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Introduction 

Movement dysfunctions in patients suffering from diseases such as low back pain (LBP), 

stroke and Parkinson’s disease can be clinically assessed by measuring their trunk range of 

motion (ROM) and their reaction to specific movement control tasks (Laird et.al., 2014), 

(Verheyden et.al., 2007), (Cole et.al., 2010). Specifically, these assessments are comprised of 

1) ROM (Laird et.al., 2014), 2) movement control impairment (MCI) (Sahrmann, 2002, 

Luomajoki et a., 2007), 3) repetitive movement (RM) tests (Dideriksen et.al., 2014), and 4) 

tests for proprioception deficits such as reposition error tests (RE) (Rausch Osthoff et.al., 

2015).  

Optoelectronic measurement systems are accepted as gold-standards for non-invasive 

analysis of trunk movement within research settings (Cuesta-Vargas et.al., 2010, McGinley 

et.al., 2009). However they are not applicable in daily clinical practice due to their high cost, 

required installation space, specific marker placement and subsequent data capture, analysis 

and processing. These factors limit the analysis to some standard procedures, which cannot 

be extended to clinics (Wong and Wong, 2009). Alternative objective, valid, and reliable 

measurement systems are needed to allow clinicians to assess and monitor individual 

patient changes and compare between different population groups.  

To overcome these limitations, new wireless movement analysis systems using body-worn 

sensors have recently been developed (e.g. Valedo® from Hocoma AG, ViMove from dorsaVi, 

or Reablo® from Corehab). These clinical systems comprise of multiple small light weight 

inertial measurement units (IMU) which measure the angular tilt and velocity of body 

segments with respect to magnetic fields and gravity (Roetenberg et.al., 2007). By combining 

the output of multiple IMU’s and post processing algorithms into an IMU-system it is 

possible to estimate joint angles in a non-invasive way. 

Using concurrent validation, the output of an IMU system can be correlated to the gold-

standard, whilst simultaneously measuring with both systems (Streiner and Norman 2008). 

Recent research examined concurrent validity of a wired IMU system and found a high 

correlation to the gold-standard (Wong and Wong, 2009, Wong et.al., 2007). However 

correlation studies between two systems should provide both a measure of random error, or 

precision, as well as accuracy of the devices in their units of measurement (e.g. degrees). (de 

Vet et.al., 2006). In a systematic review of the literature, Cuestas-Vargas and colleagues 

found that IMU systems can be concurrent to optoelectronic analysis of trunk 
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measurements, but the degree of concurrent-validity is specific to the IMU system and 

anatomical site (Cuestas-Vargas et.al., 2010).  

Reliable measures of trunk movement and control are needed to monitor individual changes 

over time and to compare between different individuals. Reliability concerns the degree to 

which repeated measures provide similar results (de Vet et.al., 2006). Reliability is affected 

by interrater, intrasession, and intersession variability (Corriveau et.al., 2000). Interrater 

variability is unlikely to be a concern for measurements with an IMU system, except for 

sensor placement. Variability of sensor placement can be minimised by using a standardised 

protocol (Ernst et.al., 2013). Intra- and intersession variability depend on biological 

variability, hence they are test specific. Reliable tests can be identified by estimating the 

magnitude of intra- and intersession variability. Furthermore, recommendations can be 

made for the number of trials needed to be averaged from one or more sessions in order to 

improve reliability (Santos et.al., 2008). 

This study assesses concurrent validity of a novel wireless IMU system, by using an 

optoelectronic system as a gold standard. Second, it investigates the reliability of commonly 

used trunk movement and control tests, when measured with a wireless IMU system.  

2. Methods 

This study was divided into two sub-studies: A concurrent validity study (study V) and a 

reliability study (study R). 

2.1 Participants   

Twenty-two and twenty-four asymptomatic participants volunteered for studies V and R 

respectively. The participant’s characteristics are presented in table 1. Detailed exclusion 

criteria for both studies are described elsewhere (Schelldorfer et.al., 2015). For study R, the 

sample size was calculated according to Walter et al (Walter et.al., 1998). Twenty 

participants and five trials allow reliability estimations of 0.95 with a type I error of 0.05 and 

a type II error of 0.20. The studies were approved by the local ethics commission and 

participants provided their informed consent. 

