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ABSTRACT

Mapping large heterogeneous urban areas using object-based image analysis (OBIA) remains challenging, especially
with respect to the segmentation process. This could be explained both by the complex arrangement of heterogeneous
land-cover classes and by the high diversity of urban patterns which can be encountered throughout the scene. In this
context, using a single segmentation parameter to obtain satisfying segmentation results for the whole scene can be
impossible.  Nonetheless,  it  is  possible  to  subdivide  the  whole  city  into  smaller  local  zones,  rather  homogeneous
according to their urban pattern. These zones can then be used to optimize the segmentation parameter locally, instead of
using the whole image or a single representative spatial subset. This paper assesses the contribution of a local approach
for the optimization of segmentation parameter compared to a global approach. Ouagadougou, located in sub-Saharan
Africa,  is used as case studies.  First, the whole scene is segmented using a single globally optimized segmentation
parameter. Second, the city is subdivided into 283 local zones, homogeneous in terms of building size and building
density.  Each  local  zone  is  then  segmented  using  a  locally  optimized  segmentation  parameter.  Unsupervised
segmentation  parameter  optimization  (USPO),  relying  on  an  optimization  function  which  tends  to  maximize  both
intra-object homogeneity and inter-object heterogeneity, is used to select the segmentation parameter automatically for
both approaches. Finally, a land-use/land-cover classification is performed using the Random Forest (RF) classifier. The
results reveal that the local approach outperforms the global one, especially by limiting confusions between buildings
and their bare-soil neighbors. 

Keywords: Object Based Image Analysis, Unsupervised Segmentation Parameters Optimization, Local Approach, 
Urban Area, Land Cover Mapping

1. INTRODUCTION

Land-use/land-cover (LULC) maps are essential decision-making tools as they can provide a picture of the current urban
configuration, enabling the deployment of appropriate policies for urban planning and management. This is especially
true in the sub-Saharan African urban context where cities undergo high growth rates and decision makers usually face
the scarcity of reference information.

Nowadays, the availability of very-high-resolution (VHR) remote sensing (RS) imagery is higher than ever. This allows
for unprecedented capabilities for the production of spatially and thematically detailed LULC maps. VHR RS data
enable mapping a large diversity of elements of the urban landscape, such as buildings, roads or trees. However, the
production of such detailed maps still remains a challenging task and requires the use of appropriate image analysis
techniques  in  order  to  achieve  accurate  results.  The  processing  of  VHR  RS  imagery  is  usually  performed  using
object-based image analysis (OBIA) techniques. While pixel-based techniques classify each pixel individually, OBIA
groups similar pixels into segments (objects)1 and classifies those new geographical entities. OBIA has been shown to
outperform pixel-based analyses in several studies2, due to the elimination of the so-called ‘salt and paper’ effect and the
utilization of geometrical and contextual features. 
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Several  studies3–6 showed  that  the  quality  of  the  segmentation  has  an  impact,  even  if  not  straightforward 4,  on  the
accuracy  of  the  final  classified  map  and  requires  therefore  a  particular  attention.  Assessing  the  quality  of  the
segmentation  results  can  be  achieved  in  a  supervised  way, either  by  visual  interpretation  of  the  segments,  or  by
comparing these to a reference segmentation layer. Unfortunately, these approaches are time-consuming and subjective 7.
Recently, new techniques have appeared to enable the assessment of segmentation results in an unsupervised way 8–12.
Using these techniques, it is therefore possible to automate the selection of the segmentation parameter. These so-called
‘unsupervised  segmentation  parameter  optimization’  (USPO)  techniques  mainly  seek  to  maximize  intra-segment
homogeneity and inter-segment heterogeneity7. Their main advantage that they operate on a purely unsupervised manner,
as they rely on metrics computed directly on the data, and usually produce results comparable to those of supervised
methods13. 

Most of the time, when the area of interest is very large, both supervised and unsupervised optimization approaches are
performed on a representative spatial subset, i.e., a limited portion of the whole scene, in order to reduce computational
costs which can be a major issue. Although this approach may be acceptable for homogeneous areas, it would be rather
unintuitive to  assume that  a  single parameter, even optimized,  can adequately segment  different  landscape patterns
throughout large heterogeneous areas such as sub-Saharan African cities. In fact, it would be more reasonable to make
the assumption that the optimal segmentation parameter can differ across the scene. As such, by using a single – global -
parameter, the segmentation results may potentially add an unnecessary bias into the segmentation algorithm by forcing a
single value for the whole image, while the most optimal parameter is likely to vary for different urban patterns.

