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Abstract—How to measure the user’s feeling about mobile video 
service and to improve the quality of experience (QoE), has 
become a concern of network operators and service providers. In 
this paper, we first investigate the QoE evaluation method for 
video streaming over Long-Term Evolution (LTE) networks, and 
propose an end-to-end video quality prediction model based on 
the gradient boosting machine. In the proposed QoE prediction 
model, cross-layer parameters extracted from the network layer, 
the application layer, video content and user equipment are taken 
into account. Validation results show that our proposed model 
outperforms ITU-T G.1070 model with a smaller root mean 
squared error and a higher Pearson correlation coefficient. 
Second, a window-based bit rate adaptation scheme, which is 
implemented in the video streaming server, is proposed to 
improve the quality of video streaming service in LTE networks. 
In the proposed scheme, the encoding bit rate is adjusted 
according to two control parameters, the value of predicted QoE 
and the feedback congestion state of the network. Simulation 
results show that our proposed end-to-end quality adaptation 
scheme efficiently improves user-perceived quality compared to 
the scenarios with fixed bit rates. 

Keywords-Quality of experience (QoE); Gradient boosting 
machine; Video quality evaluation; Bit rate adaptation 

I. INTRODUCTION 

Long-Term Evolution (LTE) is a standard developed by the 
Third Generation Partnership Project (3GPP) for wireless 
communication of high-speed data service, with the potential to 
provide increased peak data rates of 100Mbps downstream and 
50Mbps upstream [1]. However, due to the difficulties in 
maintaining high reliability and latency requirements of mobile 
video applications, it is still a challenging issue to guarantee 
good user-perceived quality enough for video streaming service 
over LTE networks. 

As we know, traditional quality of service (QoS) can only 
measure objective network indicators, such as packet loss rate, 
delay, delay jitter, and so on. However, the quality of 
experience (QoE), defined as “the overall acceptability of an 
application or service, as perceived by the end-user” by ITU-T 
[2], not only includes QoS, but also considers the capability of 
user equipment (UE) as well as user’s expectation and context. 
Hence, QoE is a comprehensive indicator to measure the 
performance of end-to-end systems, as shown in Fig. 1. 

The most direct way to measure QoE for mobile videos is to 
gather the mean opinion score (MOS), ranging from 1 to 5, 

rated by viewers through subjective experiments [3]. However, 
the process is time-consuming and needs a large amount of 
manpower, which is practical only if the aim is to benchmark 
the performance of objective methods. 
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Figure 1.  QoE and QoS for video streaming service in LTE networks 

Objective video quality assessment can be divided into full-
reference (FR), reduced-reference (RR) and no-reference (NR) 
methods. Peak-signal-to-noise-ratio (PSNR) is a common FR 
metric by making a pixel-by-pixel comparison between the 
source video and degraded video without considering what 
they actually represent [4]. However, both FR and RR methods 
require reference information from source videos, which is not 
available in reality. Hence, only NR method is a feasible way 
to measure QoE in real-time by modeling the features of 
transmitted videos. 

In [5], the video quality with different content types is 
measured by multiple linear regression models, in which only 
the impact of application-level QoS is considered. However, 
the relationship between QoS and QoE is usually more 
complicated than the linear ones [6]. In [7], a QoE space with 
N reference points was proposed. The predicted value equals 
to the reference point with the nearest Euclidean distance. 
Since the computational complexity of this method is 2( )N , 
it is not suitable for a large scale data set. In [8], the concept of 
feed-forward neural networks is used to predict video quality. 
However, the video content features are not considered in this 
method, which have a significant effect on the prediction result 
of QoE [9]. In addition, an opinion model for video telephone 
is standardized as G.1070 by ITU-T [10], in which the 
degradation introduced by network transmission and encoding 
compression is taken into account. Therefore, to design a good 
QoE prediction (estimation) model for the mobile video service 
in wireless networks is very important and urgent, and we will 
investigate how to predict the QoE for the video streaming 
service in wireless networks. 

This work was partly supported by Ministry of Industry and Information 
Technology of P. R. China (No. 2012ZX030011035-004), National Natural 
Science Foundation of China (No. 61071129, No. 61171087), and Science and 
Technology Department of Zhejiang Province (No. 2011R10035, No. 
2012C01036-1). 



