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Abstract—The streaming content that we choose to watch can
reveal much about our thoughts, opinions, and interests. An
adversary capable of determining what users watch therefore
presents a significant privacy threat. In this paper, we present
and evaluate the first fingerprinting attack on Twitch that allows
viewers of individual live streams to be identified despite the
traffic being encrypted. The attack targets the traffic patterns
associated with chat messages associated with each stream. Our
results show that high accuracy can be achieved by eavesdropping
only for a short time (e.g., 90 seconds) and that the accuracy can
be increased even further by interacting with the stream. We also
take a closer look at how the accuracy and activity level differ
between different Twitch channels and provide insights into the
accuracy that attackers using different strategies for selecting
target channels may have. Finally, we study countermeasures to
protect against such attacks and demonstrate that the naive use of
VPN is not enough. We instead present countermeasures altering
packet timing and sizes. Our large-scale evaluation of different
countermeasures provides important insights that help both the
streaming providers and users better protect their privacy.

Index Terms—Fingerprinting attack, Twitch, YouTube Live,
Side-channel attack, Encrypted traffic analysis, Live streaming

I. INTRODUCTION

Live video streaming is already responsible for a major
part of modern internet activity and is becoming increasingly
popular. With these services, viewers can tune in and watch
any stream created by one of many live streamers. Two of the
most popular live streaming services are Twitch and YouTube
Live; both with millions of live streamers. For example, Twitch
has 8 million unique streamers each month that (combined)
attract over 31 million daily viewers [1]. While the platforms
also serve videos on-demand, many users prefer to watch a
live stream as this offers them first-viewer advantage and they
can interact with the streamer and other viewers [2].

Not all streams are the same and the streams we choose
to watch can therefore reveal information about our thoughts,
opinions, and interests. Online streaming services also con-
tain many controversial streams, including streams expressing
strong opinions or political views. Being able to identify view-
ers of these streams can reveal privacy-sensitive information
about individuals. For example, a government may perform
mass surveillance to identify potential protesters or users with
specific opinions. Or, advertisers and political campaigns may
try to identify people with particular interests or political
biases to target with advertisements or (mis)information [3].

To protect users’ privacy, the popular streaming services
(and most other websites [4], [5]) today use HTTPS. The
use of HTTPS ensures end-to-end encryption and prevents

somebody monitoring the internet traffic to view the HTTP
requests and data delivered in clear text. However, as we show
here, the use of HTTPS does not prevent an adversary from
determining what streams a user is watching.

In this paper, we present the first fingerprinting attack
against Twitch and live streaming services. Similar to finger-
printing attacks against other services, the attacker is assumed
to passively monitor the encrypted network traffic of one or
more users.1 By creating fingerprints for streams of interest
and comparing these with the observed traffic patterns, our at-
tack can successfully identify what streams a user is watching.
The attack is also the first fingerprinting attack leveraging the
chat messages of live streaming services as a side channel.
The use of the chat streams allows us to (1) interact with the
streams and (2) both passively and actively fingerprint Twitch
streams (and other live streaming services) even though their
video content is delivered and encoded using Constant Bit Rate
(CBR) encoding [8]. This provides us with a unique advantage
over previous fingerprinting research of video streams [9]–
[12], which have focused on identifying on-demand videos
based on their Variable Bit Rate (VBR) encoding.

While also the chat messages are encrypted, our results
show that there is sufficient diversity in the traffic patterns
generated by these chat streams to identify what streams
different viewers watch with high accuracy. In particular, we
use extensive measurement-based experiments (§II) to show
that the use of two features that are easily extracted from
the packet sequences associated with the chat messages (i.e.,
the packet sizes and their relative timings) are enough to
successfully distinguish between different live streams. Here,
we show that users can be identified on the fly without the
need to break any encryption, target any security flaws, or
cooperate with a streaming provider. An adversary only needs
to monitor the victim users’ connections and some candidate
streams that it wants to determine if the users are watching.

Our experiments show that high overall accuracy can be
achieved through passive monitoring (§III) but that the accu-
racy may be somewhat lower for channels with less activity
(§IV). For these streams, we demonstrate how much the
attacker can improve its accuracy by adding messages of
different sizes (§IV). We also show that the attack still is
possible when multiple streams are delivered over the same
connection and when the network conditions are poor (§III).

1For example, an adversary can wiretap the user’s connections, sniff
wireless packets over the air, or compromise/collaborate with an ISP. As
seen in the past [6], [7], governments can also force ISPs to collaborate by
establishing new laws and regulations.978-3-903176-47-8 © 2022 IFIP
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In our analysis, we focus on Twitch streams. It is the most
popular live streaming service, offer more streams than other
live streaming services, and its API allows us to easily scale
our data collection to a large number of streams. We have also
validated that the methodology works on YouTube Live.