In  recent  years,  a  few  studies  have  tackled  this  issue,  by  employing  more  localized  or  regionalized  optimization
procedures.  Cánovas-García  and  Alonso-Sarría  (2015)  demonstrated  an  improvement  in  segmentation  quality  by
optimizing the segmentation parameter based on spatially differentiated agricultural plots, instead of selecting a single
parameter for the whole scene14. Recently, Kavzoglu et al. (2016) proposed a regionalized multiscale approach in which
an initial coarse segmentation was carried out in order to produce areas for further refinement of the segmentation
parameters15. Classification results were shown to improve when the optimization of the segmentation parameter was
performed regionally rather than globally. To our knowledge, no studies have tackled this issue in heterogeneous urban
environments.

In this paper, we present a framework for investigating the contribution of a local segmentation parameter optimization
approach compared to a global approach. The area of interest, located in the city of Ouagadougou in Burkina Faso,
covers 94 square kilometers (km²) and is highly heterogeneous in terms of urban patterns. Firstly, a global approach was
performed in which the whole scene was segmented based on a single parameter selected by USPO on a spatial subset
representative of the diversity of the whole scene. Secondly, a local approach was carried out using a partition of the city
into 283 local zones, homogeneous in terms of building size and building density. Each local zone was then segmented
using a locally optimized segmentation parameter. The whole framework was based on an open source semi-automated
processing chain16. 

The research presented in this paper is part of the ‘Modeling and forecasting African Urban Population Patterns for
vulnerability and health assessments’ project (MAUPP – http://maupp.ulb.ac.be), focusing on production of LULC maps
and estimations of human population densities in African cities. 

2. MATERIAL AND METHODS

2.1 Processing chain, software and tools

The analysis was performed using the open-source software GRASS GIS17 and R. The segmentation step was performed
using ‘i.segment’ and ‘i.segment.uspo’ from GRASS GIS and the classification step using the 'caret' package of R. The
whole processing was coded in Python and embedded in a 'Jupyter notebook'18. Python was used in order to chain
commands of GRASS GIS and R directly in the same interface, and in a similar fashion as the chain presented in a
previous publication16 and publicly available.

This document is the authors version of the paper submitted to Proc. SPIE 10431, Remote Sensing Technologies and Applications in Urban
Environments II, ; doi: 10.1117/12.2278422; http://dx.doi.org/10.1117/12.2278422 and available on www.spiedigitallibrary.org

http://maupp.ulb.ac.be/
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10431/0000/A-local-segmentation-parameter-optimization-approach-for-mapping--heterogeneous/10.1117/12.2278422.short?SSO=1
http://dx.doi.org/10.1117/12.2278422


2.2 Data

The dataset  consists of a pan-sharpened stereo WorldView-3 imagery, with visible and near-infrared (VNIR) bands,
re-sampled by the provider to a spatial resolution of 0.5 m. It was acquired during the wet season (October 2015) in order
to  enhance  the  spectral  separability  between  bare  soils  and  artificial  surfaces.  A normalized  digital  surface  model
(nDSM)  was  produced  by  photogrammetry  from  the  WorldView-3  stereo-pairs  and  was  used  to  provide  height
information. Additional indices were computed from the VNIR bands, i.e., the normalized vegetation index (NDVI), the
normalized water index (NDWI)19 and the Spectral Shape Index (SSI)20; they were used during the classification step.

2.3 Case study

We applied the analysis to a subset of the city of Ouagadougou in Burkina Faso. The city has been undergoing an
extensive urban sprawl during the last decades and the number of inhabitants has doubled between 2004 and 2014
according to the United Nations21. It covered an area of around 615 km² at the time of imagery acquisition in 2015. The
subset dedicated to the analysis is located northeast to the city center (see Figure 1) and covers 94 km². The extent of the
AOI is very large compared to other studies and according to the spatial resolution of the data22.

The city of Ouagadougou is an interesting case study for assessing the contribution of a locally optimized segmentation
parameter approach as it is composed of highly contrasted neighborhoods in terms of urban patterns (see Figure 2).