On the other hand, the purpose of the research on QoE is to 
optimize the user experience through video quality adaptation 
schemes based on predicted value of QoE. A quality adaptation 
controller was proposed for encoding bit rate switching using 
feedback control theory in [11], and an adaptive rate control 
scheme using wireless channel status was developed in [12]. 
However, these quality adaption schemes did not take the QoE 
into consideration. Although a novel QoE-driven adaptation 
scheme at the pre-encoding stage with fuzzy logic technique 
was proposed in [13], this scheme requires a high computing 
capability of UE, and to customize the QoE estimation model 
on UE is not easy to implement. Therefore, we will also focus 
on investigating the quality adaption scheme based on 
proposed QoE prediction model. 

In this paper, we first present an end-to-end QoE prediction 
model for video streaming service in LTE networks. In our 
proposed QoE prediction model, the gradient boosting decision 
tree (GBDT) algorithm with an ensemble of M base learners is 
adopted, and cross-layer parameters extracted from the video 
content, application layer, network layer and UE, are used. 
Then, a bit rate adaptation scheme implemented at the video 
streaming server is proposed based on the value of estimated 
QoE and the feedback information of the network congestion. 
In order to avoid the bit rate fluctuation, a window-based 
adjustment strategy is presented. In addition, the system can be 
implemented for real-time monitoring. 

II. GBDT-BASED QOE PREDICTION MODEL 

In this section, the QoE prediction model based on GBDT 
algorithm is presented. 

A. Parameters selection and extraction 

Video streams suffer from packet loss, delay, delay jitter, 
and so on when transmitted through the network. Principal 
component analysis (PCA) proves that packet loss rate (PLR) 
is the most important QoE parameter in the network layer [13]. 

Before transmitted, source videos are encoded in the 
application layer. Encoding parameters, such as bit rate (BR) 
and frame rate (FR), determine the degree of compression. 

The capability of UE contributes to QoE. We assume that 
intelligent terminals have sufficient capability for video 
decoding, and tablet PCs (like iPad) require a higher video 
resolution than mobile phones (like iPhone) due to the larger 
screen size. Hence, the screen size (SS) of UE and the video 
resolution (Res) should also be taken into consideration. 

In addition, video content features (CF) also affect QoE. 
For example, the video clips with slight movements require 
lower bit rate and frame rate, and have a stronger robustness to 
packet loss compared to the video clips with rapid movements. 
Our QoE prediction model considers three content-aware 
parameters derived in temporal and spatial domain. 

The temporal information (TI) is defined as the difference 
between pixels (at the same position) in consecutive frames. 
More rapid motion in videos will result in larger value of TI 
[3]. The temporal information can be calculated as 

1( , ) ( , ) ( , )n n nM i j F i j F i j  ,                            (1) 

time spacemax { [ ( , )]}nTI std M i j ,                         (2) 

where Fn(i, j) is the pixel value of the nth frame at the ith row 
and the jth column, TI is the maximum standard deviation of 
Mn(i, j). 

The spatial information (SI) consisting of the edge block 
(EB) and the average luminance difference (Br) is defined to 
measure the spatial complexity. 

The edge block (EB) is extracted with the Sobel filter, 
where each frame is filtered with the Sobel operator. That is, 

time spacemax { [ ( )]}nEB std Sobel F .                    (3) 

The average luminance difference (Br) is defined as the sum 
of absolute difference of average luminance values between 
consecutive frames. That is, 
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where nB is the average brightness of the nth frame with NM 
pixels. 

Since the GBDT-based prediction model is implemented at 
the streaming server, the encoding parameters at the application 
layer, BR, FR, Res, can be directly obtained from the encoder. 

The video content features are calculated from source 
videos and a content features database can be constructed. 

The UE information, SS, is extracted from the international 
mobile equipment identity (IMEI) when users request video 
service. 

The network-layer parameters are transmitted to the server 
through RTCP receiver report [21] from UE continuously, 
which collects QoS information, such as transmitted bytes, 
packet loss rate, delay, and so on, to present the network 
congestion level. Hence, pakcet loss rate can be extracted 
through the “PLR Extractor” from RTCP feedback. 