The large number of channels and high diversity in activity
level observed on Twitch (§IV) and other live streaming
services present some important tradeoffs regarding which and
how many channels an adversary may monitor. To provide
insights into the accuracy that attackers using different strate-
gies for selecting target channels may have, we study how
the accuracy and activity level differ between different Twitch
channels and compare some baseline strategies (§IV).

Finally, we study countermeasures and their effectiveness
(§V). While the use of a VPN decreases the classification
accuracy, the reduction is far from large enough to mitigate the
attack. With the streaming providers themselves having very
limited incentive to provide any countermeasures to obfuscate
traffic patterns (instead this would result in a bandwidth
and latency costs for them), we therefore present a novel
client-based fingerprinting timing countermeasure, and a VPN-
based countermeasure with padding to provide users further
protection when watching video streams with chat messaging
functionalities. These countermeasures are demonstrated to be
effective, especially when used in combination.

Outline: We first present our attack and evaluation frame-
work (§II), and a measurement-based evaluation of the attack
(§III). Next, we study the impact of the channel popularity
(§IV), present and evaluate countermeasures (§V), and discuss
related work (§VI). Finally, conclusions are presented (§VII).

II. ATTACK AND EVALUATION FRAMEWORK

Our framework to demonstrate and evaluate the effective-
ness of the fingerprinting attack is split into two tracks: one
for handling and creating Ground Truth (GT) fingerprints,
and one for Eavesdropped (ED) fingerprints. The GT finger-
prints represent those created over the adversary’s network for
comparison and include metadata such as labels specifying
the associated stream. In contrast, the ED fingerprints are
based solely on the encrypted network traffic delivered to
the user being identified/attacked.2 Figure 1 shows our two
tracks split into four parts: (1) Data collection, (2) Fingerprint

2For the purpose of evaluation – and evaluation only – we also label the
ED fingerprints. In practice, an adversary can only label GT fingerprints.
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Fig. 2. Data collection overview

creation, (3) Fingerprint grouping, and (4) Fingerprint com-
parison/identification. We next describe each part.

Data collection: To classify a user’s live stream, we first
collect, extract, and label encrypted network traces. Figure 2
shows an overview of our data collection. We use a local
server (Figure 2(a)) to crawl n live streams from an adversary-
controlled browser and collect data for GT fingerprints. In
parallel, we crawl the same n streams on n separate cloud
servers and networks (Figure 2(b)) to represent streams from
a client-controlled browser. Due to our bandwidth and server
limitations, we collect data on four different streams in parallel
(n = 4). In practice, an adversary (e.g., government or ISP)
can easily circumvent these limitations, listen to many more
streams, and stay updated on the current streams.

Although Twitch performs load balancing and can send chat
messages for two users from separate servers, we isolate the
messages using IP addresses and reverse DNS lookup. On
Twitch, we note that (1) video and chat data are delivered over
separate TCP sessions from different IP addresses. (2) All IP
addresses delivering chat messages resolve to an AWS Com-
pute server in region us-west-2 (regardless of our geographical
location), shown by the resolved hostname ec2-[ip].us-west-
2.compute.amazonaws.com. (3) Clients make requests using
the Internet Relay Chat (IRC) and WebSocket Secure (wss)
protocols to URL irc-ws.chat.twitch.tv. (4) By periodically
resolving the request URL, we are able to obtain a complete
list of IP addresses delivering Twitch chat messages. This list
is then used to separate the session related to the chat. As
discussed later, one can also use the packet size distribution
when IP addresses are not available (e.g., due to VPN).

On YouTube Live, we again observe different TCP sessions
and IP addresses being used for chat and video data, where
HTTPS is used to periodically poll for new chat messages. We
were not able to find a clear pattern using DNS, but instead
obtained the list of currently used chat servers by periodically
crawling live streams and observing IP addresses.

Our framework uses Selenium [13] for crawling, network
namespaces [14] to isolate traffic on our servers, and the
Twitch API [15] to obtain streamers and their metadata (e.g.,
number of viewers). We use tcpdump [16] to capture packets
forwarded between the server’s network interface (eth0) and
the virtual interface (v1, ..., vn) of the network namespace.

