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Abstract
Data from Magnetic Resonance Spectroscopy Imaging (MRSI) contains signals about biomarkers concentrations,
which are used to achieve new knowledge about biochemical processes. These support doctors in identifying and
treat diseases as well as better defining regions of interest. In clinical environment, the lack of appropriate methods
and tools to visualize MRSI has made this imaging technique information hard to interpret and include in treatment
planning workflows. This paper is doing a review on how MRSI data is analysed in a medical environment as well
as new approaches from the rendering and visual analytics areas. We conclude that this topic will be under
the spotlight in the coming years, as current research is still facing many challenges on which the visualization
community can actively contribute to.

Categories and Subject Descriptors (according to ACM CCS): J.3 [Computer Applications]: Life and Medical
Sciences—Medical information systems

1. Introduction

Magnetic Resonance Spectroscopy Imaging (MRSI) is a
non-invasive imaging technique that provides a spectral
range of active biomarkers per sample. Each biomarker indi-
cates a certain concentration of a specific molecule present
in a sub-volume of the tissue being analysed. In medicine,
this information can be used as an indicator for the presence
of cancerous activity as well as other metabolic functions
of in-vivo tissue. This technique has been primarily used to
study brain and prostate cancers [VDMCW94, PTP∗12].

MRSI data is usually acquired together with other imag-
ing types, which doctors and physicians use to evaluate
their patients. The combination of different images has been
proved to enhance the quality of medical understanding of
certain diseases and respective treatment. This helps in lo-
cating anomalous functional regions in anatomical images
for better delineation of radiation target volumes and dose
boosting [LCC∗08].

There is a widespread interest in combining as much med-
ical data together as possible with the purpose of achiev-
ing personalized treatments for patients [KHL12]. These
range from anatomical images such as Computed Tomogra-
phy (CT), Magnetic Resonance (MR) T1- and T2-weighted,

Fluid Attenuated Inversion Recovery (FLAIR), to functional
images such as Positron Emission Tomography (PET), Dif-
fusion Weighted Imaging (DWI) and functional Magnetic
Resonance Imaging (fMRI). Each of these images show a
fraction of the whole reality, and the combination of these
different sources of information has been shown to enhance
results in comparison to using each imaging technique by
itself [NNW∗13, JD14, MJB∗14]. Alongside these imaging
techniques, other types of information can support medical
workflows, namely dose irradiation planning data, segmen-
tation information of tissues and organs represented as bi-
nary masks or geometrical meshes.

MRSI brings into play highly complex information that
has to be managed in a way that gives doctors enough trust
to make diagnostic and treatment decisions based on it. For
lack of literature gathering works on this topic for the vi-
sualization community, this paper aims to investigate cur-
rent tools and methods to support the analysis and visu-
alization of MRSI data. We include the challenges present
in spectroscopy data itself, its potential advantages, existing
methodologies employed in clinical settings and recent ad-
vances where the fusion and extraction of information from
different types of images adds insights to medical decision
making. We also give focus on works from other areas of re-
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Figure 1: Examples of MRSI spectra showing (left) healthy
tissue with high NAA, intermediate choline and creatine and
low lactate, compared to (right) tumour tissue with enhanced
choline and lactate signals and reduced NAA.

Figure 2: Rendered images of a tumour in brain. MRI-T1
linearly fused with an interpolated coloured choline/NAA ra-
tio map (left) and the same MRI-T1 linearly fused with an
interpolated NAA biomarker coloured map (right).

search dealing with highly complex data that can contribute
to solve current challenges for better understanding and in-
tegration of MRSI data into clinical workflows.

This work is structured as follows: we introduce the speci-
ficities of MRSI data, its acquisition and pre-processing
challenges, and respective technical considerations in Sec-
tion 2. Here, we also discuss current use of MRSI in medi-
cal environment. In Section 3, we discuss current open chal-
lenges in the medical community to study MRSI data, and
in Section 4 we list approaches from the visualization com-
munity to interpret spectroscopy data. We then proceed to
Section 5 where we introduce methods and tools from other
areas of research dealing with similar data that, we believe,
should be taken in considerations to help solve current MRSI
challenges. We finalise this work with a thorough discussion
of current spectroscopy analysis and visualization together
with possibilities for future research in Section 6 and con-
cluding remarks in Section 7.