2.2 Marker and sensor placement 

Four IMUs were placed on the right thigh (THI), over the sacrum (S2), and at the level of L1 

(L1), and T1 (T1), as described elsewhere (Ernst et.al., 2013, Schelldorfer et.al., 2015). The 

IMUs were mounted on a plastic frame and attached to the skin with hydrogel tape (KCI 
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Medical GmbH 8153 Rümlang, CH). Reflective markers were placed above and below every 

IMU with a third marker attached to the stiletto on the plastic frame. Thus it was possible to 

build virtual segments corresponding to the IMU plane, and to compare the two systems 

(Figure 1). The IMU and optoelectronic systems were synchronized using digital signals 

generated from a Labjack U3® data acquisition device (Labjack Corporation, USA). 

2.3 Measurement systems and data processing 

Trunk movements were measured by the IMU system in both studies and additionally with 

an optoelectronic motion capture system (VICON, Oxford UK) in study V.  In study V, a 

fourth-order zero-phase low-pass Butterworth filter (6 Hz cut-off frequency) was used to 

filter the raw data of both systems. In study R, an eighth-order zero-phase low-pass 

Butterworth filter (6 Hz cut-off frequency) was used since we analysed acceleration and jerk, 

which are noisy measures and require smoothing to obtain interpretable estimates.  

2.3.1 Optoelectronic System 

The optoelectronic system consisted of twelve infrared cameras. Data was sampled at 200Hz 

and processed using VICON Nexus® software. The coordinate system of each segment, 

defined by three reflective markers, was aligned to the coordinate system of the IMU. The 

difference signal between two segments was calculated and transformed into tilt/twist 

angles according to Crawford and colleagues (Crawford et.al., 1999). We adopted the 

following sign convention: flexion, lateral flexion toward the right, and axial rotation toward 

the left were assigned positive values; movements in the opposite directions were assigned 

negative values. We termed the angle between the L1 and T1 segment “Thoracic Spine”, the 

angle between S2 and L1 “Lumbar Spine,” and the angle between thigh and S2 “Hip angle”. 

2.3.2 Inertial measurement units 

The Valedo® system (Hocoma AG) is a professional medical system used for low back pain 

therapy. The Valedo IMU’s contain a tri-axillar gyroscope, magnetometer, and 

accelerometer, as well as wireless antenna and signal processing unit. The specifications of 

the IMU’s indicate they are able to record ±0.1° over a range of 360° around all axes 

(Valedo® User Manual, Hocoma AG). IMU sensor data was transmitted to a recording 

computer with a 200 Hz sampling frequency. Custom data acquisition and synchronisation 

software (Valedo® Research) was provided by Hocoma AG. The raw IMU sensor data was 

transformed into quaternions according to Madgwick and colleagues (Madgwick et.al., 
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2010). The angular difference between two IMU’s placed above the body segments was 

calculated and transformed into tilt/twist angles. A complete description of the data 

processing from raw data to tilt/twist angles is documented in supplementary File 1. 

2.4 Procedures 

2.4.1 Study V 

Participants attended one measurement session and performed four ROM tests in 

randomized order, as described in Table 2. They were tutored by a video showing the correct 

movement. Additionally, they were instructed to move as far as possible at their preferred 

speed. Each test was performed three times. 

2.4.2 Study R 

Participants attended two identical measurement sessions, separated by a 1 week period. 

Both measurement sessions took place at the same time of day. All participants performed 

14 tests, which were grouped into four categories according to their purposes: (1) ROM, (2) 

MCI, (3) RM and (4) RE. Test (1) measures the flexibility of the participant’s spine within their 

comfort zone. Test (2) evaluates the participant’s ability to control and differentiate 

movement between two body segments and to stabilize their spine. The former parameter 

was analysed by calculating the ratio of the ROM of the respective body segments, while the 

later was investigated using the ROM of the respective segment. Furthermore, the root 

mean squared jerk (RMSJ), as described by Slaboda et al. (Slaboda et.al., 2005), was 

calculated as indication of movement control. Test (3) measured the variability of angular 

displacement and acceleration during repeated movements. Variability was examined by 

calculating percentage of recurrence (%REC) and determinism (%DET) using recurrence 

quantification analysis (RQA) (Webber and Zbilut, 1994). Test (4) evaluates the participant’s 

proprioceptive deficits within the spine, analysed using constant error (CE) (Rausch Osthoff 

et.al., 2015). 

Participants performed four ROM, six MCI, two RM, and two RE tests as described in table 2. 