Based on the stream popularity (discussed in §IV), our
crawling process begins with obtaining all online streams with
100 or more viewers. We exclude the unpopular streams (with



less than 100 viewers) to avoid crawling the long tail and
instead focus on the more popular streams as these attract most
of the viewers. After crawling through the list (approximately
1,500 to 3,500 streams on Twitch depending on time), we
filter those streams containing no messages during our data
collection. We collect 90 and 100 seconds of chat stream data
for each ED and GT, respectively. As we later discuss, we
collect 10 seconds less data for ED fingerprints to consider
potential offset. To ensure that the ED window is within the
GT window, we start the ED data collection approximately
5 seconds after the corresponding GT data collection. We
repeat the process until a total of 10,000 successful fingerprint
pairs (i.e., 20,000 fingerprints) have been created.3 Over our
eight experiments, we collected in total 140,000 fingerprints,
resulting in 3,700 hours of labeled streaming traffic (each
fingerprint is on average 95 seconds long).

Fingerprint creation: Using the collected traffic traces,
we create a fingerprint for each user and stream. Figure 3
shows example traces for Twitch chat and YouTube Live
chat. We see that two users watching the same stream have
similar network patterns, while the patterns differ for users
on different streams. Chat messages are bundled and sent
every five seconds for YouTube Live, while they are sent
immediately on Twitch. Therefore, when creating fingerprints,
we choose our sampling rate as 1 and 5 seconds for Twitch and
YouTube Live, respectively. A fingerprint is simply defined as
the number of bytes observed within each such interval for
some time period (e.g., 90 seconds) and their respective order.

Fingerprint grouping: To allow large-scale evaluation, we
store the fingerprints and group them before performing pair-
wise comparisons. In our default case, we group the created
fingerprints into ten buckets of 1,000 pairs each, and then move
half of the ED fingerprints to another bucket. As a result,
each bucket contains 1,000 ED and 1,000 GT fingerprints, out
of which 500 are matching pairs. The choice of bucket size
did not impact the average F1-score, although a larger bucket
size decreased the standard deviation. For example, with our
default settings (described later), bucket sizes of 100, 500, and
1,000 all resulted in an F1-score of 0.97 but with standard
deviations of 0.0241, 0.0090, and 0.0077, respectively. The
purpose of the bucketing is to obtain a mix of matching and
unmatching comparisons, similar to what is seen in practice,
and to allow confidence calculation over ten sample sets.

Fingerprint comparison/identification: Before describing
our fingerprint identification algorithm, let us first define the
distance between two fingerprints ED and GT. Here, we use a
variation of the edit distance [17] in which we allow insertion,
deletion, and substitutions of data volumes in the fingerprint
samples EDi and GTi, where 0 ≤ i < m is the sample
index (m=90 for ED; m=100 for GT ). Our algorithm also
accounts for the two samples being offset by some distance
(discussed later) and spill between individual samples due to

3We note two exceptions. (1) For the multistream experiment, we collect
approximately 5,000 ED and 10,000 GT as an ED fingerprint can contain
two streams combined. (2) For our campus-based VPN, we collect only 2,000
GT/ED pairs due to time and rate limitations.

S1-U1
S1-U2
S2-U1

(a) Twitch. Distances: 0.1, 63, 63

S1-U1
S1-U2
S2-U1

(b) YouTube. Distances: 0.8, 8, 7

Fig. 3. Example network traces for three clients on Twitch and YouTube
Live chat. The downlink throughput shows that users (U#) watching the same
stream (S#) exhibit similar network patterns. Edit distances calculated for
S1-U1 to S1-U2, S1-U1 to S2-U1, and S1-U2 to S2-U1, respectively.

jitter. (An example of spill can be observed in Figure 3(b)
between S1-U1 and S1-U2 in the 3rd and 4th peak.) For the
spill, we also note that the jitter of two users typically do not
differ by more than half a second. This ensures that spill at
most happens between neighboring sample points. To illustrate
this, we generate 10,000 chat messages on our stream and
observe the delivery times to two geographically separated
users. Figure 4 shows the empirical Cumulative Distribution
Function (CDF) for the differences in message delivery times.
As shown, 99% of all messages have a delivery time difference
of less than 0.2 seconds and 99.9% less than 0.4 seconds.

