channels and evaluate

the throughput benefit of network coding as a combined effect

of spectrum availability and predictability gains. Our results

show that the benefit of using network coding by the PU is not

limited to PU throughput gain, but also, if properly exploited,

improves the spectrum sensing accuracy (under sensing errors)

and increases the throughput for the SU by mitigating possible

sensing errors. This way, the overall spectrum efficiency of a

cognitive radio network can be significantly improved.

The rest of the paper is organized as follows. In Section

II, we introduce the system model for spectrum sensing on

a PU channel. Section III studies the benefit of spectrum

predictability gain for the SU throughput maximization. We

evaluate the additional gain of spectrum availability for the

SU throughput in Section IV. Section V concludes the paper.

II. SYSTEM MODEL

We consider a cognitive radio network consisting of one

PU and one SU. The SU tries to detect the idle periods on

the PU’s channel for opportunistic access. The PU channel

state (busy/idle) is random due to random packet arrivals and

possible (random) transmission failures. Time is slotted with

slot duration equal to one packet transmission. The SU senses

the spectrum (e.g., with energy detector) at the beginning of

every slot to detect whether the PU channel is idle or not.

Based on channel sensing results (subject to sensing errors)

and possible prior knowledge of PU channel statistics, the SU

decides on whether to transmit or not. We consider the problem

of the SU throughput maximization while guaranteeing some

level of throughput to the PU’s transmissions.

The PU generates (or receives) packets according to a

stationary process and buffers them until K packets are

accumulated in its queue. The PU then codes the block of K
packets linearly and transmits K coded packets. The PU and

its receiver(s) agree on a set of linearly independent coding

coefficients such thatK successful transmissions are needed at

a receiver to decode a block of K packets (or random network

coding with sufficiently large field size is considered). The

state of the PU channel (idle/busy) is assumed to be fixed

over a slot duration and varies between slots according to a

Markov chain, which models the correlation between the PU

states. Exact modeling of the queue dynamics with network

coding leads to an infinite-state Markov chain, which renders

it hard to be learned or tracked at the SU, especially over short

time intervals. To avoid the complicated queue evolution, we

use several approximate models for the idle/busy periods of a

PU with network-coded transmissions.

For the PU systems without network coding, the busy/idle

periods have been observed via channel measurements [10]

to follow a two-state Markov chain (shown in Figure 2) and

this model has been widely used in spectrum sensing (e.g.,

[3], [4]). Our model can be viewed as a natural extension of

this two-state model to network coding. We start with the case

of a perfect PU channel that requires K transmissions (in K
slots) to deliver K network-coded packets. In Section IV, we

will extend the model to random packet erasures on the PU

channel where the PU continues transmitting coded packets

(possibly each of them multiple times) until K transmissions

are successfully received.

Fig. 2: PU spectrum dynamics without network coding.

For the case of a perfect PU channel, the idle/busy states of

the PU are modeled by the Markov chain shown in Figure 3.

States 0 to m (0 ≤ m ≤ K−1) correspond to idle states (i.e.,
bufferingK packets while waiting for transmission) and states

m+ 1 to m+K correspond to busy states (i.e., transmitting

K coded packets). The transition probabilities pi,j for 0 ≤
i ≤ j ≤ m depend on the arrival process at the PU’s buffer.

After receiving K packets, the busy period has a duration of

K slots under error-free channels.



Fig. 3: PU spectrum dynamics with network coding.

We note two special structures of the idle periods in the

PU spectrum. One extreme corresponds to m = K − 1 with

Bernoulli arrivals (corresponding to pi,j = 0 for j > i + 1)
and models the case where packets arrive at the PU queue one

by one according to a Bernoulli process with average rate λ
such that the PU needs to wait for at least K slots until K
packets are in its buffer (this case is a good approximation for

low arrival rates), and thus the duration of the idle period is

at least K slots. The other extreme corresponds to m = 0 and
models the case when packets arrive at the PU in batches, each

with K packets. Batches arrive one at a time according to a

Bernoulli process with rate λ and hence, p0,0 = 1 − λ. This
models the case when the PU is an intermediate relay node in a

network and receives packets from K neighboring nodes (this

case is a good approximation for high arrival rates). Compared

to m = K − 1, the PU does not have to wait for at least K
slots to start network-coded transmissions if m = 0. In this

paper, we consider the case with m = 0 that has a rather less

obvious structure of the idle periods in the PU spectrum and

show that even in this case the spectrum predictability allows

the SU to effectively mitigate channel sensing errors.