2. Magnetic Resonance Spectroscopy Workflow

MRSI is a non-invasive molecular imaging technique which
provides the concentrations of multiple metabolites per spec-
troscopy voxel. It is used as an effective tool to find and

grade malignant gliomas, assessment of treatment response
and therapy monitoring [PSB∗12, BJV∗13]. Typically in
clinical environment, its analysis and visualization is done
in a voxel-by-voxel basis, limiting its use in medicine (Fig-
ure 1). This has been restricting its introduction in clinical
practice, for current available tools do not provide flexibility
nor speed in analysing it. The necessity of giving an in depth
description of MRSI data is justified by the need of different
research communities having to contribute with their own
knowledge so, by joining forces, a meaningful visualization
is achieved.

2.1. Raw MR Spectroscopy Data

MRSI data resolution is very low, usually having a 10mm×
10mm × 8mm voxel size. Each voxel contains a spectrum
normally containing 512 or 1024 points. Each spectrum con-
tains signals from the visible chemical compounds which de-
pends on the nuclei, the location, the echo time and other
acquisition variables. These signals are not standardized and
cannot be studied by themselves [MNVN01]. Efforts have
been made to significantly raise MRSI data resolution by
making use of 7–Tesla scanners, but this kind of scanners
are rarely found in clinical practice [SHK08]. MRSI suffers
from acquisition and pre-processing challenges, which are
explained in detail in section 2.2.

2.2. MRSI Data Pre-Processing

In the previous section we referred some of the techni-
cal aspects influencing the quality of MRSI data. Here,
we go through the steps of MRSI data pre-processing un-
til it reaches its final result. These steps are water subtrac-
tion, low-pass filtering, frequency-shift correction, baseline
and phase correction, curve fitting in the frequency domain.
The following paragraphs depict important challenges found
while pre-processing this kind of data.

Voxel Quality Assurance

Between data acquisition and users being able to access
MRSI metabolite information, data voxels have to be se-
lected or discarded according to several quality parame-
ters in order to be clinically interpretable [ÖAB∗14]. These
parameters include the minimum levels for signal-to-noise
ratio (SNR), minimum value for spectral resolution, line
shape, minimum water suppression level, absence of arti-
facts and lipid contamination. Also, due to bone signals
interference, voxels in its vicinity are usually discarded
from the final image. Furthermore, motion correction is
especially relevant for the correct location and visualiza-
tion/comparison of metabolic maps. Discarded voxels may
contribute to an incomplete picture of the tissue under study
and originate other problems such as interpolation of miss-
ing voxels, affecting treatment planning decisions.
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Water Removal

After obtaining a valid spectrum from the raw data, it is
then necessary to remove the water molecule signal from
the raw spectrum. Water signal is the prevailing signal in
the spectrum being many orders of magnitude larger com-
paring to the resonances of other molecules [MST∗10]. Re-
moval of the water signal is essential to access signals from
other sources. Until the beginning of the decade, the ma-
jority of approaches introduced distortions to the weaker
signals found in the spectrum and were not automatic. Re-
cent works on producing automatic water signal removal that
are able to correct spectral distortions in MRSI have been
achieved [MST∗10, SMK∗11].

Data Denoising

Another key step in pre-processing MRSI data is to evalu-
ate its SNR and improve it. SNR is very low in MRSI data
for the reason that typical MR images focus on protons con-
tained in water and fat molecules (which are highly abundant
in in-vivo tissues), while MRSI detects all molecules signals,
including the ones which exist in very low concentrations.
This makes correct quantification of metabolite concentra-
tion very challenging. Several techniques have been intro-
duced to improve the quality of SNR, but often compromis-
ing the spectral data or introducing constraints which bias
MRSI data interpretation. Recent studies seem to overcome
this issue by being able to maintain spatial-spectral dimen-
sions [NHDL10, LCB∗13] by exploiting the spectral-spatial
properties of the MRSI signals in a less constrained way. In-
creasing the SNR of MRSI data is still an open challenge
which greatly influences spectral concentration values and
respective understanding of this data.

