
Using Linux Containers in Telecom Applications

Csaba Rotter, Lóránt Farkas, Gábor Nyíri

Technology and Innovation, Research

Nokia Networks

Budapest, Hungary

{csaba.rotter,lorant.farkas,gabor.nyiri}@nokia.com

Gergely Csatári, László Jánosi, Róbert Springer

MBB Liquid Core

Nokia Networks

Budapest, Hungary

{gergely.csatari,laszlo.janosi,robert.springer}@nokia.com

Abstract—Container Technology is one of the most hyped

virtualization technologies in the last couple of years. It enables

not only higher application density on the same HW environment

compared to hypervisor-based technologies but it also gives

performance benefits regarding to starting and stopping

applications. Container technologies are not new, but more

recently an entire ecosystem has been built around them and also

a lot of synergy has been created with the currently have

hypervisor-based cloud technology. Telecom applications exhibit

strong performance and high availability requirements, therefore

running them in containers requires additional investigations.

This article targets to present the container ecosystem from this

angle. In particular we are looking at the way how the currently

available technology can be used and extended to meet the

requirements of telecom applications.

Keywords—component; formatting; style; styling; insert (key

words)

I. MOTIVATION ON USING LINUX CONTAINERS

Hypervisor-based virtualization and container technology is
similar that perspective that both of them ensure an
environment for application isolation. This isolation is
important from resource access and usage point of view. This
is especially important when two applications are running on
the same hardware environment and they are competing for the
same type of resources. This resource can be CPU time,
memory, disk I/O, network I/O, etc. Hypervisor-based
virtualization offers a higher level of isolation especially in
case of Type 2 hypervisors when the application is running on
the top of guest operating system through the host operating
system. This greater isolation is on cost of greater overhead.
Reducing this overhead is the biggest advantage of container
technology and allows an application to start even 100 or 1000
times faster than in case of hypervisor- based virtualization.
Docker and Rocket are container commodity tools, they not
only ease container creation but introduce the notion of
container image and image repository. By doing this, container
commoditization tools make not just the SW delivery but also
the application delivery much faster. Continuous application
delivery is also a benefit as result of the reduced time of SW
delivery. This causes an increased agility based on reducing the
provisioning time between development and testing. Container-
based technologies offer a great level of flexibility by allowing
to containerize either a whole system or just parts of the system

together with the application. This is important from portability
point of view, which means that the container could be so
lightweight to contain only the application.

Containers are lightweight, regarding speed and size. Size
is much smaller compared to virtual machines meanwhile the
startup speed is noticeably faster as was told before.

It is a relatively new and developing area with all of the
children’s sickness of it. In some cases tools are not mature
enough, or tools are in prototype phase, with poor or even
contradicting documentation. Growing popularity and the very
attractive features of containers are the driving factors for IT
and telco world to build and provision mature and high
performance applications on top of them.

In the recent decades Telecom Applications are deployed
into more and more generic hardware and are less and less
integrated to the hardware. As a result of this tendency there is
a demand to be able to deploy the same application into several
deployment variants, which is Advanced Telecommunications
Computing Architecture (ATCA) or IT hardware or virtual
machines in different clouds. Encapsulating the application into
one or more Linux Containers provides the possibility to
deploy the same application to all of these different options.

II. LINUX CONTAINER TECHNOLOGY LANDSCAPE

It is important to claim that this landscape is based on the
evaluations done in the last months of 2015 so some
information could be not accurate on the time of reading.

A. Container base technology

Container technology as such is an old technology. Old in
that sense that some of the basic ingredients, like, chroot, was
part of Unix distributions as early as 1979. Chroot [1] is a Unix
operation which enables to change the apparent root directory
of the current running process. In 2004 Parallels, formerly
known as SWsoft, released OpenVZ [2], an advanced
container-based virtualization, with sophisticated features like
resource management and live migration. The reason of not
being so popular was that it required kernel patches which is
not that straightforward to perform for a generic Linux user. In
2006, Google released cgroups [3] and that was so successful
that in 2007 Google containerized the entire search application
and later all the Google applications were ported on top of

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

234

containers [4]. In 2011 a Container Unification Agreement was
signed at the Kernel Summit where all the major container
technology providers agreed to have just one Kernel API and
only one underlying technology will stand behind, which is
based on cgroups and namespaces. The main reason for this
agreement was that technology providers wanted to avoid
similar problems occurring in the past caused by missing
agreements between KVM and XEN. The first Linux kernel
supporting OpenVZ without patches is 3.12 and from this
version onwards container technology is included into kernel
functionality. Cgroups was started in 2006 by Google
engineers and merged into upstream 2.6.24 kernel for larger
audience of LXC (LinuX Containers, not to be confused with
the LXC user space toolset) usage.