Figure 1: Extent of the city of Ouagadougou, Burkina Faso, and footprint of the area of interest used in this research.
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Figure 2: Subset of the area of interest with a clear opposition between unplanned and planned residential neighborhoods,
with varying building sizes and densities.

2.4 Segmentation and Unsupervised Segmentation Parameter Optimization (USPO)

Segmentation is a very important step in an OBIA classification workflow. Indeed, the segmentation quality can affect
the accuracy of the classification. In this paper, an unsupervised segmentation parameter optimization (USPO) method is
used in order to automate the selection of the optimum segmentation parameter. The main advantage of such method is
that  it  relies  on ‘goodness measures’7 quantifying the desired characteristics  a good segmentation should have,  i.e.,
homogeneous objects which are different from their neighbors. 

In  this  paper  we  used  the  ‘i.segment’  module  of  GRASS  GIS  software  to  perform  the  segmentation.  The  latter
implements a region-growing segmentation algorithm which is ruled by two parameters.  The main parameter is  the
‘threshold’ which controls the tolerance for merging contiguous objects according to their proximity in the feature space.
The second parameter is the ‘minsize’ which controls the minimum size of segments. It is implemented at the end of the
segmentation process, and merges the objects that are too small with their most similar neighbors.

In GRASS GIS, unsupervised segmentation parameter optimization is possible using the ‘i.segment.uspo’ add-on. The
latter was used in this study to automatically select the optimum threshold parameter. The minsize parameter was fixed
in order to match the desired minimum mapping unit of the final map, i.e., 3.75 m². The add-on allows users to select
different USPO approaches presented in previous studies8,12 and its implementation is described in Grippa et al. (2017)16.
It generates a stack of different segmentation results by varying the threshold parameter and selects the one that obtains
the largest score for an optimization function. The score combines a measure of intra-object weighted variance (WV)23

assessing  the  intra-segment  homogeneity  and  a spatial  autocorrelation  (SA)  measure  assessing  the  inter-segment
heterogeneity. For the SA measure, the user can choose between Geary’s C24 and Moran’s I25. The latter was used in this
paper. Both measures are normalized using the following function8:

(1)

and

(2)

Where WV  is the weighted variance and SA is the spatial autocorrelation measure of the current segmentation
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layer.  WVMax ,  WVMin  and  SAMax , SAMin  refer respectively to the maximum and minimum  WV and
SA value in the stack of segmentation.

The normalized measures are then combined using the F-function proposed by Johnson (2015)12 which is computed as
follows :

(3)

Where F is an ‘overall goodness’ measure, ranging from 0 (poor quality) to 1 (high quality). The segmentation result
that reaches the highest value of F is then selected as the optimum one. The α parameter can be used to modify
the importance of SA norm in the optimization function. In our case this parameter was fixed to 1.

Recent research revealed that the overall goodness measure resulting from this USPO approach is highly dependent on
the range of parameter considered during the optimization procedure26. Therefore, we performed some empirical tests to
find parameters generating clearly over-segmented and under-segmented results. The range was fixed as starting at a
threshold value of 0.004 and stopping at 0.030, using a incremental step of 0.001.

2.5 Segmentation parameter optimization using a global approach

First, we applied a procedure that aims to select a single globally optimized segmentation parameter. We call it  the
‘global approach’. Due to computation time issues,  the segmentation parameter optimization was not applied to the
whole area of interest (AOI), but to a limited subset. This design is frequently used when dealing with very large datasets
and was applied in previous research12. We made sure that the selected spatial subset contains all the types of urban
patterns which can be found in the whole scene (see Figure 3). This spatial subset covers more than 10% of the whole
AOI (10.2 km² / 94 km²). 

Figure 3:  Spatial subset used for the global optimization of segmentation parameter. The subset covers more than 10% of
the whole AOI and is representative of the diversity of urban patterns which can be found in the scene.
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In  this  global  approach,  the  segmentation  parameter  optimization  was  applied  to  the  spatial  subset,  using  the
i.segment.uspo GRASS GIS add-on. The suggested threshold is assumed to be optimal for the whole scene. The latter
was then segmented with the i.segment GRASS GIS module, using this globally-optimized threshold. 

2.6 Segmentation parameter optimization using a local approach 

Next, we applied a procedure in order to optimize the segmentation parameter for different ‘local zones’ (LZs) of the
AOI.  The  reason  for  applying  this  procedure,  named  the  ‘local  approach’,  is  that  the  AOI  presents  a  very  high
heterogeneity in terms of urban patterns (see Figure 2). Therefore, we assumed that segmenting different parts of the city
using locally optimized segmentation parameters should enable the reduction of both over and under-segmentation, and
thereby improve the quality of the final LULC map.