From the structure of the Markov chain, we expect that

with larger K , the SU can more reliably detect the idle PU

slots through better tracking of the PU states, since it is more

likely that a busy slot is followed by another busy slot due to

block transmission structure of coded packets. For instance,

if the SU can correctly detect the first slot of a busy period,

it knows (without ambiguity) that the following K − 1 slots

will also be busy. On the other hand, if K = 1, the busy/idle
sequence, as modeled in Figure 2, involves less structure and

in particular, for α = γ = 0.5, it forms an i.i.d. sequence with
no memory between the PU states that the SU could use to

track and predict the sequence.

The idle state of the Markov chain in Figure 3 with

m = 0 has stationary probability π0 = β
β+Kλ and the channel

utilization is u = 1−π0 = Kλ
β+Kλ . To observe only the shaping

effect of network coding in terms of spectrum predictability

(by separating the effect of spectrum availability gain, which

we will study later in Section IV), the parameters of the

Markov chain are chosen to yield the same channel utilization

for all K . This means that the fraction of the idle and busy

slots is the same for all K , but the durations of the busy

periods are multiples of K slots and consequently the idle

periods are, on average, K times longer due to the buffering

and the batch processing required by network coding. The

transition probability β for an idle state to follow a busy period

should decrease with λ, and we set β = 1−λ to approximate

the queue behavior under network coding1. The Markov chain

then reduces to the one shown in Figure 4, which we will use

in Section III. By setting λ = u
u+K(1−u) , we obtain the same

channel utilization u for any K and hence we only observe

the shaping effect of network coding.

Fig. 4: PU spectrum dynamics with network coding for perfect PU channel
with m = 0.

We assume that the spectrum sensor used at the SU has

misdetection probability pM and false alarm probability pF .
We will show that the SU can mitigate channel sensing

errors by tracking the PU spectrum dynamics in contrast to

memoryless sensing strategies that cannot exploit the possible

correlation of the PU states over time.

III. SU THROUGHPUT MAXIMIZATION ON IDLE SLOTS OF

THE PU CHANNEL

The objective of the SU is to maximize the average through-

put that is measured as the average rate of detecting an idle slot

on the PU channel. We first consider the learning phase, where

the SU passively observes the channel (without transmitting)

in order to infer the parameters of the PU Markov chain; then

we focus on the tracking phase, where the SU actively tracks

the channel for opportunistic access. We consider the Baum-

Welch algorithm [11] for the learning phase and the POMDP

algorithm for the tracking phase. In this section, we only study

the spectrum predictability gain of network coding while we

address the additional spectrum availability gain in Section IV.

A. Learning Phase

The SU learns the Markov chain parameters given the

coding block size K used by the PU. We define N as the

number of slots over which the SU observes the PU chain

for learning and S = {0, 1, ...,K} as the state space of the

PU Markov chain. The true sequence of states sN1 = {st ∈
S|t = 1, 2, ..., N} is hidden to the SU but a sequence of cor-

responding sensing outcomes yN1 = {yt ∈ Y|t = 1, 2, ..., N}
is available to the SU, where Y ={“Idle”, “Busy”}.
Given only the observation sequence, the Baum-Welch

algorithm generates a sequence of parameter estimates of non-

decreasing likelihood values for the Hidden Markov Process

1In particular, this is exact behavior if the buffer size at the PU is of size
K and hence batches arriving during a busy period are dropped.



(HMP). Define η̂r = (π̂r, Âr) as the estimate of the parameters
of the hidden Markov chain at the rth iteration of the algo-

rithm, where π̂r is the estimated initial distribution of the chain

and Âr = [âij ]r is the estimated state transition matrix. The

algorithm starts with an initial guess η̂0 = (π̂0, Â0) and then

updates the parameter estimates by maximizing the likelihood

given the observation sequence {yN1 }. The rth iteration starts

with an estimate η̂r−1 and estimates a new parameter set η̂r
according to

η̂r = argmax
η̄

∑

sN
1

Pη̂r−1

(

sN1 |yN1
)

ln
[

Pη̄

(

sN1 , yN1
)]