Comparing the architecture of hypervisor-based
virtualization to container-based virtualization reveals the
lightweight nature of containers. Hypervisor-based
virtualization is based on emulating the hardware but
containers are based on different approach. Containers are
based on sharing the operating system like in Fig. 1. This
means that instead of running a hypervisor and a guest
operating system and the applications on top of the guest
operating system, the applications running in container share
the kernel of the host operating system. They can also share
additional user space libraries and binaries, this is just a matter
of configuration.

Fig. 1. Hypervisor based versus container based technology

Since in case of container-based virtualization there is no need
to start an additional guest operating system and additional
libraries and binaries but only to use and share an already
running kernel, the startup speed of the applications is very
high. According to [5] Docker equals or exceeds KVM
performance in every case tested. Regarding to comparison it is
worth to mention that meanwhile containers offer high level of
density and allow dynamic resource allocation and have almost
native bare metal performance, still it is a great disadvantage
that one hardware cannot run applications together that share
different kernel versions or kernel modules, because all
applications share exactly one kernel, that of the host operating
system.

1) cgroups
As it was shown cgroups is at the basis of any current

container technology and it is included into modern Linux
kernels. Cgroups also represent the basis of system resource

management. In order to understand the cgroups model we
need to understand the Linux process model [6].

In the traditional Linux process model all the processes are
child processes of the init process and init is executed by the
kernel at boot time, which means the process model is single
hierarchy. Init process always has one as process identifier and
this cause problems when starting several init processes.
Cgroups implementation allows to a started init process to
believe that it is running with a process id (pid) equal to one
but the original init process will see it running with a different
pid. This means that the cgroups model is similar to the process
model because it is a single hierarchy too but the fundamental
difference is that many hierarchies can exist at the same time
with several separate unconnected trees. Detailed cgroups
description can be found on kernel.org cgroups documentation
[7].

2) Namespaces
The Linux kernel provides process level isolation by

creating separate namespace for containers. Namespaces allow
to create an abstraction of a global system resource to a process
and makes it to appear as a separate instance to a process
running on the namespace. As result several containers can use
the same resources at the same time without any conflict [8].
Processes in the same namespace internally perform as if they
were the only processes in the system, they don’t see other
processes outside their namespace.

Linux Security Modules [9] and Mandatory Access Control
[10] are also key components of container creation especially
with regards to security. With Linux Capabilities [11] we can
set per process privileges to system call access. This also
increases the container security.

In order to build a container we need to add resource
management functionality to a process or process group by
using cgroups, we need process isolation by using namespaces,
to change the apparent root directory and we need to enforce
security settings. This can be done by using command line
tools and this is not very straightforward for an average Linux
user. This process has been successfully automated and
encapsulated by Docker developers so that the details are
hidden from the average Linux user. As a result Docker
container creation became as easy as a virtual machine creation
with hypervisor-based technology, one of the key reasons
Docker gained such a significant traction.

3) LXC Toolset
LXC is a low level but still flexible set of tools, templates,

libraries and language bindings and it covers almost every
containerization feature supported by upstream kernel. LXC
Project [32], project supported by Canonical Ltd provides tools
to manage containers, networking and storage functions. The
only disadvantage is that it has heavy support focus on Ubuntu,
without extensive documentation and as such the cross
distribution functionality is not always straightforward.

4) Docker
As was mentioned earlier the basic container technology is

not really new. The question is then how could Docker make
container technology so popular. Docker developers realized
that not just container creation is difficult but also it is not easy

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

235

to persistently save a container content like in case of virtual
machines. The below figure shows the basic difference
between Linux containers (left side) and Docker containers
(right side), which is a Linux container created by Docker.

Fig. 2. Linux Container versus Docker Container

As we can observe from the Fig. 2 Docker added a
command line interface to container creation, a REST API and
most importantly an image repository to store modified or
preinstalled container images. These images conceptually are
very similar to VM images as they store a snapshot of the
installed application but the main difference is that when a user
modifies this image and wants to store the modified image,
then only the modification is stored and not the entire modified
image. This is important from that perspective that an image
modification can be used quickly not just on the place of
modification but pushing it to a central repository is much
easier because the total size of the content committed to
repository is much smaller than committing the full modified
image. This process can be seen in Fig. 3. There are public and
private registries in order to upload and download container
images, the public Docker registry is called Docker Hub. A
Docker container holds everything that is needed for an
application in order to run.