Each test was performed seven times, except for those in four point kneeling (4pk) which 

was reduced to 5 repetitions to minimise loading through their wrists. The order of the tests 

was randomized between participants but not between days.  
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2.5 Statistical Analysis 

2.5.1 Study V 

The coefficient of determination (r
2
), a measure of precision, and root mean squared error 

(RMSE), a measure of accuracy, were used to test the concurrent validity of the IMU system: 

 

Where x and y are the two time based movement signals, and  being the predicted value 

obtained by linear regression. The values of r
2
 ranged from 0 to 1. A high value of r

2
 implies 

that angles measured by IMUs and the optoelectronic system have the same characteristic. 

RMSE is the measure of the average difference between the two signals. Systematic 

differences between the systems were analysed using the Wilcoxon rank sum-test with p set 

at <0.05. 

2.5.2 Study R 

The generalizability theory (Brennan, 2001) with the design  

( ) was used as a framework to estimate reliability of trunk 

movement measures, based on the linear model 

 

with  representing the global mean and any one of the seven components. 

The index of dependability Φ was calculated as: 

 

with σ being the variance, and n the number of the corresponding component (with nt, np, 

and nd being the number of trials, participants, and days, respectively). Φ was interpreted as: 

<0.25 very low, 0.26 – 0.49 – low, 0.50 – 0.69 – moderate, 0.70 – 0.89 – high, and >0.90 – 

very high reliability (Carter et.al., 2005).  Φ≥0.70 was interpreted as sufficient to compare 

between different individuals. Subsequently, Φ coefficients were calculated for alternative 

measurement strategies, where nt was varied up to ten trials, and nd varied across two days, 

which represent acceptable measurement strategies. Thereby, the number of required trials 

per day to achieve high reliability was evaluated.  

The coefficient of variation (CV) (Hopkins, 2000) was calculated as 
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with being the grand mean and  being the standard deviation of the differences 

between days and calculated from the mean of seven trials per day. The CV values were 

rated as follows: >10% not reliable, 6-10% adequately reliable and 5% highly reliable. CV’s ≤ 

10% were construed as sufficient to monitor changes over time (Suni et.al., 2014).  

The diagnostic value of a variable was assessed by Φ whereas the ability to detect changes 

over time was evaluated by the CV. 

Results 

Study V 

In general, trunk movements in the sagittal plane were overestimated by the IMU system 

compared to the optoelectronic system (angular values between 1.3°-6.5°). In contrast, 

frontal plane movements of the trunk were underestimated (angular values between 0.7-

3.1°). Movements of the hip were measured almost equally with both systems. A summary 

of the results is presented in Table 3.  

No significant systematic differences were found in the primary movement direction, except 

for sagittal and frontal plane movement of the thoracic spine (flexion and lateral flexion to 

the right). 

The measurement systems showed acceptable agreement and small measurement errors in 

the primary movement direction. The r
2 

coefficients ranged between 0.94-0.99, except for 

hip movement during the lateral flexion tests (0.85-0.87) and the RMSE ranged between 1.1-

6.8°. Flexion of the lumbar spine and the hip, as well as lateral flexion of the thoracic and 

lumbar spine, revealed very high agreement with an r2 coefficient of 0.99 and RMSE ranging 

between 1.8-6.1°. In the non-primary movement directions, r
2 

coefficients were lower (0.36-

0.87) while RMSE were similar (1.2-6.8°) compared to the primary movement direction 

(Supplementary File 2).  

Study R 

Table 4 summarizes the grand mean, Φ-coefficients, and the number of trials averaged from 

one or two measurement days which are needed to gain Φ≥0.70, and the CV for each 

variable. On average, ROM and RM tests needed a smaller number of trials to reach high 

reliability and had smaller CVs compared to MCI and RE tests.  
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Measured values from single trial tests of trunk ROM revealed high to very high reliability 

except for extension of the lumbar spine. All CVs were smaller than 10%. The MCI tests 

differed in their reliability with Φ-coefficients of a single measurement ranging from low to 

high, and CVs from 8-22%. The RM tests showed CVs smaller than 10%, with the “Picking up 

a Box” test being more reliable than the “Flexion and Extension” test. The RE tests showed a 

respectively low reliability for a single measurement with CVs greater than 10%.   

Discussion 

The main findings of the present study were that the use of a wireless IMU system is a valid 

alternative to measure trunk movements in the primary movement direction when 

compared to the golden standard (i.e. an optoelectronic system). Secondly, on average, the 

ROM and RM tests needed a smaller number of repeated trials to reach high reliability and 

had smaller CVs when compared to the MCI and RE tests. 