, (1)

where Pη̂r−1

(

sN1 |yN1
)

is the probability of the state sequence

sN1 given the observation sequence yN1 under model estimate

η̂r−1 and η̄ is the set of the feasible parameters at the rth itera-
tion. The algorithm terminates when a convergence criterion is

satisfied, e.g., when lnPη̂r
(yN1 )−lnPη̂r−1

(yN1 ) < δ for a given
threshold δ. Note that although Baum-Welch algorithm is

guaranteed to converge, it might converge to a local optimum

and therefore different initial guesses may be needed.
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Fig. 5: Estimated parameter λ̂ vs. N .

We give an example in Fig. 5 for estimating the batch arrival

rate λ with threshold δ = 10−4. We consider a spectrum sensor

with pM = 0.2 and pF = 0.2618 (these values are obtained

from energy detector with n = 10 samples/slot under additive
Gaussian model with 0 dB signal-to-noise ratio; however, our

approach works for any spectrum sensor with the same pM
and pF values). The channel utilization is fixed to u = 0.5 by
properly selecting the value of λ as described in Sec II. Figure

5 shows that a higher value of K leads to a better estimate of

λ for the same number of observations, N . When K = 1 and
K = 3, for N = 400, the estimate λ̂ does not exactly match

the true values of λ, which are 0.5 and 0.25, respectively, while
it matches the true value of λ when K = 5. This confirms that
the PU spectrum structure due to network coding improves the

estimate of the PU Markov chain parameters, which we will

use next for better tracking of the PU spectrum.

B. Tracking Phase

Next, we focus on the tracking phase, where we assume

that the SU perfectly knows the parameters of the PU Markov

chain. At the beginning of each slot, the SU senses the channel

and then chooses between two actions: either to transmit

or to remain silent. With rewards incurred for different SU

actions and different PU states, the optimal policy can be

found through POMDP formulation. The SU maintains a

belief vector about the state of the Markov chain for the

PU spectrum. Each component of the belief vector represents

the conditional probability that the PU Markov chain is in

a certain state given the decision and observation history.

The belief vector is updated based on the sensing outcome

and the feedback (ACK/NACK) received upon transmission.

The POMDP formulation fully captures the interplay between

sensing and transmission decisions.

The problem of maximizing the SU throughput subject to

some PU protection constraint (for instance, a target misde-

tection probability at the PU receiver) leads to a constrained

POMDP formulation. For constrained POMDPs, randomized

policies may be needed for optimality, while an optimal

deterministic policy always exists for unconstrained POMDPs.

Instead of solving the complicated constrained POMDP prob-

lem, we use an unconstrained POMDP formulation where the

PU is protected by using a reward function at the SU that is the

weighted sum of the PU and SU throughputs. By adjusting the

weight, the PU is supported with different throughput values.

The details are presented in the reward formulation.

As studied in [3], [4], we assume for simplicity that the PU’s

traffic dynamics are independent of the actions taken at the SU

(i.e., PU unsuccessful packets are not retransmitted and hence

do not affect the Markov chain evolution) and we consider

the extended Markov chain structure in Figure 4 to represent

network coding effects. We denote by Xt ∈ {0, 1, ...,K} the

state of the PU in time slot t.
1) Actions: Two actions are possible at the SU in each slot

t: to remain silent (At = 0) or to transmit (At = 1).
2) Rewards: When the PU spectrum is at state Xt and

action At is taken by the SU, the reward is given by

R(Xt, At) =



















0, if Xt = 0, At = 0

w r̃P , if Xt 6= 0, At = 0

(1− w)r̃S , if Xt = 0, At = 1

0, if Xt 6= 0, At = 1

, (2)

where r̃P and r̃S are the rates achieved by the PU and SU,

respectively, when they do not interfere. Simply, we assume

r̃P = r̃S = 1 (coded) packet/slot. The weight w represents the

relative importance of the PU throughput and is used for the

PU protection. Choosing w = 1 gives full priority to the PU

throughput (i.e., full PU protection), while w = 0 favors the

SU throughput (i.e., no PU protection). By varying w between

0 and 1, we can reach different degrees of PU protection

corresponding to different PU throughputs. Note that we are

assuming a collision channel, that is, when both the PU and

the SU transmit simultaneously, a collision occurs and both



packets are lost. However, a similar approach can be taken

for the case with multi-packet reception capability. If the PU

codes over K packets, any coded packet loss due to collision

may prevent the PU receiver from decoding the entire block of

coded packets (since PU’s failed packets are not retransmitted).