Docker consists of a Docker daemon and one or more
Docker clients, Docker clients can initiate operations like pull
or run Docker images by Docker daemon and the daemon itself
will actually create the containers on the host where the
daemon is installed. The user does not directly interact with the
daemon but through the Docker client. The Docker client is the
Docker binary and is the primary user interface to Docker.

Fig. 3. Docker image registry usage [39]

In early development of Docker container creation LXC
was the default container creation interface [37]. Both LXC
and also Docker development was very intensive lately and
Docker decided to go independent from LXC and started to use
libcontainer, which is a native Go implementation of Linux
container creation based on cgroups, namespaces, etc.. LXC is
just an option to use in Docker. As can be seen in Fig. 4
Docker can use LXC, libvirt or recently developed
libcontainer, which become the default option from Docker 0.9
onwards. It is important to see that lot of big players like
RedHat, Canonical, Parallels and Google also embraced
libcontainer as the default container access interface.

Wide industry support also contributed to growing Docker
popularity, Docker becomes a de-facto industry standard on
container management.

Fig. 4. Docker libcontainer usage

In early stages of Docker development the biggest concern
from the industry was container security. As it was written also
by The Register [38], Gartner says “Linux containers are
mature enough to be used as private and public PaaS”.

As the kernel API towards container operations is open,
gives the opportunity to other industry players to create their
own container commoditization software. One other very
important player in this topic is Rocket

5) Rocket (rkt)
When CoreOS [13] started to invest in rkt development

they addressed composability, security and speed as a key
differentiator factor to other container management tools.
Rocket is a very modern but fresh tool and it is integrated to
systemd and to cluster orchestration tools. Rocket architecture
is simpler than Docker, does not have client server entity, but
rkt binary in every node. In addition Rocket claims
compatibility to other container software, for example rkt can
run Docker images. Rocket is not yet mature, according to their
roadmap [14] in 2016 February is planned to be released the
1.0 version of rkt.

B. Orchestration

In case of an application, which is running in multiple
containers it is important that an entity will keep track of the

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

236

containers belonging to the same application and to deal with
network connection between them. In case of Docker and
within one node Docker takes care of network connection but
in case of hundreds or thousands of nodes a reliable
orchestration is needed.

1) Kubernetes from Google
The most prominent Docker container orchestration system

is Kubernetes [15] and is created and open sourced by Google.
Kubernetes is using the concept of labels and pods to group
application into logical units for manage them and for easier
discovery. According to Google, Kubernetes is “an ocean of
user containers” and containers are “Scheduled and packed
dynamically onto nodes”

Fig. 5. Kubernetes basic scheduling

Kubernetes supervise and take care the life cycle
management of containers. It is important to mention that
Kubernetes does not take care of the state of the application. It
manages only the container state, in case the application dies
restarts the container for example. In case the application state
is needed to be considered than that should be handled inside
the application. Kubernetes also allows to set affinity and anti-
affinity rules, which mean that it is possible to define that
containers to be or not to be placed onto one container host.
Kubernetes also includes support for Rocket containers.

Dealing with network is not directly done by Kubernetes.
As one option Flannel [16] is used to do network connection
between Docker hosts by using an overlay network, which is
an IP network on top of existing UDP packets. Etcd is used in
order to configure and operate Flannel. Etcd [17] is a
distributed key-value store written in go and coming from
CoreOS, it has a REST interface and it is very simple, secure,
fast and reliable. It is important that etcd does not store user
data but configuration data for reliable container operation.

2) Fleet from CoreOS
CoreOS also provides an orchestration system, called Fleet

[18][19]. The basic philosophy on Fleet is to treat the CoreOS
cluster as if it were a single init system. Users are encouraged
to write small application units, which can be distributed
around cluster of self-updating CoreOS machines. By using

Fleet, DevOps team can focus on running containers that
provides the service but does not have to worry about
individual machines in the cluster. This is similar to
Kubernetes from this perspective. Fleet is used in production
for some time and can be considered stable [19].