Quantification

Correct quantification of metabolites is a major step in ob-
taining meaningful values from MRSI data, as without it, it
becomes impossible to construct classification images from
its multivariate analysis [PSS∗07]. In order to obtain ac-
curate estimates of metabolic concentrations from spectra
peaks, quantification has to be done over it. Independently
from quantification methods, results are always influenced
by the quality of the MRSI signals obtained from acquisi-
tion and previous pre-processing steps.

Quantification presents several challenges including line-
shape distortion estimation, baseline estimation and in-
clusion of spatial constraints. A wide range of methods
and supporting software tools were developed to minimize
these issues, namely, AQSES [PSS∗07], AMARES [Vvd-
BVH97], LCModel [Pro93], MIDAS [MDA∗06], TAR-
QUIN [RWPA06] and VAPRO [GP03].

Classification

Non-invasive techniques for diagnostic such as MRSI
can contribute to better discrimination between healthy

and tumour tissues, and between different types of tu-
mours [BJV∗13]. Having an understanding of the relations
existing among metabolites concentrations and its ratios is
imperative to improve diagnostic and treatment of patients.
Due to issues related from acquisition and pre-processing
of its data, correct classification becomes an hazardous task.
Classifying voxels can be subdivided into two cases: extract-
ing information from MRSI data alone and the fusion of dif-
ferent images with spectroscopy data.

In the first case, the objective of fusing and compar-
ing biomarkers can give origin to more interesting infor-
mation than the original data. A broad range of methods
has been investigated to better support decision making
for MRSI [VJSRA08, AVR09, AVR12, LSC∗13] and attain
better classifications through analysis of concentrations of
metabolites and its ratios. After classification, tissues or ar-
eas of interest can be visually depicted, improving the ac-
curacy of diagnosis [LPDL∗05]. Colour maps of ratios or
concentration values of metabolites as seen in Figure 2 are
an example of this.

For the second case, by combining spectral data with mul-
timodal data from other images, such as CT, MR and PET
images, it is possible to boost the meaningfulness of the fi-
nal classification. This results in better voxel and tissue sig-
natures from where more information can be extracted, for
example, to find patterns; ultimately culminating in the long
desired individualization of diagnostic and treatment of pa-
tients [AAB∗14].

2.3. Clinical Use of MR Spectroscopy Pre-Processed
Data

Combining MRSI spectral data is already a fact and grants
doctors the opportunity to classify MRSI voxels according
to these values. Depending on the case, different relation-
ships between metabolites are taken into account to evaluate
characteristics of tissue and differentiate tissue types. These
characteristics can be more or less complicated, depending
on the quantity and quality of available information, as stated
in Section 2.2.

A recent clinical trial gathering CT, MRI and MRSI
data [KVF∗13] was performed with the objective of inte-
grating MRSI data into the radiotherapy treatment planning
system. By using the threshold equal or higher than 2 of the
choline/NAA ratio, it was possible to better segment high ac-
tivity tumour tissue. Several software tools and scripts were
used to extract segmentations depicting this ratio value per
slice. These segmentations were then fused with MR images
and included in the treatment plan. The new biological vol-
ume was later targeted with a radiation boost. This work
successfully confirms that fusing information from various
sources has the power to enhance treatment results, despite
the complexity of integrating MRSI.

Meanwhile in prostate cancer, the (choline + crea-
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tine)/citrate and (choline + creatine + polyamine)/citrate ra-
tios were used [WWG∗10, CPL∗11] to study the correla-
tion between these values and cell proliferative activity for
prostate cancer obtained through biopsy. In general, ratios
were found to correlate, indicating the existence of several
different relationships among metabolites that can be put to-
gether to better classify voxels. The inflexibility of used tools
to generate any kind of desired ratio limits the range of vari-
ables to study. While advances in understanding certain rela-
tionships are being done, this limitation makes the discovery
of other relationships a long process because of the time and
effort needed for extraction and fusion of metabolic maps.
Also, tools for running statistics in these studies are not spe-
cially designed for this kind of multivariate data.