This can be overcome if the PU codes over K − 1 packets,

transmits this block, and then at the Kth transmission, either

retransmits one of these coded packets if a collision occurred,

or else transmits the remaining uncoded packet. As we will

see later, the optimal access policy at the SU guaranteesK−1
collision-free transmissions out of K PU transmissions during

a busy period, and hence, at least K − 1 PU coded packets

can be successfully delivered during every PU busy period.

This validates Eq. (2), where the PU has one packet delivered

when it is busy and no collision occurs.

3) Spectrum Sensing: Although some level of PU protec-

tion can be achieved solely by adjusting w in the reward

function, spectrum sensing leads to better inference of the PU

state and consequently higher SU throughput for the same

level of PU protection (same PU throughput). Assume that

the spectrum sensing scheme has a misdetection probability

pM , which corresponds to some false alarm probability pF .

4) Channel Feedback from SU receiver: If the SU chooses

to transmit, an error-free feedback message is sent from the SU

receiver to the SU transmitter indicating whether the packet

was successfully received or not. This feedback message also

reveals about the idle/busy state of the PU spectrum since

under the collision channel model considered, if an ACK (or

NACK) is received at the end of a slot, the SU learns that the

PU was idle (or busy) during that slot. This feedback is then

used by the SU for updating the belief in the next slot.

5) Observations and Belief Vector: Since the true state

of the PU spectrum cannot be exactly observed from chan-

nel sensing results because of possible sensing errors, the

SU maintains a belief about the state of the PU spectrum.

For POMDP problems, the belief is a sufficient statistic for

deciding on the action given all the past observations and

actions [12]. Given the spectrum sensing observation and the

transmission feedback, the SU updates its belief regarding the

state of PU spectrum. We denote by Λt the (K+1)×1 belief
vector of the PU state in time slot t, where the mth component

Λt(m) denotes the belief in time slot t that the Markov chain

in Figure 3 is in state m, where 0 ≤ m ≤ K . Note that the

first component of the belief vector is Λt(0).
(a) Under the action At = 0: The SU chooses not to transmit.

No channel feedback is observed and the belief in the fol-

lowing slot is updated solely based on the channel sensing

outcome in that slot. The observation is either “Busy” or

“Idle”. Denote 1 − x by x. Given a belief vector Λt, the

probabilities of observing the outcome “Busy” and “Idle” are

given by Eqs. (3) and (4) respectively.

Pr [Busy|Λt] =Λt(0)
[

λ pM+λ pF
]

+ Λt(K)
[

λ pM + λ pF
]

+ pM

K−1
∑

m=1

Λt(m), (3)

Pr [Idle|Λt] = Λt(0)
[

λ pM + λ pF
]

+ Λt(K)
[

λ pM + λ pF
]

+ pM

K−1
∑

m=1

Λt(m), (4)

The belief updates under action At = 0, given observations

O(At) = Idle and O(At) = Busy are given by Eqs. (5) and

(6), respectively.

Λt+1(m) = Pr [Xt+1 = m|At = 0,Λt, O(At) = Idle]

=
[pF 1[m = 0] + pM1[m 6= 0]] Γm

∑K
m=0 [pF 1[m = 0] + pM1[m 6= 0]] Γm

, (5)

Λt+1(m) = Pr [Xt+1 = m|At = 0,Λt, O(At) = Busy]

=
[pF 1[m = 0] + pM 1[m 6= 0]] Γm

∑K
m=0 [pF 1[m = 0] + pM 1[m 6= 0]] Γm

, (6)

where 1[] is indicator function and Γm is given by

Γm =

K−1
∑

i=1

Λt(i)1[m = i+ 1] + 1[m = 1] [Λt(0)λ+ Λt(K)λ]

+1[m = 0][Λt(0)λ+ Λt(K)λ]. (7)

(b) Under the action At = 1: The SU chooses to transmit. An

(ACK/NACK) feedback is sent from the SU receiver to the

SU transmitter over a dedicated control channel at the end

of the slot. The possible observations in this case are (ACK,

Busy), (ACK, Idle), (NACK, Busy) and (NACK, Idle). The

(ACK/NACK) feedback is observed at the end of slot t, while
the “Busy” or “Idle” outcome is observed after sensing in

slot t+1. The probabilities of these observations under action
(At = 1) are given by Eqs. (8)-(11). The belief under different
observations is updated as given by Eqs. (12)-(16).