3) Docker Swarm and Compose from Docker
Docker uses slightly different approach for container

orchestration. Docker Swarm [20] is a native clustering for
Docker containers. It collects together several Docker Engines
and makes it look as one Docker Engine to the external world.
This comes with a huge benefit of an unchanged Docker API.
The disadvantage is that on the time of evaluation the API was
not totally unchanged. For example we got HTTP 404 response
for command build, rmi, pull because the “distributed”
behavior of these commands was not cleared on that time.

Neither of the Container Orchestration system handles
networking alone but manages container life-cycle and
concentrates on the application running on top of cluster.
Resource Management functionalities are also not part of
orchestration systems. In order to consider resource
management, these systems have to be used with resource
managers like Mesos [20], Yarn [21] or DCOS [22] from
Mesosphere. Adding resource management functionality is
important on cases when multiple applications are running on
top of the same infrastructure and they are competing for the
same resources. Resource management will ensure that all the
application running together receive their guaranteed resource
in order to function according to promised performance.

C. Supporting Operating Systems and Ecosystem

Operating System providers also realized the potential in
container technology and most of them designed a lightweight
version of operating system, which offers minimal
functionality but full support to containers, orchestration, and
networking and for the full ecosystem. Project Atomic [23]
sponsored by Red Hat offers an application centric IT
infrastructure by providing a wide range of container support.
Project Atomic hosts inherit the full feature of their base
distribution, like systemd and journalctl. Project Atomic targets
enterprise customers who are already running their application
on Red Hat Enterprise, they offer Red Hat experience.

Ubuntu Core [24] is a system from Canonical for container
deployment especially designed for Docker. Snappy Ubuntu
Core is a mix of Ubuntu Core and the gathered experiences
from Ubuntu’s phone efforts [35]. Offers a high level of
security due to AppArmor [25] to enforce strong isolation
between applications. AppArmor is a Mandatory Access
Control [10] system to set minimal required resource usage for
applications.

The ChromeOS fork, CoreOS [26] is an open-source
lightweight operating system designed for clustered
deployments. ChromeOS has committed to Rocket support but
also support Docker. As a container orchestration it uses Fleet
as it was already mentioned.

Photon OS [27] is coming and open-sourced from VMware
and clearly targets VMware customers. It is optimized for

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

237

vSphere and it has strong container support, supports Docker
and Rocket too.

Fig. 6 summarize the container ecosystem, starting with
container supporting Kernel features, Container
commoditization tools and applications running on top of
orchestration systems.

Fig. 6. Container Technology Stack

III. TELECOM APPLICATIONS AND THEIR PROPERTIES

With a slight modification of our [33] previous definition of
Mobil Core Network Elements for Cloud it is possible to create
a generic definition of a Telecom Application. A Telecom
Application in the telecommunication world is a single or
multiple node application responsible for a well-defined task in
the telecommunication network. A Telecom Application uses
standardized interfaces to connect to other network elements
and implements standardized functions. On top of the
standardized functions a telecom application can have vendor
specific functionality and can use vendor specific interfaces.
One Telecom Application can integrate one or more standard
functions.

A. Properties of Telecom Application

There is a set of properties which are generic to all
Telecommunication Applications. The following list presents
the most typical properties.

High availability: telecom networks need to operate with
high availability. To achieve a network level availability either
pooling of Telecom Applications is needed or the distinct
Telecom Applications have to implement high availability
features. As pooling of Telecom Applications is not
standardized for every type of application and the pooling is
not economical in small networks the Telecom Applications
need to implement high availability features.

High capacity: Telecom Applications normally serve
millions of users and millions of telecommunication session
initiations per hour. To provide service continuity even in case
of an overload situation Telecom Applications implement
certain overload control mechanisms.

Application Cluster: To provide the required high
capacity using reasonably small (virtual) computers and to
implement the high availability features in most of the cases
Telecom Applications are implemented as a cluster of (virtual)

servers. The basic mechanism of High Availability is the
capability to continue the execution of a functionality on a
healthy server whenever the original place of execution fails.
To support this failover capability there is a need to guarantee
that two software components are not executed on the same
(virtual) server, this need is defined in an anti-affinity rule.

Network separation: Due to network reliability reasons
some telecom protocols are using SCTP (Stream Control
Transmission Protocol) with multihoming feature as a transport
protocol which requires the usage of multiple NIC-s (Network
Interface Card) in a node. Also there are regulatory
requirements to separate certain traffic types from each other
what also requires the usage of multiple NIC-s.