Therefore, all of the parameters needed by the QoE 
prediction model are available. 

B. QoE prediction model 

In regression and classification area, a single model is prone 
to be highly complicated and over-fitted, which can be 
resolved effectively by a powerful prediction model 
assembling a lot of base learners. Hence, the gradient boosting 
machine is proposed. Our proposed QoE prediction model for 
video streaming service is based on the GBDT machine 
invented by J.H. Friedman [14]. 

Let the input vector, 1 2{ , ,..., }nx x xx , be n QoE 

parameters, { , , , , , , , }rPLR BR FR Res SS TI EB B  described in the 

section II.A, and n=8. The output value is y, corresponding to 
the predicted MOS value ranging from 1 to 5. 

The objective is to find the optimal prediction function, 
* ( )F x , which minimizes the expected value of the loss 

function, ( , ( ))L y F x , in the training sets. That is, 



 *
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( ) arg min ( , ( ))yF
F E L y F xx

x x ,               (5) 

where the loss function, ( , ( ))L y F x , uses the least-squared 

error (LSE). That is, 
2( , ( )) ( ( ))L y F y F x x .                                   (6) 

The prediction function ( )F x  can be expressed by a set of 

parameters, 1 2{ , ,...}P PP , and the additive expression is 

given as 
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where {( , ) | 1, 2,..., }m m m M P α , and ( ; )mh x α  is the form 
of the mth base learner. 

For the training set  ( , ) | 1, 2,...,i iy i Nx  with N  points, 

the optimization problem formulated in (5) can be rewritten as 
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The optimization problem formulated in (8) can be resolved 
with an iteration process as follows. 

(1). Initialization 

Defining an initial base learner with a constant value,  , as 

0
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 x .                                 (9) 

(2). Base learner construction 

A new base learner, ( ; )mh x α , is trained on the residuals of 

outcomes from all previous learners in each iteration process. 
In order to make the reduction of the residual steepest, the 
base learner is constructed in the “steepest-descent” direction, 

( )mg x , which is an inverse direction of the gradient of 

( , ( ))L y F x . That is, 
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mα  is the vector that makes ( ; )mh x α  approach along 

( )mg x , 
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   With the steepest-descent direction, m  is given by the line 
search as 

1
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(3). Updating the prediction function 

Finally, the base learner in the thm  iteration is obtained as 

1( ) ( ) ( ; )m m m mF F h x x x α .                                (13) 

To avoid over-fitting, the base learner is usually multiplied 
by a learning rate, ν, ranging from 0 to 1. That is, 

1( ) ( ) ( ; )m m m mF F h   x x x α .                           (14) 

In (14), a small ν means more iteration times, which results in 
more computation time, and ν→1 will lead to over-fitting in a 
faster learning process. The common value of ν is around 0.1, 
which is a trade-off between the prediction accuracy and the 
computational complexity. 

    Based on theoretical analysis mentioned above, a QoE 
prediction model for video streaming service is set up as 
illustrated in Fig. 2. The base learners (BLs) are in the form of 
regression trees. The input parameters of the GBDT-based QoE 
prediction model, { , , , , , , , }rPLR BR FR Res SS TI EB B , are end-to-

end packet loss rate from the network layer, the video bit rate, 
frame rate and resolution from the application layer, the screen 
size from UE, and the content features from videos. More 
special, video content features are derived through the “feature 
extraction” module. 

In the GBDT-based QoE prediction model, there are two 
processes, namely training process and predicting process, 
represented by the dashed line and solid line in Fig. 2, 
respectively. In the training process, objective cross-layer 
parameters in combination with subjective MOS values are 
used to train M base learners with good generalization ability. 
In the predicting process, only objective parameters are 
available, and the predicted QoE values are obtained from the 
well-trained model. 

 

Figure 2.  The GBDT-based QoE prediction model 

C. Validation of the proposed model 

For validation, we choose 6 source video clips ranging from 
slight movements to rapid movements in database libraries [15] 
and [16], including akiyo, mother-daughter, foreman, city, 
soccer and ice. These raw videos are in YUV (4:2:0) format 
with a length of 8~12s. 