Pr [(ACK,Busy)|Λt] = Λt(0)
[

λ pM + λ pF
]

, (8)

Pr [(NACK,Busy)|Λt] = pM

K−1
∑

m=1

Λt(m)

+Λt(K)
[

λ pM + λ pF
]

, (9)

Pr [(ACK, Idle)|Λt] = Λt(0)
[

λpM + λ pF
]

, (10)

Pr [(NACK, Idle)|Λt] = pM

K−1
∑

m=1

Λt(m)

+Λt(K)
[

λpM + λ pF
]

. (11)

(i) If O(At) = (ACK, Busy),

Λt+1(m) =
pM 1[m = 1]

[

λ 1[m = 1] + λ 1[m = 0]
]

pFλ+ λ pM

+
pF 1[m = 0]

[

λ1[m = 1] + λ 1[m = 0]
]

pF λ+ λ pM
. (12)

(ii) If O(At) = (NACK, Busy),

Λt+1(m) =
[pM1[m 6= 0] + pF 1[m = 0]]Ψm

∑K
m=0 [pF 1[m = 0] + pM1[m 6= 0]]Ψm

, (13)



where

Ψm =

K−1
∑

i=1

Λt(i)1[m = i+ 1] + 1[m = 0]Λt(K)λ

+1[m = 1]Λt(K)λ. (14)

(iii) If O(At) = (ACK, Idle),

Λt+1(m) =
pM1[m = 1]

[

λ1[m = 1] + λ 1[m = 0]
]

pF λ+ λpM

+
pF 1[m = 0]

[

λ1[m = 1] + λ 1[m = 0]
]

pF λ+ λpM
. (15)

(iv) If O(At) = (NACK, Idle),

Λt+1(m) =
[pM1[m 6= 0] + pF 1[m = 0]]Ψm

∑K
m=0 [pF 1[m = 0] + pM1[m 6= 0]]Ψm

. (16)

6) Policy: The SU policy is a mapping from the belief

space to the action space. The optimal policy maximizes the

expected discounted reward and is given by

π∗ = argmax
π

Eπ

[

∞
∑

t=1

ξtR (Xt, At) |Λ1

]

, (17)

where ξ is the discount factor (ξ < 1), which describes the

importance of the future reward relative to the immediate

reward, and Λ1 is the initial belief vector, which is equal to

the stationary distribution of the chain.

Let V (Λt) denote the value function, which is defined as the
maximum expected reward that can be incurred starting from

time slot t given belief Λt. The value function must satisfy for

all t the Bellman equation in dynamic programming given by

V (Λt) = max
At∈{0,1}

[

RAt
(Λt) + ξ

∑

O(At)

Θ(O(At), At,Λt)
]

,

where Θ(O(At), At,Λt)= Pr[O(At)|Λt]V(Φ(Λt|At, O(At))),
RAt

(Λt) is the expected immediate reward in slot t under

action At, O(At) represents the observation under action At

and the function Φ(Λt|At, O(At)) represents the belief update
under action At and observations O(At). For action At ∈
{0, 1}, RAt

(Λt) is given by R0(Λt) = w r̃P (1 − Λt(0)) and
R1(Λt) = (1−w)r̃SΛt(0), where Λt(0) is the first component
of the belief vector Λt, which represents the belief that the PU

state is idle at time t.
POMDPs are PSPACE-hard problems [13]. Although sev-

eral heuristics have been proposed to compute suboptimal

policies for large dimensional POMDPs, we limit ourselves to

small values of K and compute the optimal policy using the

value iteration algorithm applied to a discrete finite uniform

grid in the belief space. Once the optimal SU transmission

policy is computed, we run a system simulation to compute

the PU and SU throughputs.