Comparison and combination of FDG-PET and MRSI
data from pediatric brain tumours [HSSP∗12] showed low
agreement when detecting tumour location. In this pa-
per, FLAIR was used as common anatomical reference for
both FDG-PET and MRSI datasets. Only the maximum
choline/NAA ratio value was used, limiting the quality of the
voxel-wise signatures. A neuroradiologist was asked to se-
lect the brightest abnormal voxel from the FDG-PET dataset.
This location was then compared to the location of the max-
imum choline/NAA ratio value to look for agreement. One
remarkable difference was that MRSI was able to show ac-
tivity in tumours that appeared inactive in FDG-PET data.
Through a different approach to this data, and by using new
methods of visualization, it could be possible to bring more
understanding about the behaviour of FDG-PET by com-
paring its concentrations to MRSI data, thus bringing more
awereness about tumour tissue behaviour. The addition of
other ratios could have shown more interesting relations be-
tween FDG-PET and MRSI.

DWI, MRSI and PET imaging were used to monitor tu-
mour response in mice to a drug [KMK∗13]. By comparing
results from the different images before and after treatment,
changes were detected in some cases and were in line in-
dicating anti-proliferation of tumour cells when combining
the drug with radiotherapy. In this study, there was no fusion
of values from separate images, but assessment of distinct
features helped creating a better picture of the underlying
behaviour of the tumour. Fusing such information could sup-
port the creation of accurate voxel signatures to be used by
machine learning algorithms for automatic cancer detection.

Scatter plots were used to compare NAA/creatine,
choline/creatine and choline/NAA ratios to better under-
stand relapsing of patients with gliomas [RDK∗13]. After
ratios were calculated and registered, they were plotted and
then coloured by region membership (Figure 3). This work
showed that incorporating new ratio relationships helped
better defining regions of high tumour activity and conse-
quent relapse, indicating the clear need of the visualization
community to contribute to this clinical matter.

Approaches to integrate MRSI in clinical workflow have

Figure 3: Scatter plot relating two metabolite ra-
tios. Coloured data points represent different tissue re-
gions [RDK∗13].

Figure 4: Top: Screen shot of jMRUI software depicting vox-
els histograms, three windows displaying an anatomical im-
age overlaid by a colour maps of metabolites’ concentra-
tions. Bottom: Screen shot of SIVIC software depicting a
slice view containing MR T1-Gadolinium and MRSI data
on the left window. On the right window, histograms from
selected MRSI voxels are shown. Bottom half shows the con-
trols to pre-process the raw MRSI data.
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been recently made through the development of software
tools. One of these tools is MIDAS [MDA∗06] which pre-
processes, analyses and visualizes MRSI data. It is com-
posed of a number of modules that can be executed with-
out any user intervention, in a predefined sequence. Visual-
ization options of MIDAS include visualization of metabo-
lite maps, anatomic images such as MR-T1 or -T2 and his-
tograms of voxels. Visualization options are rather limited,
as no relation between metabolites can be viewed nor gener-
ated, and no colour map can be generated.

Another tool used in medical practice is jMRUI
[SCA∗09]. This tool offers a list of pre-processing and quan-
tification algorithms, together with conversion routines fro
data files, estimation of spectral parameters and signal sim-
ulators for metabolites. jMRUI is a plugin based software
that allows users to add their own algorithms and meth-
ods. The java-based GUI allows multiple slice-view win-
dows with one anatomical image with an overlaid metabolic,
error or ratio maps. It is also possible to visualize multiple
histograms from MRSI voxels (Figure 4 Top). However, dif-
ferent visualizations of data such as scatter plots or bar charts
to analyse values in a statistical perspective are not included.