IP Address Allocation: the operators of Telecom
Applications use strict IP planning with preallocated IP
addresses for certain functions. As a consequence of this it
shall be possible to allocate fixed IP addresses to certain NIC-s.
Also as IP replanning and reallocation of IP addresses might
happen it should be possible to change the fixed IP address of a
NIC.

B. Deployment alternatives with container orchestration

When Linux Containers with orchestration are used there is
a possibility to use the container orchestration framework’s
features to implement the cluster management tasks of the
Telecom Application. These cluster management tasks can be
the following:

Membership management and service discovery: Some
container management software, like Docker and some
container orchestration software, like Kubernetes are emitting
notifications related to the lifecycle events of the Containers.
These events can be used to register or de-register the service
implemented by the Container to the service discovery system
of the Application or to execute some recovery action in case
of a failure event.

Monitoring: Some container orchestration software, like
Kubernetes has the capability to monitor both the state of the
Container and the Application running in the Container.

Deployment of the Linux Containers and orchestration
means the way how the software implementing, managing and
orchestrating the Linux Containers is organized in the
production environment. It defines the responsibility split
between the company or organization delivers the software
components related to Linux Containers and the company or
organization delivers the Telecom Application executed on top
of the Container related software components. In the Telecom
industry there are two deployment alternatives of the Linux
Container orchestration. We discuss in the subsequent the
benefits and drawbacks of both deployment alternatives.

Embedded deployment: all container related software
components are part of the Telecom Application, delivered by
the provider of the Telecom Application who takes full
responsibility for both the Telecom Application and the
Container related software components. The provider of the
Telecom Application provides the full stack to execute the
Telecom Application. The responsibility of the Telecom

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

238

Application provider is marked with dashed line on the
following figure (Fig. 7).

Fig. 7. Container Management and Orchestration

Provided deployment: container management and
orchestration related software are provided by the company or
organization which operates the Telecom Application. The
provider of the Telecom Application provides only the Linux
Containers implementing the functionality of the Telecom
Application. The responsibility of the Telecom Application
provider is marked with dashed line on the following figure
(Fig. 8).

Fig. 8. Telco operator provided Application deployment

There are network operators in the Telecom Industry who
are planning to build their own Linux Container execution
environments and willing to provide the Container
management and orchestration software components. These
operators select the tools for these tasks and define their own
architecture principles for Container management and
orchestration. Telecom Applications executed in these
provided deployment environments either implement the
support for all variants of Container management and
orchestration or implement their membership management,
service discovery and monitoring features without the support
of container management and orchestration software
components.

Due to the high velocity of changes in the Linux Container
management and orchestration arena Nokia Open TAS
(Telephony Application Server) uses embedded deployment
with an architecture which prepares for the support of more
Container management and orchestration software components.
During the transition to a Linux Container based architecture
Nokia Open TAS also moves towards the direction of

Microservices based architecture. Usage of Linux Containers
fits very well into Microservices architectures and continuous
delivery, but the usage of these technologies and technologies
have no strict dependency on each other.

Our intention with this paper is not to introduce any novelty
in Linux Container implementation, management or
orchestration, but to show the place of the ecosystem to run
complex telecom applications with strong emphasis on
multinode environment.

C. Deployment alternatives with virtualisation containers in

ETSI Network Function Virtualisation (NFV)

As [34] describes the different virtualisation technologies,
like hypervisor based virtualisation and Operating System (OS)
virtualisation, such as Linux Containers can be nested into each
other.

Hypervisor based virtualisation on top of bare metal:
This deployment alternative is the mostly used in the
Telecommunication Virtual Network Functions (VNF). In this
case the VNF Manager manages the lifecycle of the hypervisor
based virtual machines.

OS virtualization on top of bare metal: As of today this
setup is not supported by Telecom Applications in the ETSI
NFV architecture due to the limited support in the NFV
Infrastructures (NFVI). On the other hand the “bare metal”
variants of telecom applications use this approach to hide the
differences of the different deployment options from their
internal architecture. The lifecycle management of the Linux
Containers is either managed by the application or a central
container infrastructure depending on if the Embedded or the
Provided deployment model is used.

OS virtualization on top of hypervisor based
virtualisation: With this deployment alternative it is possible
to introduce the benefits of Linux Containers into the ETSI
NFV infrastructure even without a Linux Container support
from the NFVIs. Both NFVI-s and the VNFM recognizes and
manages only the hypervisor based virtual machines. The
lifecycle of the Linux Containers are managed by the
application or a central container infrastructure.