To account for spill between data samples, we define three
alternative cost distances for each sample. In the case there is
no spill we denote the difference in data volume between two
fingerprint samples Mi = |GTi −EDi|. For spills to the left,
we use a cost term Li = |(GTi−1 +GTi)− (EDi−1 +EDi)|
and for spills to the right we use a cost term Ri = |(GTi +
GTi+1)− (EDi+EDi+1)|. We then calculate the cost Ci for
the corresponding edit distance operation as follows:

Ci =


Mi

GTi
× NED

AED
, if Mi ≤ min(Li, Ri)

Li

(GTi−1+GTi)/2
× NED

AED
, if Li ≤ min(Mi, Ri)

Ri

(GTi+GTi+1)/2
× NED

AED
, if Ri ≤ min(Mi, Li),

where 10 ≤ NED ≤ 90 is the length of ED, 1 ≤ AED ≤ 90
is the activity (number of non-zero samples) in ED, and
AED≤NED. The scaling NED

AED
is used to give a fair compari-

son between fingerprints of different activity; the less activity
in the fingerprint, the more important we consider each data
volume. Again, the edit distance of two fingerprints is defined
as the combined cost of transforming one fingerprint to the
other, with Ci being the cost of transformation operation i.
The use of insertion and deletion operations in the edit distance
allows us to account for network jitter and change of delays.

Now, consider the potential offset 0 ≤ j ≤ 10. Even with
live streaming, users can have considerably different delivery
times of the “live” streams. Using video stats on Twitch and
the Stats for Nerds feature on YouTube, we find that the live
latency is usually below 10 and 30 seconds, respectively. The
chat latency can also be further offset from the video stream.
Therefore, when comparing two fingerprints on Twitch, we
use a sliding window between the GT and ED stream, and
calculate the edit distance for each candidate offset (up to 10
seconds in our experiments, as per construction of ED and
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Fig. 5. Performance results for different eavesdropped length NED (seconds)
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GT fingerprints). The final distance between two fingerprints
is the lowest possible edit distance obtained for any offset.

Figure 3 shows example distances between three users (both
on Twitch and YouTube Live). Here, the distance from two
users watching the same stream (i.e., S1-U1 vs. S1-U2) is
significantly smaller compared to for two users on different
streams (i.e., S1-U1 vs. S2-U1 and S1-U2 vs. S2-U1).

Having explained how we calculate the distance between
any pair of fingerprints (in practice simultaneously collected),
we are now ready to explain the fingerprint identification
step. For every bucket, we calculate the distance of each ED
fingerprint to all GT fingerprints in that bucket. For a given
ED, this gives us a vector of distances d = {d1, d2, ...d1000},
where d1 is the shortest distance.

Using our vector of distances, we next classify the ED
fingerprint using two classifiers: relative based (d2/d1 > µ)
and absolute based (d1 < λ). If the value is above/below a
given threshold, we classify the ED fingerprint as a match
with the GT fingerprint of distance d1. For example, an ED
fingerprint with distances of d = {20, 180, 185, ...} to other
GT fingerprints, and threshold examples of µ = 2.00, λ = 10,
we consider ED to be a match with only the relative-based
classifier (d2d1 = 180

20 > 2.00 = µ, but d1 = 20 ≮ 10 = λ).

III. PERFORMANCE RESULTS

Relative vs. absolute classifier: As expected, the relative
classifier performs better than the absolute classifier. This is
demonstrated in Figure 5, where we show ROC curves for
both classifiers for different eavesdropping durations. Here,
each curve shows the tradeoff between the true positive rate
(TPR) and the false positive rate (FPR). For the relative
classifier, a greater threshold value µ results in a smaller TPR
and FPR, while a greater threshold value λ for the absolute
classifier leads to a larger TPR but at the cost of a larger FPR.
Although the differences decrease between the two classifiers
as the eavesdropping duration increases, the relative classifier
consistently performs better. The differences are also visible
when calculating the F1 scores. For example, for the 90-
seconds duration, we obtain F1-scores of 0.966 and 0.953
when using the best threshold values of µ = 2.0 and λ = 3100,
respectively. Due to its superior performance, we focus on the
results with the relative classifier in the remainder of the paper.

Diminishing improvements: From Figure 5(a) we also
observe diminishing improvements as the durations increase.

This suggests that most of the advantages can be achieved even
with short traces (e.g., 60-90 seconds in duration). In addition
to allowing classification of victims only watching the stream
for a short time, this allows an adversary to improve their
confidence by collecting several GT fingerprints for victims
watching the same stream for a longer time. Finally, we note
that our distance calculation is much faster for shorter traces.

Classification of low activity streams: While an attacker
passively eavesdropping for 90 seconds can achieve an F1-
score up to 0.966, we notice upon closer inspection of the
failed classifications that these streams in most cases see little
chat activity (e.g., less than five messages in 90 seconds).
These streams are difficult to classify since there often are
several other chat streams with low activity to which we also
observe small distances (especially when taking the minimum
distance over several offsets). To address this, an adversary can
interact with the stream and actively generate messages as the
streams are public. This will lead to specific traffic patterns
for all users watching the stream. In practice, an adversary
can monitor the streams of interest and adapt the amount of
generated traffic needed to achieve a desired attack accuracy.