More recently, SIVIC [CON13] was introduced in medi-
cal practice in order to pre-process MRSI raw data into DI-
COM format of 3D metabolite maps so other software tools
could use these maps. It also provides visualization of MRSI
data together with anatomical images. SIVIC fits in differ-
ent workflows, depending on the needs of the hospital, to
allow MRSI data to be managed by conventional PACS so-
lutions. Metabolites ratio maps can only be calculated in a
separate software that is able to load metabolite maps and
fuse them in a meaningful way. No numerical or statistical
information can be assessed through SIVIC. Figure 4 Bot-
tom depicts how medical staff visualizes MRSI data through
SIVIC. Other tools used in hospitals and clinics present sim-
ilar ways for visualizing MRSI.

3. Open Challenges in Clinical Environment

Nowadays, the analysis and visualization of MRSI data
is inflexible and limited. Data is visualized directly through
histograms for each voxel per slice depicting concentrations
of metabolites, or through the rendering of slices containing
colour maps of ratios or concentrations of selected metabo-
lites. Furthermore, the rendering of colour maps is fixed and
information is not correctly delivered as maximum values
are calculated per slice and not per total values present in the
3D image. Adding to this, the extraction of any kind of rela-
tionship between metabolites is practically nonexistent and
fusion with other datasets is limited to accompanying MR or
CT images, through a rendering of overlaid images. Existing
challenges in clinical environment include:

• Acquisition and pre-processing of MRSI highly influ-

ences the quality and quantity of information available to
doctors.

• MRSI is not yet a DICOM format image, limiting its use
by current software tools.

• Metabolic data is not easily accessed or visualized.
• Selecting and relating any given number of metabolites is

missing from commercial software tools.
• The derivation of new values from acquired images and

metabolites requires users to go through long and complex
workflows.

• Extraction of segmentations of tissues or regions of inter-
ests is still accomplished by a tiresome slice-by-slice pro-
cess of interpolation of MRSI data followed by manual
segmentation and validation.

• Support for efficient multimodal and personalized analy-
sis of data has never been delivered to clinical practice.

The current challenges doctors face limit the understand-
ing of individual patient diagnosis and the respective best
treatment approach. Lastly, MRSI data analysis is far from
being integrated in a fast workflow for medical planning
treatments, despite the tools and cases depicted in this sec-
tion.

4. Advanced Tools for Visualization of MR
Spectroscopy

The classification step, reported in Section 2.2, can also be
approached using other paradigms than voxel-by-voxel anal-
ysis of histograms or overlaying colour maps of metabo-
lites. Visual analytic tools have the power to boost the un-
derstanding of high dimensional data. Also, alternate visual-
isations and fusion of more images can give better support
for medical decision making by enhancing the signatures
of voxels and tissues. Studies have been done relating con-
centrations of MRSI metabolites findings with other medical
data, broadening the understanding between anatomical and
functional information. In this section, we decided to bring
in knowledge from the visualization community which ap-
proaches to MRSI data visualization from a technical point
of view, which is usually not made available to the medical
community.

Presently, analysing multivariate scientific data can be
done via visualization systems that can easily “show”
the relation between its values. Visual Analytics (VA)
tools [MFGH08, AA13] depict values and variables in dif-
ferent kinds of linked views which allow analysing data by
decomposing the complexity of datasets into charts, parallel
coordinates (PC), histograms and scatter. Another popular
way to visualize data is to produce a multitude of coloured
images, granting the opportunity for visual inspection of
data. Many rendering and fusion algorithms have been stud-
ied and combined to deliver the best possible meaningful im-
age to users.

Three studies by Feng et al. on visualization of MRSI data
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Figure 5: Left: a 3D glyph visualization of plotted data in
PC. Center: A linear brushing that selects MRSI voxels out-
side the tumour region. Right: A second brushing selecting
MRSI voxels inside the tumour region (Image courtesy of
Lester Kwock).

allowed an approach to this data which combined render-
ing of anatomical slices and statistical inspection of metabo-
lite values. Firstly, rendered glyphs depicting concentrations
of metabolites through Scaled Data-Driven Spheres (SDDS)
technique allowed visual value estimation and the identifica-
tion of metabolites relationships and raw values [FLKT09].
Later, plotting metabolite concentration values into PC
views and using a linear function brushing helped identi-
fying linear relationships between pairs of variables. The
addition of a slice rendering system to visualize cubes of
selected MRSI voxels together with anatomical images and
glyph rendering brought light to correlations between certain
metabolites [FKLI10a]. Figure 5 depicts the visualization
options of this work: 3D rendering of multivariate dataset,
PC and slice rendering. All views are connected and brush-
ing the PC results in updates in the rendered images. In a
more recent work by the same authors [FKLI10b], scatter
plots were included to enhance the analysis of MRSI data. In
these three works, only raw values of metabolite concentra-
tion were used, however, these values are not standardized
and can only be meaningfully used as ratios. Furthermore,
the creation of complex voxel signatures or generation of
new values for better understanding of tissue characteristics
were not addressed.