A partition of the area of interest in multiple zones was required in order to optimize the segmentation parameter locally.
In developed countries, such reference geospatial data, e.g., city districts, street blocks or even cadastral plots, are often
available. On the contrary, developing countries and especially African ones are known to suffer from a severe lack of
available reference geospatial data. In the case of Ouagadougou, no preexisting reference data were available. In that
context, the partition of the city into small homogeneous LZs was achieved manually, by visual interpretation based on
criteria relating to building size and density. The full procedure was carried out by the same interpreter. We partitioned
the AOI into multiple LZs according to the following criteria:

i. LZs should be homogenous, both in terms of building size and density, and should be visibly different from
their neighboring LZs.

ii. LZs boundaries should follow, as far as possible, man-made or natural linear elements, e. g., roads, paths,
rivers, streams, railways.

iii. Built-up LZs should be larger than 1.5 hectares (ha).

iv. Non-built-up LZs (vegetation, water, bare soils) should be larger than 15 ha when located in core urban areas,
and larger than 20 ha when located in peri-urban areas. This criterion can be adapted on a case-by-case basis
according to the situation and the judgment of the interpreter.

It should be noticed that the first two criteria are similar to those used in previous studies27,28.

Then, we labeled LZs according to their urban morphology. For this purpose, a classification scheme combining the
building sizes and density was used and named here ‘morphological type’. Figures 4-5 illustrate the partition of the city
into local homogenous zones and the membership of each zone to its morphological type. Snapshots of the urban pattern
for some morphological type are presented on Figure 6.
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Figure 4: Partition of the city into smaller zones used for the locally optimized segmentation parameter approach.

Figure  5:  Examples  of  morphological  types with different  urban patterns.  A)  Small-sized  high  density  built-up  fabric
B) Medium-sized high density built-up fabric C) Large-sized medium density built-up fabric.
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Figure 6: Membership of each local zone to its morphological type, consisting of a combination of categories of building
size and density. 

2.7 Legend, classification scheme and sampling

We considered 11 LULC classes in the classification scheme, as shown in Table 1. The ‘caret’ package of the R software
was used to perform the classifications using a Random Forest (RF) classifier 29 with parameters optimized using cross
validation and grid search. 

The training and validation sets consisted of random samples  generated automatically and labeled manually by the
interpreter. In both the global and the local approach, training points were used to automatically select the segments in
which  they  were  included.  A  visual  check  of  these  segments  was  performed  in  order  to  eliminate  those  that
mis-segmented objects and covered more than a single LULC class. This explains why small differences appear in the
number of training samples for a same class (see Table 1). In total, 956 and 958 training points were used in the global
and local approach, respectively. For each class of the legend, 40 points were dedicated to the validation. They were not
used to train the classifier, in order to get a completely independent validation set. The validation points used to assess
the classification performance of both approaches is strictly identical, allowing comparison of accuracy measures.
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Table 1: Classification scheme and size of the training and validation sets.

Level 1 classes
land cover

Level 2 classes
land use/land cover

Abbreviation
Training set
size global

approach

Training set
size local

approach

Validation
set size

Artificial

surfaces

Buildings BU 203 202 40

Swimming pools SW 72 72 40
Asphalt surfaces AS 63 63 40

Natural material
surfaces

Brown/red bare soil RBS 71 71 40
White/grey bare soil GBS 71 73 40

Vegetation

Trees TR 95 95 40
Mixed bare soil/vegetation MBV 90 91 40

Dry vegetation DV 65 65 40
Other vegetation OV 77 78 40

Water Water bodies WB 75 72 40
Shadow Shadow SH 74 76 40

Total size: 956 958 440

3. RESULTS

The results show that the values of the segmentation parameter obtained using the local optimization approach differ
noticeably from those resulting from the global approach. This is consistent with the results of previous studies on local
optimization of segmentation parameter14. Figure 7 illustrates the variation of optimized ‘threshold’ parameter according
to the membership of the LZ to the morphological type. The first observation that can be made relates to the non-built-up
zones (i.e., morphological type 0) for which the optimum segmentation parameters are mostly lower than in the global
approach. On the contrary, for a large majority of built-up zones the optimized threshold is higher than in the global
approach. A higher ‘threshold’ makes the region-growing algorithm more tolerant for merging groups of pixels, resulting
in a lower number of segments in the final segmentation result. 