4.1 Study V 

The measured ROM falls well within the range of previously published results, although 

comparability is hampered by a large variety of measurement approaches, including 

measurement systems and participants selection (Laird et.al., 2014). Both our optoelectronic 

and IMU systems measured similar ROM, whilst sagittal plane movement was slightly 

overestimated, and frontal plane movement underestimated, by the IMU systems.  

This study showed that trunk ROM in the primary movement direction can be accurately 

measured by using a wireless IMU system; however, the system appears less valid for 

assessing movements in non-primary directions. Although RMSE were similar in magnitude 

compared to the primary movement direction, they were higher relative to the total ROM. 

The agreement could be affected by the noise, and limited resolution of the IMU system, a 

nonlinear correlation between both systems, and constraints on mathematical calculations.  

The present study improves upon previous work (Ha et.al., 2013, Wong and Wong, 2009) 

with a more detailed analysis of ROM measures which includes thoracic spine and hip ROM. 

Furthermore, the concurrent validity of the novel wireless IMU system compares well to 

other studies validating different IMU systems against a gold-standard (Dunne et.al., 2006, 

Ha et.al., 2013, Wong and Wong, 2008, Wong and Wong, 2009).  
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4.2 Study R 

The index of dependability Φ of a single trial varied across different tests and variables, 

ranging from 0.19 to 0.90. The CV varied considerably as well, ranging from <1-37%. 

Reliability can be improved by increasing the number of trials/days and using the mean 

value. While, for some variables, averaging over days affected reliability more than averaging 

over trials on one day, this is not necessarily a practical solution, especially in clinical 

settings. If one attempts to increase the number of trials, care should be taken that a 

learning-effect or fatigue does not influence the participants’ performance (Santos et.al., 

2008). 

4.2.1 Range of motion 

Three out of the four lumbar ROM variables reached high reliability with a single trial on one 

day, whereas the extension ROM only had moderate reliability. Averaging two single trials 

over two days increased the reliability of ROM extension more than averaging several trials 

on one day, indicating that it is affected more by sources of variance between days rather 

than within one day. The decreased reliability of ROM extension could be explained by 

biological variability between days, the test-setup, or the slightly lower concurrent validity of 

the IMU system (Table 3).  

The low CVs (3-9%) indicate high reliability for measuring changes in ROM over time. These 

results are in accordance with other studies reporting high reliability of ROM measures (Al 

Zoubi and Preuss, 2013). The measured ROM is almost identical to study V and within the 

range of previously published results (Laird et.al., 2014). 

4.2.2 Movement Control Impairment 

The MCI tests differed in their reliability. “Waiters Bow” and “Sitting Knee Extension” 

reached high reliability when averaging a maximum of six trials on one day, or two trials on 

two days. The magnitude of the between-day variance is also shown by the CV, ranging 

between 8-22%. Nonetheless, the mean ROM in “Sitting Knee Extension” was approaching 

zero, with about 25% of participants moving into extension, hampering the interpretation of 

the CV (22%) for this variable. “Pelvic Tilt”, “Rocking Forwards”, “Rocking Backwards,” and 

“Prone Knee Bend” showed little to moderate reliability. The reliability might be affected by 

the complexity or the standardisation of the MCI tests or because segment movement 

ranges, duration, and speed were not controlled. Standardizing the MCI tests for one of 

these factors might decrease within-day and between-days variance.  
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Our results are somewhat contradictory in regard to previous research, where the reliability 

of MCI tests was reported as substantial based on a dichotomous variable (positive or 

negative indication) (Luomajoki et.al., 2007). Although a growing body of research 

investigates MCI of the trunk and hip (Luomajoki et.al., 2007, Saner et al. 2015), no 

normative values have been published aside from this study. Additionally, the different 

approaches to quantify MCI tests make it difficult to compare our results.   

4.2.3 Repeated Movement tests 

The “Picking Up a Box” test had high reliability by averaging a maximum of four trials on one 

measurement day, with low CVs (≤3%). Our descriptive results for %DET of angular 

displacement are comparable with previous research (Dideriksen et.al., 2014), which did not 

report reliability of their measures.  

The ”Flexion and Extension” test showed lower Φ-values, whilst the CVs were also small 

(≤6%). “Picking Up a Box” is predominantly performed by flexing the spine and hips, while 

the second test is based on flexion and extension. In this study, measures of extension were 

less reliable and had lower concurrent validity, which might explain the lower Φ values. Both 

tests were highly standardized, possibly explaining the small standard deviations of these 

variables. 