While we look closer at the impact of inserting messages
in §IV, we present some initial experiments here in which we
add 1-to-3 messages of lengths matching those observed on
Twitch. Figure 6 shows the overall message size distribution
we observed on Twitch (across users and messages). In our
case, we could generate messages between 368 to 867 bytes,
as messages are not compressed and consist of between 1 to
500 characters (maximum allowed size) plus some bytes of
user-specific metadata. Using a discrete uniform distribution,
we randomly generate (1) a packet of size 368 to 867 bytes,
and (2) a data volume index. We then add the generated packet
size to the corresponding index before identifying the stream.
In practice, an adversary can use the packet size distribution to
further distinguish from other sizes and use a different weight
for these packets/markers when identifying the stream.

Figure 7 shows the ROC curve for these experiments and
note that we increase the F1 score from 0.966 to 0.974 when
adding three messages (labeled G3) to our default case. In
§IV we show that the low activity streams (the majority) in
isolation see much greater improvements.

Multiple streams: As one user could be watching several
streams, or several users in the same household or organization
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Fig. 7. Performance results when generating/writing 1-3 messages in the chat
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can share IP addresses and network paths, an adversary
must be able to distinguish and separate different connections
delivered over the same infrastructure. To cover this scenario,
we modified the client-side to include two streams and eaves-
dropped on the network path containing the mix of these
streams. We consider a true positive if one of the two streams
is identified. Figure 8 shows (1) the ROC curve for the default
case (length 90 in Figure 5(a)) with its standard deviation,
and (2) the default case but with two streamers over the same
network path. The results show that the adversary can separate
and identify both eavesdropped streams and achieve similar
scores compared to the case with only one stream on the path
(e.g., the values are well within the standard deviations).

Network conditions: While our experiments are conducted
under good network conditions (high bandwidth, low latency),
we argue that the results are more broadly applicable. An
attacker (e.g., the ISP) with access to the network traffic
has knowledge of the network conditions and can quickly
adapt the attack to fit the current environment. For example,
packet losses, retransmissions, and congestion can be detected
and considered when creating/comparing fingerprints. Further-
more, as users watching a stream can fulfill the bandwidth
requirements for video streaming (orders of MB/s), we expect
these users to have sufficient bandwidth and network condi-
tions to receive chat messages (orders of kB/s).

The main metric of interest is instead the end-to-end delay.
To measure the effects of a high latency, we increase the
connection RTT using tc. Here, we add normally distributed
packet delays with a mean of 200ms and a standard devi-
ation of 20ms. Figure 9 shows the results. Here, the high-
delay connections see somewhat worse performance. The main
reason for this is the high degree of packet reordering and
retransmissions that occur due to latency variations. Despite
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Fig. 10. Distribution of Twitch viewers per channel

poor network conditions, we can still achieve a high F1 score
(modest decrease from 0.966 to 0.960 in default case).

Cloud provider: Our performance results do not appear to
depend on the choice of cloud provider on which we place
the adversary. While our primary data collection is performed
from a research-based cloud service (WARA-Common), we
validated the performance on both AWS and Microsoft Azure.
In both cases did we receive scores well within the standard
deviations. Our tested cloud instances had a similar capacity
and were geographically separated in Europe.

IV. STREAM POPULARITY AND CHANNEL SELECTION

We next look closer at the impact of stream popularity and
channel selection strategies used by the adversary.

Channel popularity: We first present a basic characteriza-
tion of the number of viewers per Twitch channel. Here, we
include data for all channels observed on Nov. 7, 2021 (rather
than only those that we monitored). Figure 10 shows (a) the
CDF and Complementary CDF (CCDF), (b) the concentration
plot, and (c) the rank plot of the distribution. The CCDF shows
that the distribution is heavy tailed, suggesting that a small
subset of the streams is responsible for the majority of the
viewers. The concentration plot confirms that the views per
channel indeed follows the Pareto principle, with the top-10%
streams being responsible for 90% of all viewers. Finally, the
straight-line behavior seen in the tail of the rank-plot shows
that the long tail of less popular streams is Zipf-like.