Hypervisor based virtualization on top of OS
virtualization: According to our current view this setup brings
no benefit for Telecommunication Applications, therefore it is
not used.

IV. REQUIREMENTS FOR THE LINUX CONTAINER ECOSYSTEM

As a consequence of the properties of the Telecom
Applications listed in Chapter III there are requirements which
are hitting the Container base technology, Container
management and Container orchestration.

A. Fixed IP addresses for containers

It should be possible to define fixed IP address to a NIC of
a container and it should be possible to change this fixed IP
address later preferably without the restarting of the Container.
To implement this the container orchestration shall be able to
store the IP address in the descriptor of the system and shall be

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

239

able to provide the IP address to the container management
layer. The container management layer shall be able to set the
IP address to the interface. To implement the changing of the
IP address without restarting the container, the container
management shall be able to reconfigure the container and the
surrounding networks to use the new IP address. The
application specific IP address configuration should be handled
by the application itself. Late IP Address provisioning

For Telecom Applications with centralized CM
(Configuration Management) database and centralized CLI
(Command Line Interface) or GUI (Graphical User Interface)
the capability of late IP address provisioning to a container is
also needed. Late IP address provisioning means, that a fixed
IP address is going to be set to a NIC, but the IP address is not
configured yet, and will be provisioned later. To implement
this the Container orchestration shall be able to store an
indication that the IP address will be added later and provide
this information to the Container management. The Container
management shall be capable to start the interface without an
IP address and set the IP address later.

B. Multiple network interfaces

It should be possible to define several NIC-s to a Container.
To implement this the Container orchestration shall be capable
to describe more than one NIC-s in the descriptors of the
system and should be able to provide the information about the
several NIC-s to the Container management component. The
Container management component shall be able to configure
the several NIC-s and connect them to the correct network.

C. Dependence between Containers

The container orchestration component shall be able to
handle dependences between Containers, thus it should be
possible to define a starting order of the Containers. Without
this feature the Telco Applications Containers shall be
implemented in a way, that they are able to wait until all other
Containers are started which from they depend. To implement
the dependency feature the Container orchestration component
shall be able to store the dependency information between
containers in the descriptor of the system and should be able to
start the containers according to the dependencies described.

D. Container and application level health monitoring

Due to the high availability requirements Telecom
Applications monitor the health status of every layer of their
software stack. They use HW watchdog or HW watchdog
emulation to monitor the Operating System, use different
process monitoring tools to monitor and maintain the started
processes, use monitoring tools to monitor the status of distant
nodes of the cluster and willing to use monitoring tools to
monitor the health status of Containers and the Application
components running in the Containers. Some of the Container
management components, like Docker already provide a way
to monitor the status of the containers [31], while some of the
Container orchestration components, like Kubernetes already
provide different ways to monitor the status of the applications
in the Containers.

E. Container affinity and anti-affinity rules

Due to the Telco Application properties described in
Chapter III there is a need for a possibility to define anti-
affinity rules between the Containers. Even if Linux
Containers are restarted in a milliseconds range the restart of a
container is not equivalent with the continuous running of the
container. There are containers executing service proxy or
infrastructure management tasks which have to be run on
every container host. During the restart the container loose its
non-persistent data and the detection of the detection of the
error, the decision making and the restart of the container can
take too long time and cause disturbances in the services of the
Telecommunication Application. When an anti-affinity rule is
defined between any numbers of Containers, the Container
orchestration component ensures that all of the mentioned
Containers are started on different Container Hosts.

In case of an affinity rule is defined between Containers
the Container orchestration component ensures that all of the
Containers are started on the same Container Host.

F. Resource SLA requirements

In order to run multiple applications on top of the same
infrastructure it is very important to ensure resource level
guarantee for applications in case they are competing for the
same resource type. This is especially true in multitenant
environment where resource bottleneck could cause
performance degradation of the provided service. Currently
available resource managers [20][21] gives support mainly of
CPU and memory but there are methods [28] on how to extend
the currently available resource model to disk I/O and network
I/O.

G. Common API-s for container management and

orchestration

One way to solve the embedded or provided orchestration
dilemma, described in Chapter III.B, would be to define and
standardize a common API for all operations what are used on
the Container Management and Orchestration software
components by the (Telecom) Application. In this way only
this common API should be supported by the Telecom
Applications to implement the Container management and
orchestration assisted membership management, service
discovery and monitoring features. To implement this the
existing and future Container orchestration and management
components should provide the same API for their
functionality needed for membership management, service
discovery and monitoring features. Alternatively, an API
adaptor component can solve this problem, similarly to libvirt
(http://libvirt.org/) in case of hypervisors.