4.2.4 Reposition Error 

Reposition error, CE (Rausch Osthoff et.al., 2015), reached high reliability after averaging six 

trials on one day (4pk) or eight trials across two days (sitting). The CE can have positive and 

negative values and a score of zero implies a good performance. These characteristics result 

in an expected grand mean around zero and, therefore, huge CVs. Consequently, the CV 

should not be interpreted for these two variables. In such situations Φ gives a better 

indication of reliability. The magnitude of the measured RE is well within the range of 

previously published data on pain-free participants (Rausch Osthoff et.al., 2015). Data on 

reliability of RE measures is discouraging. Several studies report poor reliability of RE tests, 

use an inadequate numbers of trials, or do not report reliability of their measures (Rausch 

Osthoff et.al., 2015). 

4.3 Limitations of this study 

The IMU system is a valid tool when measuring flexion of the lumbar spine and hip, as well as 

lateral flexion of the thoracic and lumbar spine. On the other hand, measurements of 
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thoracic spine flexion and hip lateral flexion should be viewed with caution. Some of the 

differences between the two systems can be characterized as errors in the optoelectronic 

system. These errors could be triggered by camera noise, limited sight of markers, or 

vibrations of the marker frame (Ehara et.al., 1997). Additionally both systems are affected by 

skin surface artefacts caused by contraction of the muscles or prominent spinal processes 

(Yang et.al., 2008). 

The sample size was calculated for an Intraclass-Correlation-Coefficient model (Walter et.al., 

1998). We assume this to be appropriate as both models share similarities while 

generalizability theory is regarded as an expansion of classical reliability theory (Brennan, 

2001). RMSJ was calculated as a measure of movement control that has been shown to be 

reliable and discriminative between populations (Slaboda et.al., 2005). However, RMSJ is 

sensitive to movement duration, amplitude, and arrest (Hogan and Sternad, 2009). Other 

indices of movement control could be investigated in future studies. This study has focused 

on pain-free participants. Although reliability is affected by the heterogeneity of study 

populations (Lariviere et.al., 2013), the inclusion of pain-free participants was reasonable to 

evaluate the usability of an IMU system to measure trunk kinematics. 

4.4 Suggestions for future research 

The evaluated wireless IMU system is appropriate as a more affordable alternative to an 

optoelectronic system within the demonstrated boundaries regarding secondary movement 

directions. The IMU system’s concurrent validity might be enhanced by investigating the 

technical validity of the IMU components and subsequently improving these components. 

Future studies should address reliability on different populations and assess diagnostic value 

and the ability to detect changes of the presented measures over time in more detail. 

Differences between populations and treatment effects of interventions aiming at improving 

movement control have to be investigated. Measures of RQA in repeated movement tests 

are highly dependent on the input parameters (Rissanen et.al., 2008, Webber and Zbilut, 

1994). Other choices for input parameters, apart from the ones used in our study (Table 5), 

are possible, and optimal input parameters have to be investigated in future studies.  

4.5. Clinical implications and recommendations 

Clinicians commonly use range of motion and movement control tests of the trunk and hip 

to assist in identifying patterns of dysfunction and to monitor change (Laird et.al., 2014). This 
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paper presents a measurement tool which enables the clinicians to do this objectively. To 

identify dysfunctions and changes in performance, high reliability is important. Based on our 

results, we recommend the use of four ROM tests, selected MCI tests (“Waiters Bow” and 

“Sitting Knee Extension”), RE in 4pk, and “Picking up a Box” for RM, using an adequate 

number of trials for each test (Table 4). 

5. Conclusion 

The usage of a wireless IMU system led to valid estimates of trunk movement in the primary 

movement directions. A number of tests to assess movement dysfunctions and their 

corresponding variables were identified as reliable and should be studied further for 

intersubject comparisons and monitoring changes after an intervention.  
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Fig 1.  
Experimental setup: The THI, S2, L1, T1 IMU, and the reflective markers 
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Table 1 
Participant’s demographics (mean ± standard deviation) 
Study V All (n=22) Women (n=11) Men (n=11) 

Age (years) 41.18 ± 11.14 38.27 ± 10.44 44.09 ± 11.53 

Body mass index 22.99 ± 2.89 22.67 ± 3.02 23.32 ± 2.85 

Study R All (n=24) Women (n=13) Men (n=11) 