In Figure 6, we vary the PU protection weight parameter w
and show the relationship of the SU throughput, rS , and PU

throughput, rP , jointly achieved under the POMDP algorithm

for fixed channel utilization u = 0.5 and discount factor
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ξ = 0.9. For the same value of rP , rS increases with coding

block size K . For rS to reach its maximum value 1−u = 0.5,
the value of rP must drop to zero when K = 1, while for

K = 2 orK = 3 the PU can still sustain a non-zero throughput

rP while rS = 0.5. This can be explained as follows. For

u = 0.5 and K = 1 (λ = 0.5), the busy/idle states of the

PU spectrum form an i.i.d. sequence and hence the spectrum

cannot be predicted at the SU. For this case, three possible

transmission strategies at the SU are as follows. The first

strategy is to transmit in all slots irrespective of the PU and this

corresponds to rS = 1−u = 0.5 and rP = 0 due to continuous
collisions. The second strategy is to trust its sensing outcome

in each slot. This corresponds to rS = (1 − u) (1− pF ) and
rP = u (1− pM ) and is given by the breaking point on the

curve of K = 1. The third strategy is to remain silent at all

slots and corresponds to rP = u = 0.5 and rS = 0. By time

sharing between the first and second strategies or between



the second and third strategies, the points on the linear parts

on the curve of K = 1 in Figure 6 can be achieved. On the

other hand, increasing K to 2 or 3 introduces more correlation
(hence more memory) to the PU states and hence the Markov

chain becomes more amenable to be tracked at the SU facing

the sensing errors.

For the SU to achieve the maximum possible throughput

rS = 1 − u, it can keep transmitting until a collision occurs.

Then, it remains silent for the following K−1 slots as the PU
channel will be busy in these slots and hence both the PU and

SU packets would be lost in collisions if the SU transmits. This

corresponds to PU throughput rP =
(

K−1
K

)

u. This strategy
converges to the optimal throughput pair (rP = u, rS = 1−u)
as K → ∞. For rS < 1 − u, this strategy is used at the

SU while also remaining silent over more slots based on the

tracking outcome. This provides the PU with more collision-

free slots leading to a higher value of rP and justifies our

earlier claim that the optimal policy guarantees at least K− 1
collision free PU transmissions during each PU busy period.

Figure 7 shows how to choose the weight w defined in the

reward function of the POMDP formulation to provide some

level of protection to the PU. For a given target PU throughput,

the corresponding weight w can be found from Figure 7 and

this weight is used in computing the optimal access policy at

the SU. Note that the horizontal lines in Figure 7 correspond

to one point in Figure 6, i.e., there may exist several weight

values w leading to the same optimal policy and consequently

to the same pair of PU and SU throughputs, rP and rS .

IV. JOINT EFFECT OF SPECTRUM AVAILABILITY AND

SPECTRUM PREDICTABILITY

So far we assumed a perfect PU channel such that the

channel utilization remains the same (independent of K)

and the only effect that we considered was the spectrum

predictability gain. Next, we add the spectrum availability gain

that network coding at the PU can provide for the case of

an imperfect multicasting channel. Again, the PU needs K
successful transmissions to deliver K packets but it may need

more than K transmissions due to packet erasures.

Fig. 8: PU spectrum dynamics with network coding under the erasure model.

The new Markov chain for the PU spectrum dynamics that

approximately models the effects of packet erasures is shown

in Figure 8. There is a transition from state i to i+ 1 (where

i = 1, 2, ...,K−1) with probability 1−εK ; otherwise, the state

remains the same with probability εK . Note that the effective
erasure probability εK depends on the PU coding block size

K , the number of PU receivers (in the multicasting setting),

and the success probability over each of the PU channels. The

stationary distribution of the Markov chain is given by π0 =
(1−λ)(1−εK)

Kλ+(1−λ)(1−εK) and πm = λπ0

(1−λ)(1−εK) for 1 ≤ m ≤ K . The

channel utilization is u(K) = Kλ
Kλ+(1−λ)(1−εK) .