Fusion of MR T2-weighted, DTI and MRSI resulted
in a visualization of prostate cancer data [TVKM11]. In
this work, difference maps generated from these multi-
parametric datasets supported the visualization and creation
of segmentations for treatment related changes. This ap-
proach demonstrated that fusing different imaging data is
more efficient in detecting changes in tissues between pre-
and post-radiotherapy comparing to taking each image indi-
vidually. Choline and creatine biomarkers were used from
MRSI spectral data ignoring other metabolites concentra-
tions. This work only contributed with a visual multiplanar

reconstruction, leaving out other approaches to data explo-
ration, like 3D rendering or VA tools, showing inadequacy in
contributing to the discovery of new relations between MRSI
data and other images.

A pure rendering work of MRI images for prostate
cancer was able to deliver fusion of three imaging tech-
niques [MK11]. MR T1, T2 and MRSI were used in this
work. Through thresholds of these images, a score vol-
ume containing three values per voxel was built. Ratios of
choline, creatine and citrate from MRSI data were used.
Generated images could be seen in 3D rendering and 2D or-
thogonal views depicting prostate, its surrounding anatomy
and indications for tumour and haemorrhage location within
the gland.

This section clearly points in the direction of the neces-
sity of developing complete tools for better analysing MRSI
and include it in clinical workflows. The need for including
all other accompanying datasets has also to be taken into ac-
count as rendering of so much information into 2D or 3D
images may result in clutter of information, slow rendering
speeds and the need for hardware that is not usually available
in common hospitals or clinics. With this in mind, and tak-
ing recent works stated in this section, important challenges
for MRSI visualization comprise:

• Limited knowledge of MRSI data.
• Lack of on-the-fly generation of complex relationships

out of metabolic values.
• Visualization of data in statistical views and rendering

of images has been proven useful but is rarely found to-
gether.

• Rendering of MRSI data is still an open challenge with
some approaches returning reasonable information.

• The combination and fusion of MRSI and other image
data is still in need research.

5. Studies on Multivariate and Multimodal Images

Datasets containing more than one element per sample have
been a reality for many years, however, many challenges
are yet to be addressed. The understanding of the data it-
self is one of these challenges, but also its analysis and visu-
alization. Approaches to these challenges resulted in meth-
ods that allow data to be seen in numerical and statisti-
cal views [ODH∗07, MFGH08] and rendering of multivari-
ate images [KKSS13,ZH13] supporting further investigation
over the data.

The work by Glaßer et al. [GPTP10] proposes a VA
approach to characterize and correctly localize malignant
tissues in breast cancer with Dynamic Contrast-Enhanced
MRI. This type of data, similarly to MRSI, needs several
pre-processing steps of analysis as, for each voxel, a time-
intensity curve depicts the absorption and washout times for
contrast agents. By finding similarities among voxels via
4D feature vectors, tumour regions get subdivided. Linked
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views and rendering of the MR image with generated glyphs
and maps support the analysis of the data. The objective of
this work was to avoid manual segmentations and grant a
faster way to evaluate suspicious tumour. No other medical
data was used in this work and only one dataset was used per
case, limiting the classification of voxels.

In another work [AFK∗14], tasks for global material com-
position analysis, local material composition analysis, and
analysis of unknown and foreign materials were formulated.
A tool for analysis and visualization of CT and spectral data
allowed interactive exploration of data through a multitude
of linked views and volume rendering, allowing the execu-
tion of those tasks. Evaluation feedback from users pointed
out the general usefulness of such a system and, more specif-
ically, the use of glyphs pie–charts for a faster understanding
of the composition of each voxel. Combination of spectral
values was not present in this work, however such an ex-
tension would present itself highly useful for the analysis of
MRSI data.