Age (years) 38.04 ± 11.21 37.77 ± 10.12 38.44 ± 12.60 

Body mass index 22.93 ± 2.69 22.58 ± 3.12 23.44 ± 1.85 

n: number of participants 
 



  

Table 2 
Overview of the tests and variables for each test 
Test Starting Position Movement BS  Variable (unit) Description of variable 

ROM Tests      
ROM Flexion Standing upright 

 
Maximal flexion of the LS LS ROM_FLEX (°)  ROM LS  

ROM Extension Standing upright 
 

Maximal extension of the LS LS ROM_EXT (°)  ROM LS  

ROM Lateral Flexion Right Standing upright 
 

Maximal lateral flexion of the LS LS ROM_RIGHT (°)  ROM LS  

ROM Lateral Flexion Left Standing upright 
 

Maximal lateral flexion of the LS LS ROM_LEFT (°)  ROM LS 

MCI Tests (Luomajoki et al., 
2007) 

     

Pelvic Tilt Standing upright Anterior pelvic tilt without moving 
the trunk or knees 

LS 
TS 

RATIO_PT 
RMSJ_PT_LS (°/s

3
) (Slaboda et al., 

2005) 
RMSJ_PT_TS (°/s

3
) 

ROM LS/ ROM TS 
Smoothness of movement 

Waiters Bow Standing upright Hip flexion without moving the LS LS 
Hip 
 

RATIO_WB 
RMSJ_WB_LS (°/s

3
) 

RMSJ_WB_Hip (°/s
3
) 

ROM LS/ ROM Hip 
Smoothness of movement 
Smoothness of movement 

Sitting Knee Extension Sitting upright 
Hips at 90° 

Knee extension without moving the 
LS 

LS 
 

ROM_SKE (°) 
RMSJ_SKE_LS (°/s

3
) 

ROM LS 
Smoothness of movement 

Rocking Backwards 4pk Hip flexion and shoulder extension 
without moving the LS 

LS 
Hip 

RATIO_RB 
RMSJ_RB_LS (°/s

3
) 

RMSJ_RB_Hip (°/s
3
) 

ROM LS/ ROM Hip  
Smoothness of movement 
Smoothness of movement  

Rocking Forwards 4pk Hip extension and shoulder flexion 
without moving the LS 

LS 
Hip 

RATIO_RF 
RMSJ_RF_LS (°/s

3
) 

RMSJ_RF_Hip (°/s
3
) 

ROM LS/ ROM Hip  
Smoothness of movement 
Smoothness of movement  

Prone Knee Bend Lying prone 
 

Knee flexion without moving the LS LS ROM_PKB (°) 
RMSJ_PKB_LS (°/s

3
) 

ROM LS 
Smoothness of movement 

RM Tests (Dideriksen et al., 
2014) 

     

Picking Up a Box Standing upright Lifting a box (5% body weight) five 
times in a row at 60bpm 

LS %REC_PU_AD, %DET_ PU_AD (%) 
%REC_ PU_AA, %DET_ PU_AA ( %) 

percentage of recurrence points 
within a recurrence plot (%REC)  

Flexion and Extension Sitting upright 
Hips at 60° 

Repeated flexion and extension of 
the trunk, five times in a row at 
80bpm 

LS %REC_ FE_AD, %DET_ FE_AD (%)  
%REC_ FE_AA, %DET_FE_AA (%) 

and percentage of recurrence 
points forming diagonal line 
structures in this plot (%DET) 



  

(Webber and Zbilut, 1994, Marwan 
et al., 2002, Rissanen et al., 2008) 

RE Tests (Rausch-Osthoff et 
al., 2014) 

     

Reposition Error Sitting Sitting upright 
Hips at 60° 

Flexion of the trunk and reproducing 
the starting position 

LS CE_SIT (°) Angular difference between 
starting and final position 

Reposition Error 4pk 4pk Extension of the LS and reproducing 
the starting position 

LS CE_4PK (°) Angular difference between 
starting and final position 

4pk: four point kneeling; %DET: percentage of determinism; %REC: percentage of recurrence; AA= angular acceleration; AD: angular displacement; 
bpm: beats per minute; BS: Body segment; CE: constant error; EXT: Extension; FE: Flexion and Extension; FLEX: Flexion; LS: lumbar spine; MCI: 
Movement control impairment; PKB: prone knee bend; PT: Pelvic Tilt; PU: Picking Up a Box; RB: rocking backwards ;RE: Reposition Error; RF: 
rocking forwards; RM: repetitive movement; RMSJ: root mean squared jerk; ROM: range of motion; SKE sitting knee extension; SIT: sitting; TS: 
Thoracic Spine; WB: waiters bow 