H. Support of the ecosystem components

Telecommunication vendors use a supported Linux
distribution as the base OS (Operating System) of their
products. In the last years the components needed to create,
manage and orchestrate Linux Containers have been added to
most of these Linux distributions. Also some Container
optimized distributions were also created. In the Telecom
industry the Applications and therefore their components shall

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

240

have a support period of 3-5 years. To enable the usage of the
container optimized Linux distributions the support period of
these shall be also extended to 3-5 years. Without this change
the Telecom Applications are forced to use the “normal
mainstream” Linux distributions.

V. INDUSTRY OUTLOOK

Container technology has a very promising future with its
attractive performance results but not all components are in
production ready state. There are lot of missing features like
disk and network I/O guarantees which is especially true when
background operations are also consuming the same resources
[29]. These problems are expected to be solved in future and
the focus is expected to be on scaling the application, on
service decomposition of big monolithic applications using
microservice architectures. Microservices [30] are the best
examples to be used in containerized environment. This is
especially true if the environment is extended with dynamic
resource management functionalities. Besides the possibility
to support several deployment options, the usage of Linux
Containers are opening the way towards autonomous software
management of the microservice components of the Telecom
Applications either from a local or a global container
repository.

VI. SUMMARY AND ADDITIONAL ASPECTS

In this paper we show an overview of Linux Container
ecosystem and the usage of this ecosystem in Telecom
Applications. The intention of this paper is not to show a
quantitative analysis of Linux Container technology, but to
show the effect of the latest technology on the architectural
evolution of multinode Telecommunication Applications. The
evolution of standardization of container technology is not
touched, however „The Open Container Initiative” [36] is
important to be mentioned, as it offers a standardized
container format supporting by the most important container
ecosystem providers.

REFERENCES

[1] Change root. https://wiki.archlinux.org/index.php/Change_root

[2] OpenVZ, Available: https://openvz.org/Main_Page

[3] Cgroups, Available: https://en.wikipedia.org/wiki/Cgroups

[4] Google:, “Everything at Google runs in a container”
http://www.theregister.co.uk/2014/05/23/google_containerization_two_b
illion/

[5] Wes Felter, Alexandre Ferreira, Ram Rajamony, Juan Rubio, “An
Updated Performance Comparison of Virtual Machines and Linux
Containers”, IBM Research Report, 2014.

[6] Init wiki, https://en.wikipedia.org/wiki/Init

[7] Kernel.org cgroups documentation, Available:
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

[8] RedHat articles, Introduction to Linux Containers, August, 2015,
https://access.redhat.com/articles/1353593

[9] Linux Security Modules. Available:
https://en.wikipedia.org/wiki/Linux_Security_Modules

[10] Mandatory Access Control. Available:
https://en.wikipedia.org/wiki/Mandatory_access_control

[11] Linux Capabilities, Linux Man Page. Available:
http://linux.die.net/man/7/capabilities

[12] Libcontainer Github repository. Available:
https://github.com/opencontainers/runc/tree/master/libcontainer

[13] Motivation behind Rocket. Available: https://coreos.com/blog/rocket/

[14] Rocket roadmap. Available:
https://github.com/coreos/rkt/blob/master/ROADMAP.md

[15] Kubernetes, Available: http://kubernetes.io/

[16] Flannel Github repository. Available: https://github.com/coreos/flannel

[17] Etcd github repository, Available: https://github.com/coreos/etcd

[18] CoreOS Cluster. Available: https://coreos.com/using-coreos/clustering/

[19] Fleet github repository. Available: https://github.com/coreos/fleet

[20] Apache Mesos. Available: http://mesos.apache.org/

[21] Apache Yarn. Available:
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-
site/YARN.html

[22] DCOS documentation. Available: http://docs.mesosphere.com/

[23] Project Atomic. Available:
http://www.projectatomic.io/docs/introduction/

[24] Ubuntu Core. Available: http://www.ubuntu.com/cloud/tools/snappy

[25] AppArmor. Available: https://wiki.ubuntu.com/AppArmor

[26] CoreOS Homepage. Available: https://coreos.com/using-coreos/

[27] CoreOS wiki. Available: https://en.wikipedia.org/wiki/CoreOS

[28] T. V. Do, B. T. Vu, H. N. Do, L. Farkas, C. Rotter, and T.
Tarjanyi,“Building Block Components to Control a Data Rate in the
Apache Hadoop Compute Platform,” in Intelligence in Next Generation
Networks (ICIN), 2015 18th International Conference on, Feb 2015, pp.
23–29.