First, they are encoded with H.264/AVC (MPEG-4 Part 10) 
format, where the group of pictures (GOP) pattern 
IBBPBBPBB is adopted. The encoded H.264 bit-streams have 
different resolutions (QCIF and CIF), bit rates 
(32kbps~1Mbps) and frame rates (10, 15, and 30fps). 



Second, these H.264 bit-streams are transmitted through 
LTE network simulated under NS2 platform as shown in Fig. 
3. The evaluation model consists of a video streaming server, 
a router, aGW standing for network elements in evolved 
packet core, an eNodeB (eNB) and a fixed UE. UE connects to 
eNB through wireless link with DLAirQueue for downlink 
and ULAirQueue for uplink, which are implemented to 
simulate the air interface in LTE [17]. 

 
Figure 3.  LTE network topology 

The simulated transmission process is based on the Evalvid 
module modified by C.-H. Ke for NS2 [18]. The radio channel 
is the connection bottleneck with burst packet loss rate 
modeled with 2-state Markov process [19]. The simulation 
parameters are given in Table I. 

TABLE I.  SIMULATION PARAMETERS 

Parameters  Value 
Bandwidth and delay (server-aGW) 100Mbps, 10ms 
Bandwidth and delay (aGW-eNB) 10Mbps, 2ms 
Downlink bit rate and delay 2Mbps, 5ms 
Uplink bit rate and delay 512Kbps, 10ms 
Maximum packet size 1000bytes 
UDP header size 8bytes 
IP header size 20bytes 
Packet loss rate 0~20% 

     
After transmission, the degraded videos are available at the 

UE side. We emulate a larger screen size (iPad) and a smaller 
screen size (iPhone) with changeable video playback windows. 
Finally, we get about 800 decoded videos with varying degree 
of damage. Since there is a lack of testers to rate such a large 
dataset, video quality is measured by average PSNR and 
converts to MOS value from Evalvid-RA [20]. 

From the degraded videos, 80% data are randomly chosen 
to train the GBDT-based QoE prediction model, and the rest 
data are used to evaluate the performance of the model. We 
construct 100 base learners to make a 4-fold cross validation 
and compare the prediction results with the G.1070 QoE 
model, the results are shown in Fig. 4. 

From Fig. 4, we observe that the points of GBDT-based 
QoE model are centered around the diagonal line, which 
means that predicted MOS values are close to objective MOS 
values. This benefits from comprehensive input parameters 
and assembled regression tree models. Since G.1070 QoE 
model only considers the impact of packet loss rate and 
encoding compression, the predicted MOS values give a larger 
deviation to objective MOS values. Another reason is that 
G.1070 QoE model is designed for video telephone service, 
and is not suitable for video streaming service well. 
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Figure 4.  The performance comparision of two QoE prediction models 

Table II shows the performance comparison between two 
models, in terms of the root mean squared error (RMSE) and 
Pearson correlation coefficient. From Table II, we can see that 
the prediction result of our proposed GBDT-based QoE model 
is more accurate with a lower RMSE and a higher Pearson 
correlation coefficient. 

TABLE II.  COMPARISON OF TWO QOE PREDICTION MODELS 

Model RMSE Pearson Coefficient 

GBDT-QoE 0.323468 0.829127 

G.1070 0.673824 0.693691 

III. QOE-DRIVEN QUALITY ADAPTATION SCHEME 

In this section, we present an application of the GBDT-
based QoE prediction model in a window-based bit rate 
adaptation scheme implemented at the video streaming server. 

A. System model 

As we know, compared with other services, such as voice, 
best effort service and IPTV, video streams increase the data 
traffic significantly when transmitted in wireless networks. If 
the load of traffic is high enough, the network will become 
congested and some packets will be discarded, and 
transmission delay will also increase. In this case, the video 
quality continues to deteriorate and the QoE will become 
increasingly worse without congestion control. Hence, a 



quality adaptation mechanism is necessary to help control the 
congestion and maintain an adequate QoE value. 

Here, we propose a bit rate adaptation scheme based on 
estimated QoE value and the feedback congestion information 
from UE to improve the user experience, which is also 
implemented at the video streaming server. The system 
architecture is illustrated in Fig. 5. 