We fix the average arrival rate in packets/slot to α for all

K by choosing λ = α/K batches/slot, where the batch size

is K . In a general multicasting system with erasure channels,

the PU transmitter using network coding achieves a higher

throughput for the same channel utilization as K increases,

which is equivalent to achieving the same throughput with

smaller channel utilization as K increases. This way, the PU

achieves more successful packet deliveries over shorter busy

periods. Hence, by fixing the maximum PU throughput for

all K , we achieve a higher spectrum availability to the SU by

increasingK . The same maximum possible PU throughput for

all K can be achieved by setting u(1)(1−ε1) = u(K)(1−εK)

leading to εK = Kε1−(K−1)(1−ε1)
K−(K−1)(1−ε1)

, where ε1 is the effective

erasure probability when K = 1. With this choice, the

channel utilization u(K) = α
α+(1−α/K)(1−εK) decreases as K

increases, pointing to the spectrum availability gain of network

coding, while the maximum PU throughput u(K)(1− εK) is

the same for all K . Also, εK = Kε1−(K−1)(1−ε1)
K−(K−1)(1−ε1)

decreases as

K increases and this models more successful packet deliveries

achieved by the PU for the same number of transmissions.

Note that this model is only valid if ε1 > K−1
2K−1 to ensure that

εK ≥ 0.
Next, we apply the POMDP algorithm and combine the

spectrum predictability and availability gains due to network

coding. The only change in the POMDP formulation is in the

expected immediate reward under action At ∈ {0, 1}, which
is now given by R0(Λt) = w r̃P (1 − εK)(1 − Λt(0)) and

R1(Λt) = (1− w)r̃SΛt(0), and the reward is given by

R(Xt, At) =



















0, if Xt = 0, At = 0

w r̃P (1− εK), if Xt 6= 0, At = 0

(1− w)r̃S , if Xt = 0, At = 1

0, if Xt 6= 0, At = 1

. (18)

The probability of observations and the belief updates in the

presence of erasures can be derived as in the case without era-

sures and is omitted here for brevity. Due to the PU throughput

gain of network coding, we expect that by increasing K , we

get higher SU throughput (due to both spectrum predictability

and availability gains). However, for the same K and larger

εK , the PU remains busy for longer durations because of

packet erasures and hence the SU throughput degrades.

In the numerical results, we use α = 0.5, pM = 0.2,
pF = 0.2618 and r̃P = r̃S = 1. The value of ε1 is chosen first
and then the values of εK , K ≥ 2 are determined accordingly
to yield the same maximum PU throughput. For ε1 = 0.5,
we obtain ε2 = 0.333 and ε3 = 0.25, while for ε1 = 0.6 we

obtain ε2 = 0.5 and ε3 = 0.4545. Figure 9 shows the effect of
erasures on learning the HMP parameters. A larger value of



erasure probability εK makes the PU Markov chain harder to

learn because of the larger variability in the durations of the

busy periods. For the same value of εK , a larger coding block
size K helps with learning the PU spectrum. Figure 10 shows

the region of the PU and SU throughputs, rP and rS , jointly
achieved under the POMDP algorithm. For the same K , the

PU can achieve higher throughput rP for the same rS and

smaller ε1 (and hence smaller εK). Also, for the same rP and

ε1, rS increases with increasing K; and for the same rP and

same K , rS decreases with increasing ε1 (and consequently

with increasing εK). This is the combined effect of spectrum
availability and spectrum predictability gains. Note that the

maximum value of rS(= 1−u(K)) increases with increasing
K due to the spectrum availability gain, and for K = 2
and 3, it corresponds to a non-zero rP due to the spectrum

predictability gain which allows to the PU collision free slots

during every busy period as previously explained in Sec. III-B.
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V. CONCLUSION

We showed how the SU can leverage the structure of

the idle/busy periods on the PU spectrum with network-

coded transmissions. We first considered a perfect PU chan-

nel without any spectrum availability gain due to network

coding, but even in this case the SU can largely benefit

from improved spectrum predictability due to the structure

induced by network coding on the PU spectrum. The Baum-

Welch algorithm is applied to estimate the parameters of the

PU’s Markov chain. Once the PU Markov chain is known to

the SU, we considered the SU’s objective of maximizing its

throughput and the POMDP algorithm is applied for tracking

the PU’s spectrum state evolution. For both cases (learning

and tracking), we showed that increasing the coding block

size is always beneficial for the SU. If the PU channel is

not perfect, network coding also helps reduce the channel

utilization needed by the PU to achieve the same throughput,

leaving more idle slots for the SU to access the spectrum. In

this case, we showed how the SU throughput improves with

the aggregate gain of spectrum predictability and availability

when the PU uses network coding for its transmissions.
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