Impact of channel popularity: Figure 11 shows the F1-
scores obtained for streams of different popularity. Here, we
show results (with 95% confidence intervals) for both our
default case, using only passive measurements, and when also
inserting 1, 2, 4, or 8 additional messages during data collec-
tion of a fingerprint (labeled G1-G8). We see that the accuracy
of the streams with less than 200 viewers is significantly
lower than those with more viewers but that the accuracy is
significantly improved by inserting just a few extra messages.
Figure 12 shows the corresponding results when streams are
grouped based on activity level (defined as the number of
non-zero samples during data collection). Here, the F1-score
of a stream with five or fewer non-empty samples improve
from 0.90 to above 0.97 by adding only 2 messages, and to
above 0.99 by adding 8 messages. This clearly shows that a
resourceful adversary can target channels of any popularity.

We also note that the most popular streams can already
be classified with high accuracy without extra messages. An
adversary focusing on the most popular streams therefore does
not need to add messages and would easily catch most users.
For example, as extracted from actual viewer distributions
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TABLE I
TOTAL PERCENTAGE OF STREAMS AND VIEWERS ASSOCIATED WITH EACH

POPULARITY CATEGORY OF CHANNELS

Viewers per stream ≤ 200 201-500 501-1000 1001-5000 >5000
Streams (%) 98.24 0.91 0.35 0.41 0.09
Viewers (%) 22.77 8.59 7.48 26.78 34.38

(Figure 10) and summarized in Table I, the streams with more
than 1,000 viewers are responsible for 61% of the viewers
but only 0.5% of the streams. In contrast, the channels with
at most 200 viewers are responsible for 98% of the streams
but only 23% of the viewers. Clearly, an attacker targeting the
masses can focus on a few channels and do not need to add
extra messages, whereas an adversary targeting niche streams
may benefit more from interacting with the stream.

Relative ED to GT ratio: When first selecting the fraction
of EDs with a matching GT in our default experiments (i.e.,
50%), we considered the case of an adversary targeting the
most popular streams looking at random users. For example,
by creating GTs only for the streams with more than 1,000
users, we would expect 61% of the ED observations (made by
random users) to match one of the GTs. We note that the actual
number of unique EDs observed may still be much larger than
twice the number of GTs. In fact, if monitoring all clients, the
number of unique EDs would be 200 times larger than the
number of GTs. Yet, an ED-to-GT ratio of close to 1 best
captures the performance we would see for such adversary.

An adversary may of course select to create GTs for other
subsets of channels, collect more/less GTs, and/or target other
user groups than a random subset (e.g., it may have certain
subsets of people it expects are more/less likely to watch
certain channels). All these aspects may increase or decrease
the fraction of observed EDs for which the adversary has a
matching GT. To capture the impact of this, Figure 13 shows
the F1-score and accuracy when we vary the ratios of EDs
and GTs (for different number of EDs). Before discussing
the results, we first provide some examples for the two
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Fig. 13. Performance results with different ratios of ED and GT (µ = 2.0)

extremes. In the left-most cases (ED�GT), the attacker has
significant monitoring resources and is able to create GTs for
significantly more streams than it observes (and the adversary
will typically have created a matching GT). In contrast, in
the right-most case (ED�GT), an example attacker (e.g., ISP
or government) may performs large-scale surveillance on a
large, diverse/general group of users to identify who watch a
small subset of niche streams. While we observe the best F1-
score near a ratio 2, with F1-scores decreasing (and standard
deviations increasing) as the ratio increases, the accuracy is
high throughout (as we still do a good job identifying true
negatives when the ratio is large). These results suggest that the
attack is most successful when the attacker knows something
about its candidate pool of users (e.g., that a random user is
more likely to watch a popular stream or that a group of users
is more likely to watch certain niche content) but can still
achieve high accuracy also in other cases.

V. COUNTERMEASURE PERFORMANCE

We next present, deploy, and evaluate five countermeasures
against our fingerprinting attack. All countermeasures can
be deployed by any user and require no modification or
cooperation from streaming or network providers. The coun-
termeasures span from the use of VPNs to a novel technique
that uses TCP flags to modify packet timings and sizes.

A. Countermeasures

(1) Campus VPN and (2) OpenVPN: As a first coun-
termeasure, we tunnel the user’s traffic through a campus-
based off-the-shelf VPN, a service similar to what we expect
a regular user to use. Second, we deploy a VPN based on
OpenVPN on a geographically separated cloud server and
compare this to the off-the-shelf VPN. When extracting packet
sizes, we assume that an adversary is aware of the VPN being
deployed and deduct an approximate overhead per packet. For
our VPNs, we observe this overhead to be 82 and 76 bytes,
respectively. Due to the original IP address being hidden, we
are unable to separate TCP sessions delivered over a VPN. An
attacker can instead use the packet size distribution to extract
chat messages. As Twitch uses CBR, the video packet sizes
are fixed and can be deducted from the data volumes. Occa-
sionally, we must account for changes in streaming quality due
to DASH. However, the approach is affected by background
traffic. Interesting future work therefore includes evaluating
the effect of different amounts of background traffic.