 
Figure 5.   The system architecture 

By measuring QoE value at the server, the system monitors 
user experience more efficiently and reliefs the computation 
burden from UE compared to the method in [13]. 

B. Bit rate adaption strategy 

Since we mainly focus on bit rate adaptation strategy in this 
work, it is assumed that the video resolution and the screen 
size of UE is adapted well, and the video frame rate is fixed. 
Hence, in the view of bit rate adapation, the reasons for QoE 
degradation are mainly two aspects. First, the encoding bit rate 
is too low so that wireless resource is wasted if the channel 
condition is good. Second, the network is under congestion, 
and video packets are discarded from the interface queue, so 
the video quality will continue to deteriorate if the encoding 
bit rate is not adjusted. 

The proposed bit rate adaptor, as shown in Fig. 5, is 
controlled by two parameters, namely the estimated MOS 
value and the congestion indicator (CI) during the nth period. 
The congestion indicator is measured by PLR, where CI=0 
means that the network is in a good state (PLR≤0.1%) and 
CI=1 means that the network is in a congestion state 
(PLR>0.1%). The output of the bit rate adaptor is the encoding 
bit rate for the next period, the input of a transcoder. 

The encoding bit rate is partitioned into four levels, level=0, 
1, 2 and 3 corresponding to low, medium, high and excellent 
bit rates, respectively. In the first adaptation period, the initial 
bit rate is medium in order to get a small access delay. Then, 
at the beginning of the (n+1)th transcoding period, the 
estimated QoE value during the nth period, MOSn, is obtained 
from the GBDT-based QoE prediction model. If MOSn≥MOSth, 
no adapation is performed. Since frequent adaptation is 
annoying to viewers, MOSth can be set to 3.5 according to [13]. 
If MOSn<MOSth, which means user experience is under a 
satisfied level, the bit rate adaptation should be taken. 

To avoid bit rate fluctuation, we adopt a sliding window 
mechanism with a length of two periods to observe the 

congestion indicators, CIn-1 and CIn, during the (n-1)th period 
and the nth period. Because the state of the wireless channel is 
time-varying, long observation time is not necessary. Here, 
there are four cases, where 1nlevel  , nlevel  and 1nlevel   

represent the bit rate class during the (n-1)th, nth, (n+1)th 
period. 

Case 1: 1 0nCI   and 0nCI  . It indicates that the network 

is in a good state during the past two periods. In this case, 
since QoE degradation results from insufficient bit rate, the 
adjusted bit rate is 1 1min{min{ , } 1,4}n n nlevel level level   . 

Case 2: 1 0nCI    and 1nCI  . It indicates that the network 

condition begins to decrease. In this case, the bit rate should 
be reduced to alleviate the congestion, and then 

1 1max{min{ , } 1,0}n n nlevel level level   . 

Case 3: 1 1nCI    and 0nCI  . It indicates that the network 

has been recovered from a congestion state. Hence, the bit rate 
will not to be changed, and 1ln nleve level  . 

Case 4: 1 1nCI    and 1nCI  . It indicates the network is in 

a serious congestion. Hence, the bit rate should be reduced 
significantly, and 1 1max{min{ , } 2,0}n n nlevel level level   . 

The principle of the bit rate adaptation scheme is to 
gradually increase the bit rate when the network is in a good 
state, and quickly reduce the bit rate when the network is in a 
congestion state. Based on our proposed bit rate adaptation 
scheme, a timely bit rate adjustment can be executed at the 
video streaming server when the QoE prediction model reports 
an unsatisfied MOS value. 

C. Performance evaluation and analysis 

In this subsection, we evaluate the performance of the 
proposed bit rate adaptation scheme. The foreman video with 
a length of 300 frames is chosen since it includes both fast 
movements and slight movements. Then, the source video is 
encoded with a CIF resolution and a constant frame rate 
(30fps). The transmission topology is shown in Fig. 3, and the 
downlink bandwidth is changeable in order to emulate 
different wireless link conditions. The bit rate switching is 
simulated in Evalvid-RA, and the adaptation period is set to be 
a GOP size. Four encoding levels are 94Kbps, 255Kbps, 
516Kbps and 912Kbps, representing the low, medium, high 
and excellent class in bit rate adaptation scheme, respectively. 