A second observation is that the distribution of locally optimized parameters by morphological type tends to be more
dispersed when the building density decreases (see Figure 7). Mapping the locally optimized segmentation parameter, as
in Figure 8, confirms this non-random distribution. Also, we noticed that the smaller-sized zones get the highest values
of optimized ‘threshold’. The visual assessment of those smaller zones revealed that the local optimization approach
achieved most of the time better segmentation and classification results. Further research should be undertaken to better
understand the relationship between the size of the zones to be used for local optimization approach and the resulting
segmentation and classification results. 

The quantitative evaluation of the classification showed that the local optimization approach slightly outperformed the
global one regarding the overall accuracy (AO). For the second level of classification, using 11 classes, the OA reached
84.77% for the global approach and 85.45% for the local one (see Table 2). These results are both satisfying considering
the  high  number  of  classes  and  the  fact  that  some  of  them  are  spectrally  very  similar,  e.g.,  classes  ‘Mixed  bare
soil/vegetation’ and ‘Dry vegetation’. When considering the 5 classes of the second level, the OA reached 94.77% for the
global approach and 95.45% for the local one.
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Figure 7: Boxplots representing the dispersion of locally optimized segmentation parameters by morphological type. The red
lines refer to the median value. The lower and upper limits of the boxes refer to the first and third quartile, respectively. The
range of the whiskers corresponds to the last observation whose value is included into 1,5 times the interquartile range.
Observations with values beyond the whiskers are considered as outliers and represented by dots.  The box widths are
proportional to the square root30 of the number of LZs of each morphological type. The straight dashed blue line refers to the
‘threshold’ derived from the global optimization approach.

Figure 8: Spatial distribution of the locally optimized segmentation parameters. The values represent the deviation from the
globally optimized segmentation parameter.
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Table  2:  Comparison  of  the  performance  evaluation  of  the  classifications  carried  out  using  the  global  and  the  local
segmentation parameter optimization approaches.

Classification

level

Overall

accuracy
Kappa

Global optimization 

approach

L1 (5 classes) 94.77 % 0.9297

L2 (11 classes) 84.77 % 0.8325

Local optimization 

approach

L1 (5 classes) 95.45 % 0.9389

L2 (11 classes) 85.45 % 0.8400

Since the MAUPP project  is  mainly focused on the estimation of human population densities,  the accuracy of  the
produced maps is particularly important with respect to the class ‘Buildings’. For this reason, we mainly assessed the
contribution of the local optimization approach for that specific class. The analysis of the F-score for each class of the
second level of classification (see Table 3) revealed that the class ‘Buildings’ reaches a score of 0.92 and 0.93 using the
global and the local approach, respectively. In general, the local approach achieved slightly better scores than the global
one, except for the classes ‘Brown/red bare soil’ and ‘Inland waters’.

Table 3: F-score for individual classes of the second level (L2) of the classification. For each class, if one approach outperforms 
the other, the F-score value is in bold.

Level 2 Classes
Global optimization

approach
Local optimization

approach

Buildings 0.92 0.93
Swimming pools 0.97 0.97
Asphalt surfaces 0.93 0.95
Brown/red bare soil 0.89 0.85
White/grey bare soil 0.85 0.85
Trees 0.81 0.82
Mixed bare soil/vegetation 0.69 0.72
Dry vegetation 0.67 0.67
Other vegetation 0.75 0.79
Inland waters 0.91 0.90
Shadow 0.95 0.96

Assessing  the  quality  of  the  classification  through  quantitative  performance  evaluation  appeared  not  sufficient  to
completely evaluate the differences appearing in the final map. Even though the classification results showed a slight OA
improvement  when using  a  local  segmentation  parameter  optimization  approach,  we realized  that  some substantial
differences  occurred,  especially  regarding  the  ‘Buildings’  and  ‘Brown/red  bare  soils’ classes.  As  the  qualitative
evaluation did not well  capture some specific  differences between the two approaches,  we conducted a meticulous
qualitative visual assessment of the classification results. Figures 9-11 present selected snapshots highlighting the main
differences between the classifications resulting from both the global and the local approach.