(3) Client timing: Next, we alter the timing of packets
sent from Twitch’s server using a novel client-based counter-
measure based on the TCP receive window. By sending TCP
Zero Window packets to Twitch’s servers, we can control the
flow of incoming packets. Our client-based algorithm uses two
randomized parameters tz and tn for the number of seconds to
announce a zero and normal receive window size, respectively.
When a new packet is received from the server, a client sends
a TCP Zero Window acknowledgment packet to the server if
tn seconds have passed since the last zero window packet.
Following every zero window packet, the client sends a TCP
Window Update packet after tz seconds containing the normal
receive window size, notifying the server that the client is
ready to receive data. The server then sends a burst of packets
containing the data it has buffered during the silent period.

Figure 14 shows an example of the throughput varying
over time with and without deploying the client-side timing
countermeasure. Here, we deploy the client timing using tz=5
seconds and tn=2 seconds. During the silent period, where the
client announces a zero receive window size, we see that the
chat messages are buffered at the server to later be sent in a
burst when a normal window size is received. Since packets
can be in transit from the server when a client announces a
zero window, packets can still arrive during the silent period.

(4) OpenVPN + padding: As our client-based counter-
measure can only modify the packet timing, we study the
effectiveness of using padding on packets by tunneling the
traffic through our OpenVPN. Figure 15 shows an overview
of our padding countermeasure. Here, a client connects to a
video streaming server through a VPN server, and the full
path is encrypted with HTTPS. Using libnetfilter-queue [18] on
the VPN server, we append padding to packets carrying chat
messages to the client such that the packet reaches an MTU
of 1,500 bytes. On the client-side, the padding gets removed
when extracting the original packet from the VPN connection.

By using a VPN with padding, an adversary observing
packets between the VPN server and the client cannot use
packet sizes nor original transport headers as a feature to
distinguish between various chat messages. We note that the
VPN server ideally should be placed outside the adversary’s
region (e.g., another country), such that the traffic between the
VPN and video streaming server is not visible for an attacker.
For example, the VPN server could be hosted on the same
infrastructure as the video streaming server to minimize the
attack surface. In the case of Twitch, owned and hosted by
Amazon, AWS could hence be a good host.

(5) OpenVPN + padding + client timing: Finally, we
tunnel the client’s traffic through our OpenVPN and deploy
both the padding and the client-based timing countermeasure.

B. Example results

Figure 16 shows the performance results of our presented
countermeasures. As expected, our OpenVPN countermeasure
performs similar but slightly worse than the campus-based off-
the-shelf VPN. This is due to the OpenVPN being deployed
in a controlled environment with little noise and background

Fig. 14. Example of client-based tim-
ing countermeasure (tz = 5, tn = 2)
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Fig. 15. Overview of countermea-
sure using OpenVPN and padding

traffic. By using the campus-based VPN, the best F1-score
decreased from 0.966 to 0.810. For OpenVPN, we observe a
decrease to 0.826. While the use of VPN offers some small
protection, it is clear that users are still vulnerable to the attack.

For our client-based timing countermeasure, we present
example results using tz = 5, tn = 2. For an active stream,
the traffic will alternate between approximately 5 seconds of
silence and 2 seconds of transmission, with the beginning of
the transmission containing a burst of buffered packets. Here,
we see that the client-based countermeasure is more effective
than the VPNs, achieving a best F1-score of 0.637.

When deploying OpenVPN together with padding, the clas-
sification performs much worse, achieving an F1-score of only
0.152. When adding the client timing on top of OpenVPN and
padding, we eliminate both packet timing and size aspects. In
this case, the attack is almost entirely prevented.

In our evaluation, we assume an adversary that can observe
all packets associated with a connection. An alternative coun-
termeasure to those presented here is to reduce the amount of
traffic that can be observed from a vantage point. By routing
packets over multiple network paths (e.g., over different ASes)
we can limit the data an adversary can collect. Interesting fu-
ture work includes evaluating our approach when an adversary
can only create fingerprints using parts of the traffic.

C. Impact of timing parameters

Running the experiments needed for a single parameter
setting is very time consuming, as our evaluation methodology
requires 10,000 pairs of fingerprints to be collected for each
configuration. We therefore opted to use trace-driven simu-
lations when evaluating the effectiveness of our client-based
countermeasure together with other timing parameters. Here,
we used our dataset for the default case (90 seconds) and
the packet size distribution to simulate the number of bytes
in transit at each time. We evaluate our simulated model in
Figure 17, where we show results (with standard deviations)
for tz = 5, tn = 2 with both our real-world collected dataset
and the corresponding simulations. As shown, our simulation
model produces results well within the standard deviations.