Model-based image segmentation supported by
VA [VLBK∗13] gave more detailed information re-
garding correspondence between data and model results. In
order to segment organs in medical images, an interactive
VA tool with linked views was implemented, incorporating
rendering of 3D meshes obtained from expert segmenta-
tions. Model-based image segmentation stages were adapted
from automatic algorithms and standardized methods into
interactive steps allowing flexible change of parameters for
each of the steps, giving the opportunity to evaluate and
adapt parameters as needed according to visual or statistical
inspection of obtained results.

Qualitative analysis of multivariate datasets using 3D vi-
sualizations by applying noise-based volume rendering as-
sessed the capacity of users to estimate the values of two
variables within a voxel [KKSS13]. 3D datasets of weather
containing daily mean air temperature and specific humid-
ity fields were used to test this method and compare it to
other three well known rendering techniques: rendering of
single variables with switching, mixture of values through
alpha-blending and isosurfaces rendering. Results showed a
significantly lower error for reading data values from gen-
erated images through this new technique comparing to the
other ones.

A survey on visualization of multivariate data for medical
applications gathered interesting approaches to the problem
of perception via glyph rendering [ROP11]. Although MRSI
was not referred, similar data was used in this study and a
guideline for future applications on visualizing multivariate
data was achieved.

To predict treatment response and patient outcome, a
quantitative fusion of multi-scale and multi-modal data was
made [MAB∗11] including mass spectrometry data, which is
relatively similar to MRSI data. Image features, mass spec-
trometry spectral data and graph-based features were com-

bined to classify tumour grades in Gleason scale. Results
show that classification is correctly achieved and that the
combination of VA tools and rendering techniques highly in-
fluence such results.

Visual Analytics tools allow a change of paradigm in eval-
uating multivariate information. Plotting data in connected
views and the ability to select specific values or patterns en-
hance the understanding of relations between a great num-
ber of variables. MRSI metabolite concentrations values can
be easily plotted as long as the pre-processed data can be
read into these tools. Calculating ratios of metabolites such
as the choline/NAA or any other necessary value should be
easily achieved and later plotted in such views. Also, new
rendering and fusion algorithms could enhance the visual-
ization of MRSI data in a more meaningful way, which doc-
tors can easily assess its location in relation to anatomical
images. As it has been shown in mentioned works, the com-
bination of these two methods (rendering of images and VA)
can greatly enhance medical decision making resulting in
better prospects for the treatment of patients.

6. Discussion

MRSI utilization in medical fields has positively impacted
patients diagnosis and follow-up studies, representing a
meaningful modality to consider for treatment. However, the
individualization of treatment with MRSI data is still far
from being a reality since many challenges are yet to be
addressed. Acquisition and pre-processing of MRSI do not
yield total certainty of metabolic concentrations due to low
SNR, low image resolution and fitting algorithms. Further-
more, tools for classifying MRSI metabolites are far from
being flexible both in analysis and visualization of this data.
Recent works stated in the previous sections pushed the in-
tegration of VA tools into clinical research to help integrate
MRSI in treatment workflows.

Paper IR MVIR VG SP PC H
[MK11] 3 3

[KKSS13] 3 3

[RDK∗13] 3 3 3 3

[CON13] 3 3

[MFGH08] 3 3 3

[FKLI10b] 3 3 3

[AFK∗14] 3 3 3 3 3

[VLBK∗13] 3 3 3 3

Table 1: Summary of most important works in respect to vi-
sualization options: image rendering (IR), multivariate im-
age rendering (MVIR), value generation (VG), scatter plots
(SP), parallel coordinates (PC) and histograms (H).