  

Table 3  
Study V Results for Trunk Range of Motion Measures, primary movement direction 

 ROM 
Thoracic 
Spine, ° 

   ROM 
Lumbar 
Spine, ° 

   ROM Hip, 
° 

   

 IMU System, ° 
Mean ± SD 

Optoelectronic 
System, ° 

Mean ± SD 

r
2 

Mean ± 
SD 

RMSE, 
° 

Mean ± 
SD 

IMU System, 
° 

Mean ± SD 

Optoelectronic 
System, ° 

Mean ± SD 

r
2 

Mean ± 
SD 

RMSE, 
° 

Mean ± 
SD 

IMU 
System. ° 

Mean ± SD 

Optoelectronic 
System, ° 

Mean ± SD 

r
2 

Mean ± 
SD 

RMSE, 
° 

Mean ± 
SD 

ROM Flexion 36.2 ± 11.9 * 29.7 ± 10.9 * 0.95 
±0.04 

5.8 ± 
2.0 

53.3 ± 10.9 50.71 ± 9.5 0.99 
±0.01 

4.1 ±1.8 77.4 ± 
15.3 

77.1 ± 14.2 0.99± 
0.01 

6.1 ± 
2.7 

ROM Extension 22.2 ± 9.9 18.9 ± 9.9 0.94 
±0.09 

5.9 ± 
3.3 

16.6 ± 10.5 15.3 ± 8.4 0.97 
±0.05 

4.4 ± 
2.2 

13.7 ± 5.8 14.8 ± 5.8 0.94±0.09 5.6 ± 
4.1 

ROM Lateral 
Flexion Right 

31.9 ± 5.1 * 35.0 ± 6.1 * 0.99 
±0.01 

2.8 ± 
1.4 

22.8 ± 5.1 23.7 ± 5.1 0.99 
±0.01 

1.8 ± .0 7.3 ± 4.3 7.3 ± 4.9 0.87±0.21 1.1 ± .7 

ROM Lateral 
Flexion Left 

32.6 ± 9.2 34.7 ± 10.3 0.99 
±0.03 

2.6 ± 
2.0 

22.2 ± 5.7 22.9 ± 6.5 0.99±0.01 1.9 ± 
1.3 

6.8 ± 3.0 6.9 ± 3.4 0.85±0.20 1.1 ± .7 

IMU: inertial measurement units; r2: R-squared; RMSE: root mean squared error; ROM: range of motion; SD: standard deviation; * indicates a 
significant systematic difference between the two systems 
 



  

Table 4 
Study R Results of Trunk Movement Measures: Reliability of a single measure, number of trials averaged on one or two days needed to achieve 
high reliability and coefficient of variation   
Test Variable; Unit Mean ± SD Φ one trial Number trials Φ >0.7 

One day 
Number trials Φ>0.7 
two days 

CV (%) 

ROM Tests       
ROM Flexion ROM_FLEX (°) 53.6  9.6 0.80 1 1 3  
ROM Extension ROM_EXT (°) -17.5 ± 7.9 0.63 >10 1 9  
ROM Lateral Flexion Right ROM_RIGHT (°) -20.7 ± 7.3 0.90 1 1 3  
ROM Lateral Flexion Left ROM_LEFT (°) 21.2 ± 6.8 0.90 1 1 3  