We carefully carried out a  visual  analysis of the results.  We discovered that,  in most cases,  the local  segmentation
optimization approach resulted in a more accurate LULC map. We can report that the most important improvement
resides in the fact that the local approach better segmented bare-soil objects neighboring buildings. Those were often
over-segmented using the global approach which created confusion with the ‘Buildings’ class. As a consequence, the
local  segmentation parameter optimization approach helped in limiting commission errors for the class  ‘Buildings’.
Figures  9-10 illustrate how the delineation of buildings on the final map appears more accurate when using the local
approach.
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Figure 9: Subset of the AOI located in a LZ characterized by medium-sized low density built-up fabric. Bare-soil objects
neighbors to the building are better classified using the local segmentation parameter optimization approach. BU: Buildings,
SW: Swimming pools, AS: Asphalt surfaces, RBS: Brown/red bare soil, GBS: White/grey bare soil, TR: Tree, MBV: Mixed
bare soil/vegetation, DV: Dry vegetation, OV: Other vegetation, WB: Water bodies, SH: Shadow.
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Figure  10: Subset of the AOI located in a LZ characterized by small-sized high density built-up fabric. Bare-soil objects
neighbors to the building are better classified using the local segmentation parameter optimization approach. BU: Buildings,
SW: Swimming pools, AS: Asphalt surfaces, RBS: Brown/red bare soil, GBS: White/grey bare soil, TR: Tree, MBV: Mixed
bare soil/vegetation, DV: Dry vegetation, OV: Other vegetation, WB: Water bodies, SH: Shadow.
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Figure  11:  Subset of  the AOI located in a  LZ characterized by medium-sized low density  built-up fabric.  Here,  some
counter-examples illustrate the situation where local approach misclassified bare-soil objects neighboring of buildings, since
the  global  approach  accurately  classified  them.  BU: Buildings,  SW: Swimming  pools,  AS: Asphalt  surfaces,
RBS: Brown/red bare soil,  GBS: White/grey bare soil,  TR: Tree, MBV: Mixed bare soil/vegetation, DV: Dry vegetation,
OV: Other vegetation, WB: Water bodies, SH: Shadow.

This document is the authors version of the paper submitted to Proc. SPIE 10431, Remote Sensing Technologies and Applications in Urban
Environments II, ; doi: 10.1117/12.2278422; http://dx.doi.org/10.1117/12.2278422 and available on www.spiedigitallibrary.org

https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10431/0000/A-local-segmentation-parameter-optimization-approach-for-mapping--heterogeneous/10.1117/12.2278422.short?SSO=1
http://dx.doi.org/10.1117/12.2278422


This confusion could be explained by the fact that the training samples for the bare-soil classes were very rarely located
so  close  to  the  buildings.  As  such,  bare-soil  objects  used  for  training  were  bigger  and  registered  different  feature
characteristic than those over-segmented bare-soil objects neighboring buildings.

More generally, it appeared that the training set consisting of the objects created in the local approach better separated
the different classes.  Figure 12 illustrates the class separability in both training sets. The figure depicts the probability
density function for the most important features in both RF models, i.e., the first quartile on NDVI values. It is clear that
training objects of the same class are spectrally more homogeneous when using the local approach, leading to a higher
intra-class homogeneity. As a consequence, the inter-class separability is higher with class centres appearing noticeably
different  for  few classes,  e.g.  ‘Buildings’ or  ‘Trees’.  It  could  also be noticed  that  class  centres  of  ‘Buildings’ and
‘Brown/red bare soils’ are very similar in the global approach (around 0.15 and 0.13, respectively), which could create
confusion between these classes. For the local approach, the class centres are better separated (around 0.04 and 0.10
respectively), which probably helps to clear up the confusion. These observations could explain the higher classification
performance using the local approach. 

Important differences appeared when we compared the percentage of the area of interest classified as ‘Buildings’ in both
approaches (see Table 4). When considering the whole area of interest, 16.80% of the area is classified as ‘Buildings’ in
both approach. This area increases to 17.99% (+1.19%) in the local approach, and to 19.93% (+3.13%) in the global one.
The biggest difference between both approaches appears for smaller-sized high and medium density built-up areas.