Challenges presented in Section 3 clearly show how much
is missing to allow the integration of MRSI in common med-
ical practice. The lack of powerful software tools enabling
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fast and easy access to metabolite data and generation of
any combination of metabolites values narrows the extrac-
tion of knowledge about relations of metabolites ratios. In
some clinical situations, datasets from different modalities
are still separately compared leaving doctors to achieve de-
cisions by mentally fusing or extracting information. In addi-
tion to this, studies performed over MRSI rarely take in con-
sideration more than one or two ratios. On the other hand, the
visualization community has been active in the field of anal-
ysis and visualization of multivariate datasets. As reported in
Section 4, some challenges addressed in different areas than
spectroscopy have many similarities to the challenges found
in the medical area. Linked views, the addition or combina-
tion of other types of views over the data, or new rendering
algorithms can bring novelty to the general understanding
and application of MRSI in medical environment. Table 1
summarizes the works mentioned by this survey, which the
authors consider that should be taken in consideration for
future development of analysis and visualization tools for
MRSI data.

Allowing a flexible fusion of any given MRSI metabolite
may contribute to a better understanding of both healthy and
tumour tissues properties. Furthermore, fusing this knowl-
edge to other medical images should greatly enhance the
study of anatomy and functionality of tissues [PSB∗12].
Doctors expect that, as more knowledge is gathered from dif-
ferent imaging techniques, the more personalized treatment
can be achieved and automatic cancer detection algorithms
can become a reality. For possible automatic cancer detec-
tion, which can be deeply influenced by better knowledge
on tissue and tumour signatures, it would be ideal to have
the maximum information possible per patient. Alas, gath-
ering all imaging types and other medical data together in
the same software package has not been achieved yet. Up to
now, different software solutions try to solve the challenges
which contain only a sub-set of all data. Even the fusion and
visualization of medical data for a low number of datasets is
still under research [CTHN08, JD14]. Clearly, there is room
for development of frameworks that are able to support mul-
timodal fusion and visualization of scalar, temporal and mul-
tivariate medical datasets, as it has been desired by the med-
ical community [ZS11, PSB∗12]. With this in mind, we list
here open challenges that will improve the analysis, visual-
ization and integration of MRSI data in clinical workflows:

• Development of a tool gathering multiple linked views,
generation of ratios, selection of values and rendering of
multimodal images.

• Immediate visualization of selected values both in render-
ing windows as in linked views.

• Interactive creation of segmentations representing se-
lected voxels or signatures.

• Extraction of complex voxel signatures by adding other
types of images.

• Pattern analysis and automatic cancer detection algo-
rithms designed from newly obtained signatures.

Finally, another issue detected during this research work
is that there is a range of words used for describing the type
of imaging containing spectral data. Depending on the sci-
entific area in question, a dataset containing spectral infor-
mation per data point was labelled as “multivariate”, “high
dimensional”,“multi dimensional array”, among others. The
authors believe a normalization of these synonyms would
facilitate the communication of similar issues and respective
research across different fields of study.

7. Conclusion

In this article, we call for the attention that MRSI data,
which is used in clinical environment, is starting to be in-
cluded in studies with tools from the visualization commu-
nity. The combination of MRSI with other medical data such
as anatomical or functional information already contribute
for better treatment personalization and better understand-
ing of tumour behaviour. However such combination of data
gives origins to challenges that have not been addressed yet.
MRSI data presents itself as a complex modality since its ac-
quisition and pre-processing steps are still shrouded by many
challenges. Also, MRSI metabolites information is still un-
der study, slowly contributing for better understanding of
metabolites relationships and tissue functional characteris-
tics. Lastly, the lack of proper tools is setting up barriers to
MRSI inclusion in general clinical treatment workflows.

We presented a series of recent works focusing in
analysing and visualizing MRSI data and combing it with
information from other sources through rendering and VA
tools. Current tools and methods already solve some of the
presented issues, and have contributed to expand the un-
derstanding of voxel and tissue signatures, however, there
are many open challenges to be solved in order to prop-
erly access the full potential that MRSI has to offer. More-
over, new spectral modalities are being developed, which
will make spectroscopy data available in other scientific set-
tings. On the grounds that MRSI and multimodal fusion are
fundamental in several scientific research areas, new devel-
opments will only come about by close and committed inter-
actions between visualization scientist, imaging technicians
and clinicians.
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