MCI Tests       
Pelvic Tilt RATIO_PT .16 ± 0.1 0.27 >10 7 16 
 RMSJ_PT_TS (°/s

3
)  4.2 ± 3.1 0.27 >10 >10 15 

 RMSJ_PT_LS (°/s
3
)  72.5 ± 49.1 0.35 >10 >10 20 

Waiters Bow RATIO_WB .54 ± .44 0.77 1 1 10 
 RMSJ_WB_LS (°/s

3
)  48.8 ± 31.7 0.68 2 1 8 

 RMSJ_WB_Hip (°/s
3
) 61.7 ± 35.5 0.51 6 2 11 

Sitting Knee Extension ROM_SKE (°) 1.9 ± 2.8 0.68 2 1 22 
 RMSJ_SKE_LS (°/s

3
) 17.5 ± 8.9 0.62 3 1 8 

Rocking Backwards RATIO_RB .71 ± .43 0.38 >10 >10 18 
 RMSJ_RB_LS (°/s

3
) 29.3 ± 12.9 0.44 8 2 10 

 RMSJ_RB_Hip (°/s
3
) 28.4 ± 9.9 0.39 8 3 8 

Rocking Forward RATIO_RF 1.52 ± 1.16 0.19 >10 >10 11 
 RMSJ_RF_LS (°/s

3
) 35.2 ± 20.9 0.73 1 1 9 

 RMSJ_RF_Hip (°/s
3
) 31.1 ± 12.4 0.31 >10 9 12 

Prone Knee Bend ROM_PKB (°) -4.0 ± 2.7 0.44 >10 3 14 
 RMSJ_PKB_LS (°/s

3
) 24.9 ± 13.5 0.45 >10 8 14 

RM Tests       
Picking Up a Box %REC_PU_AD (°) 0.15 ± 0.01 0.68 3 2 2 
 %DET_PU_AD (°) 0.97 ± 0.01 0.51 3 2 <1 
 %REC_PU_AA (°/s

2
) 0.13 ± 0.01 0.63 4 2 3 

 %DET_PU_AA (°/s
2
) 0.74 ± 0.04 0.65 3 2 2 

Flexion and Extension %REC_FE_AD (°) 0.13 ± 0.01 0.29 >10 >10 4 
 %DET_FE_AD (°) 0.97 ± 0.01 0.64 5 3 <1 
 %REC_FE_AA (°/s

2
) 0.08 ± 0.01 0.24 >10 >10 4 

 %DET_FE_AA(°/s
2
) 0.66 ± 0.07 0.60 6 3 6 

RE Tests        



  

Reposition Error Sitting CE_SIT (°) -.94 ± 1.4 0.19 >10 8 37 
Reposition Error 4pk CE_4PK (°) 1.6 ± 1.8 0.30 6 4 22 

4pk: four point kneeling; Φ: index of dependability; %DET: percentage of determinism; %REC: percentage of recurrence; AA= angular acceleration; 
AD: angular displacement; CE: constant error; CV: Coefficient of variation; EXT: Extension; FE: Flexion and Extension; FLEX: Flexion; LS: lumbar 
spine; MCI: Movement control impairment; PKB: prone knee bend; PT: Pelvic Tilt; PU: Picking Up a Box; RB: rocking backwards ;RE: Reposition 
Error; RF: rocking forwards; RM: repetitive movement; RMSJ: root mean squared jerk; ROM: range of motion; SKE sitting knee extension; SIT: 
sitting; SD: Standard deviation; TS: Thoracic Spine; WB: waiters bow  
 

 



  

 

Table 5  
Input parameters used in recurrence quantification analysis 

Test Delay Embedding Dimension 
Picking Up a Box 

Angular Displacement 
 

15 
 

4 
Angular Acceleration 13 4 

Flexion and Extension 
Angular Displacement 

 
19 

 
4 

Angular Acceleration 14 4 
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Abstract: Introduction 

Assessment of movement dysfunctions commonly comprises trunk range of 

motion (ROM), movement or control impairment (MCI), repetitive movements 

(RM), and reposition error (RE). Inertial measurement unit (IMU)-systems could 

be used to quantify these movement dysfunctions in clinical settings. The aim of 

this study was to evaluate a novel IMU-system when assessing movement 

dysfunctions in terms of concurrent validity and reliability. 

Methods 

The concurrent validity of the IMU-system was tested against an optoelectronic 

system with 22 participants. The reliability of 14 movement dysfunction tests were 

analysed using generalizabilitytheory and coefficient of variation, measuring 24 

participants in seven trials on two days. 

Results 

The IMU-system provided valid estimates of trunk movement in the primary 

movement direction when compared to the optoelectronic system. Reliability 

varied across tests and variables. On average, ROM and RM were more reliable, 

compared to MCI and RE tests. 

Discussion 

When compared to the optoelectronic system, the IMU-system is valid for 

estimates of trunk movement in the primary movement direction. Four ROM, two 

MCI, one RM, and one RE test were identified as reliable and should be studied 

further for inter-subject comparisons and monitoring changes after an intervention. 

 

Keywords: Generalizability-Theory; Movement Disorders; Reproducibility of 

Results; Biomechanical Phenomena 

 