Figure 18 shows the simulated results for other parameters.
As expected, a larger silence period (tz) decreases the accuracy
of the attack at the cost of the data freshness. We also note that
our default choice (tz = 5, tn = 2) provides relatively good
protection. However, as seen in Figure 16, the best protection
is to combine this with VPN and padding.
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D. Ethical considerations

Our experiments did not compromise the privacy of any
real-world viewers or streamers. Data were only collected on
public live streams. We did not perform the attack on any real
users, only our own streams. Finally, we only manipulated our
own chat streams when evaluating countermeasures.

VI. RELATED WORK

Website fingerprinting: Previous works have studied fin-
gerprinting attacks and encrypted traffic analysis in various
contexts. In website fingerprinting, an adversary tries to clas-
sify visited websites based on the encrypted traffic. Website
fingerprinting is a well-studied area, with various attacks [19]–
[22] and countermeasures [23]–[27] proposed throughout the
years. Recent advancements in machine learning have also led
to models utilizing various classification algorithms and deep
neural networks to analyze encrypted network traffic [28]–
[36]. While some of these approaches may be applicable on
Twitch as well, they are not designed for the live streaming or
live chat context but typically target (more) static webpages.

Video streaming: While some have studied live streaming
services and their performance [37], [38], others have proposed
frameworks to identify encrypted traffic on various streaming
platforms [9]–[12], [39]. Reed and Kranch [10] use TCP/IP
headers of HTTPS packets to identify streaming videos from
Netflix. Schuster et al. [11] leverage information leakage from
the VBR used with DASH to fingerprint and identify YouTube,
Netflix, Amazon, and Vimeo videos delivered over HTTPS.
Gu et al. [12] perform a similar study and utilize VBR to
fingerprint video streams. Li et al. [39] identify YouTube
video flows from encrypted traffic, but do not match these
and distinguish between videos. While many have studied
video streaming, none of these works focus on live streaming.
Furthermore, no prior work has performed fingerprinting on
Twitch videos. A possible reason is that Twitch uses CBR,
making the problem non-trivial. Here, we utilize a side-channel
(i.e., chat messages) to passively identify streams. In addition,
this allows us to interact with the stream and modify viewers
network traffic to create more distinct fingerprints.

Message fingerprinting: Previous works have focused on
identifying encrypted messages in the context of messaging
applications [40]–[43]. For example, Bahramali et al. [43]
study instant messaging applications and perform encrypted

traffic analysis on chat messages to identify administrators
and group members. The authors also study potential coun-
termeasures for altering packet timing and sizes. While their
work is similar to ours, they consider a different problem,
address different challenges, and we note several fundamental
differences between chat messages of video streaming and
instant messaging applications. For example, chat messages of
live video streaming such as Twitch are smaller and occur in
higher frequency. While a message flow on Twitch can consist
of several messages per second, the messages on a messaging
application are typically more spread out and can consist of
larger transmissions (e.g., images, video, and other files).

Other fingerprinting areas: Fingerprinting attacks have
also been applied to many other areas, including to iden-
tify voice traffic [44]–[46], mobile applications [47], [48],
devices [49], user actions [50], and LTE traffic [51].

While many previous works have studied fingerprinting
attacks and encrypted traffic analysis in various contexts, we
are the first to present and evaluate such attack on chat
messages of live video streaming.

VII. CONCLUSION

We have presented and evaluated the first fingerprinting
attack on Twitch’s live streaming service. Our attack uses the
encrypted chat messages as a side channel and allows us to
identify what streams a user is watching with high accuracy
despite the video stream being encrypted and Twitch using
CBR. To evaluate the attack, we used large-scale measurement
experiments capturing 140,000 fingerprints (3,700 hours of
labeled data). Our results show that high accuracy can be
achieved by passively eavesdropping only for a short time
(e.g., 90 seconds) and that the accuracy can be increased
even further by actively introducing additional messages into
streams with few active viewers. Implications of the stream
popularity distributions and different adversarial attacks are
discussed using the actual stream popularity distribution ob-
served on Twitch. Finally, we have presented and evaluated
countermeasures, with results suggesting that a client can best
protect itself through a combination of countermeasures (e.g.,
VPN with padding and client-side manipulation of packet
timings). Our findings demonstrate that the naive use of end-
to-end encryption (e.g., via HTTPS or VPNs) is not sufficient
to protect users’ privacy.
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