[29] Xuan Thi Tran and Tien Van Do and Nam H. Do and Lorant Farkas and
Csaba Rotter, “Provision of Disk I/O Guarantee for MapReduce
Applications”, in Trustcom-BigDataSE-ISPA 2015

[30] Microservices, Available: https://en.wikipedia.org/wiki/Microservices

[31] Docker Runtime Metrics, Docker Documentation.
Available: https://docs.docker.com/articles/runmetrics/

[32] LXC Project Homepage: Available: https://linuxcontainers.org/

[33] G. Csatari and T. Laszlo, “NSN Mobile Core Network Elements in
Cloud,” in Communications Workshops (ICC), 2013 IEEE International
Conference on, June 2013, pp. 251–255

[34] ETSI NFV DGS/NFV-EVE004:
https://docbox.etsi.org/ISG/NFV/Open/Drafts/EVE004_Virtualisation_t
echnologies_Report/NFV-EVE004v050.zip

[35] Ubuntu Phone resources: http://www.ubuntu.com/phone/developers

[36] The Open Container Initiative,https://www.opencontainers.org/

[37] Docker libcontainer unifies Linux container powers, Zdnet article,
Available: http://www.zdnet.com/article/docker-libcontainer-unifies-
linux-container-powers/

[38] Docker's just a bit dodgy, but ready for rollout says Gartner, The
Registers, Available:
http://www.theregister.co.uk/2015/01/12/docker_security_immature_but
_not_scary_says_gartner/

[39] Announcing Docker Hub and Official Repositories, Docker Blog,
Available: https://blog.docker.com/2014/06/announcing-docker-hub-
and-official-repositories/

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

241

https://wiki.archlinux.org/index.php/Change_root
https://openvz.org/Main_Page
https://en.wikipedia.org/wiki/Cgroups
http://www.theregister.co.uk/2014/05/23/google_containerization_two_billion/
http://www.theregister.co.uk/2014/05/23/google_containerization_two_billion/
https://en.wikipedia.org/wiki/Init
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://access.redhat.com/articles/1353593
https://en.wikipedia.org/wiki/Linux_Security_Modules
https://en.wikipedia.org/wiki/Mandatory_access_control
http://linux.die.net/man/7/capabilities
https://github.com/opencontainers/runc/tree/master/libcontainer
https://coreos.com/blog/rocket/
http://kubernetes.io/
https://github.com/coreos/flannel
https://github.com/coreos/etcd
https://coreos.com/using-coreos/clustering/
https://github.com/coreos/fleet
http://mesos.apache.org/
https://hadoop.apache.org/docs/curre%0bnt/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/curre%0bnt/hadoop-yarn/hadoop-yarn-site/YARN.html
http://docs.mesosphere.com/
http://www.projectatomic.io/docs/introduction/
http://www.ubuntu.com/cloud/tools/snappy
https://wiki.ubuntu.com/AppArmor
https://coreos.com/using-coreos/
https://en.wikipedia.org/wiki/CoreOS
https://en.wikipedia.org/wiki/Microservices
https://docs.docker.com/articles/runmetrics/
https://linuxcontainers.org/
https://docbox.etsi.org/ISG/NFV/Open/Drafts/EVE004_Virtualisation_technologies_Report/NFV-EVE004v050.zip
https://docbox.etsi.org/ISG/NFV/Open/Drafts/EVE004_Virtualisation_technologies_Report/NFV-EVE004v050.zip
http://www.ubuntu.com/phone/developers
https://www.opencontainers.org/
http://www.zdnet.com/article/docker-libcontainer-unifies-linux-container-powers/
http://www.zdnet.com/article/docker-libcontainer-unifies-linux-container-powers/
http://www.theregister.co.uk/2015/01/12/docker_security_immature_but_not_scary_says_gartner/
http://www.theregister.co.uk/2015/01/12/docker_security_immature_but_not_scary_says_gartner/
https://blog.docker.com/2014/06/announcing-docker-hub-and-official-repositories/
https://blog.docker.com/2014/06/announcing-docker-hub-and-official-repositories/