Fig. 6 shows the PSNR of every frame encoded with three 
constant bit rates and an adaptive bit rate with different 
downlink bandwidth, where wireless downlink bandwidth is 
512kbps, 768kbps and 1500kbps for Figs. (a), (b) and (c), 
respectively. From these figures, we observe that, when 
wireless downlink bandwidth is small, the PSNR of video 
encoded with low constant bit rate, such as BR=102Kbps, is 
more stable than that of encoded with high constant bit rates 
and adaptive bit rate. When wireless downlink bandwidth 
increases, the PSNR of video encoded with high constant bit 
rates, such as BR=364Kbps and BR=688Kbps, will become 
stable. The reason for this phenomenon is that, when the 



wireless downlink bandwidth is small, video encoded with 
lower constant bit rate will not result in network congestion, 
while video encoded with higher constant bit rate, 
BR=688Kbps, will result in serious packet loss and lead to the 
worst performance due to a large data traffic. However, for  
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(a) wireless link bandwidth=512Kbps 
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(b) wireless link bandwidth=768Kbps 
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(c) wireless link bandwidth=1500Kbps 

Figure 6.  The PSNR of every frame with constant bit rates and an 
adaptive bit rate 

our proposed bit rate adaptation scheme, the video quality 
always remains at a relatively high average PSNR due to 
effective QoE prediction model and the bit rate adjustment 
strategy although the bit-stream is initialized with medium 
encoding bit rate. 

Fig. 7 shows the same reconstructed frame encoded with 
different bit rates, where the wireless downlink bandwidth is 
768kbps. From Fig. 7, the reconstructed frame in Fig. 7(a) is 
blurry due to a low bit rate of 102Kbps, and the reconstructed 
frame in Fig. 7(c) with a high bit rate of 688Kbps is disturbed 
by the packet loss. The reconstructed frames in Figs. 7(b) and 
7(d) remain at an acceptable level encoded with 364Kbps and 
an adaptive bit rate with PSNR of 33.45dB and 34.53dB, 
respectively. 

   
(a) BR=102Kbps                          (b) BR=364Kbps 

   
(c) BR=688Kbps                        (d) adaptive bit rate 

Figure 7.  The same reconstructed frame with different bit rates 

Fig. 8 shows the comparison of average objective MOS 
between constant bit rates and adaptive bit rate when wireless 
downlink bandwidth is 512Kbps, 768Kbps and 1.5Mbps, 
respectively. From Fig. 8, we observe that average objective 
MOS of video encoded with adaptive bit rate is larger than 
that of encoded with constant bit rates for three different 
conditions of wireless downlink bandwidth. And the bit rate 
adaptation scheme obtains objective MOS of 3.02 under a low 
bandwidth and 4.22 under a high bandwidth. The reason for 
this phenomenon is that the encoding bit rate is adjusted to 
avoid or alleviate network congestion, and achieve higher 
bandwidth utilization. Hence, QoE is improved. 

IV. CONCLUSIONS 

QoE is a comprehensive indicator to measure the 
performance of end-to-end systems. In this paper, we 
investigate the QoE prediction model and the video quality 
improvement scheme based on the proposed QoE prediction 
model. 
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Figure 8.  The comparison of objective MOS under different values of 
wireless downlink bandwidth 

The contributions are twofold. First, an end-to-end QoE 
prediction model based on GBDT machine is proposed for 
video streaming service in LTE networks. In proposed QoE 
prediction model, cross-layer parameters affecting the value of 
predicted QoE are taken into consideration. Performance 
evaluation results show that the prediction performance of our 
proposed GBDT-based QoE model outperforms the G.1070 
QoE model with a smaller RMSE value and a higher Pearson 
correlation coefficient. Second, we develop a QoE-driven bit 
rate adaptation system to improve user experience. The bit rate 
adaptation scheme is based on the estimated QoE value and 
the feedback network congestion state. Simulation results 
show that our proposed bit rate adaptation scheme, consisting 
of a bit rate adaptation strategy and a sliding window 
mechanism with a length of two periods to observe the 
congestion indicator, improves the user experience efficiently 
compared to the scheme with constant bit rates. 
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