Table 4: Comparison of the percentage of the area classified as 'Buildings' in both approaches

Percentage (%) of the map classified as buildings

Morphological Type Code

Non-built-up area 0 0.86 1.3 (+0.44) 1.4 (+0.54)

Small-sized high density built-up fabric 11 24.07 26.04 (+1.97) 29.62 (+5.55)

Small-sized medium density built-up fabric 12 17.86 19.51 (+1.65) 22.51 (+4.65)

Small-sized low density built-up fabric 13 5.86 6.26 (+0.4) 7.35 (+1.49)

Small-sized isolated density built-up fabric 14 2.45 3.01 (+0.56) 3.25 (+0.8)

Medium-sized high density built-up fabric 21 34.84 36.78 (+1.94) 40.33 (+5.49)

Medium-sized medium density built-up fabric 22 20.24 21.49 (+1.25) 23.66 (+3.42)

Medium-sized low density built-up fabric 23 15.78 16.69 (+0.91) 18.57 (+2.79)

Medium-sized isolated density built-up fabric 24 2.1 2.32 (+0.22) 2.77 (+0.67)

Large-sized high density built-up fabric 31 47.76 51.23 (+3.47) 53.02 (+5.26)

Large-sized medium density built-up fabric 32 15.44 16.12 (+0.68) 17.5 (+2.06)

Large-sized isolated density built-up fabric 34 5.17 5.86 (+0.69) 6.22 (+1.05)

Total 16.8 17.99 (+1.19) 19.93 (+3.13)

in both 
approaches

in local 
approach

in global 
approach

The main weakness of the local approach lies in the required processing time which was almost 2.5 times longer than in
the global approach. More precisely, the optimization of the segmentation parameter and the segmentation itself required
6.1 hours for the global approach and 15.7 hours for the local one. The processing operations were carried out on a HP®

Workstation Z620 equipped with two Intel® Xeon® E5-2680 processors (base frequency at 2.70GHz), both having 8
cores.  The optimization step was performed in parallel,  using 15 threads.  Furthermore,  in a  context where existing
geospatial data to be used as local zones are missing, partitioning the scene into homogeneous local zones proves a very
time-consuming task. In this context, future research on local optimization of segmentation parameter could assess the
ability to achieve similar results using a regular grid or very large superpixels as local zones for optimization. 

The classification  results  obtained  using the  local  approach  are  not  perfect.  Actually, in  some situations,  the  local
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approach  failed  in  classifying  correctly  some  bare-soil  objects  neighboring  buildings  whereas  the  global  approach
succeeded,  as  illustrated  in  Figure  11.  However,  after  meticulous  visual  assessment,  we  can  affirm  that  those
counter-examples  are  very  rare.  Our  analysis  revealed  that,  in  general,  the  LULC  map  produced  with  a  local
segmentation parameter optimization approach was more accurate, especially for the class ‘Buildings’ than that obtained
using a global approach. However, more tests should be carried out to verify if  that  conclusion is consistent  when
applying the presented framework on different case studies.

Figure 12: Probability density function of training object statistics for the different classes of the legend. The object feature
presented here is the most important variable in the Random Forest classifier, i.e. first quartile on NDVI.
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4. CONCLUSIONS

In this research, we assessed the contribution of a local approach for optimization of segmentation parameters for the
production of land-use / land-cover maps in highly heterogeneous urban environments. First, the area of interest was
segmented  using  a  global  segmentation  parameter,  which  was  optimized  on  a  spatial  subset  representative  of  the
diversity of urban patterns present throughout the whole scene. Then, the optimization of segmentation parameter was
carried out for 283 local zones, homogeneous in terms of urban patterns. Both quantitative and qualitative assessments
showed that the local approach outperformed the global one. The classification overall accuracy reached 94.77% and
95.45%  for  the  global  and  the  local  approach,  respectively,  using  5  land-cover  classes.  When  considering  11
land-use / land-cover classes, the overall accuracy reached 84.77% and 85.45% respectively. Analysis of training objects
features  revealed  that  the  local  approach  helped  in  improving  the  separability  of  different  classes.  Furthermore,  a
qualitative assessment of the final maps revealed that the most important improvement of using a local approach resides
in the huge reduction of classification errors for bare soils objects neighboring buildings objects, resulting in a better
delineation of buildings in the final map. However, this improvement was not reflected by the overall accuracy measures.
Therefore, in future work, we will focus on using more targeted methods of assessment. A second possible field of future
research is the automation of the delineation of morphological areas, notably based on texture measures, possibly using
lower resolution imagery.
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