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A

 

BSTRACT

 

A new method for representing subgrid-scale cloud structure, in which each model column is decom-

posed into a set of subcolumns, has been introduced into the Geophysical Fluid Dynamics Laboratory’s 

global climate model AM2. Each subcolumn in the decomposition is homogeneous but the ensemble 

reproduces the initial profiles of cloud properties including cloud fraction, internal variability (if any) in 

cloud condensate, and arbitrary overlap assumptions that describe vertical correlations. These subcolumns 

are used in radiation and diagnostic calculations, and have allowed the introduction of more realistic over-

lap assumptions. 

This paper describes the impact of these new methods for representing cloud structure in instantaneous 

calculations and long-term integrations. Shortwave radiation computed using subcolumns and the random 

overlap assumption differs in the global annual average by more than 4 W/m

 

2

 

 from the operational radia-

tion scheme in instantaneous calculations; much of this difference is counteracted by a change in the over-

lap assumption to one in which overlap varies continuously with the separation distance between layers. 

Internal variability in cloud condensate, diagnosed from the mean condensate amount and cloud fraction, 

has about the same effect on radiative fluxes as does the ad hoc tuning accounting for this effect in the 

operational radiation scheme. Long simulations with the new model configuration show little difference 

from the operational model configuration, while statistical tests indicate that the model does not respond 

systematically to the sampling noise introduced by the approximate radiative transfer techniques intro-

duced to work with the subcolumns. 



 

December 7, 2005 1

 

1 Cloud vertical structure for radiation and precipitation calculations in the 

AM2 global atmospheric model

 

Current global models of the atmosphere, such as those used to predict short-term weather or long-term 

climate change, have horizontal grid spacings of tens to hundreds of kilometers. At these resolutions many 

processes, including the treatment of clouds and radiation, must be treated statistically. In particular, calcu-

lations of radiation and precipitation fluxes require a conceptual model of subgrid-scale cloud structure. 

This model usually accounts for the possibility of horizontal variations within each grid cell: some parts of 

the grid may be cloudy and others clear, for example, and some parts of the cloud may be thicker than oth-

ers. The conceptual model also describes the relationship between subgrid-scale structure in different verti-

cal layers. 

In the climate model developed by the Geophysical Fluid Dynamics Laboratory and known as AM2 

(GAMDT, 2004) cloud structure is relatively simple: within each grid cell the model predicts the areal 

fraction occupied by clouds and the grid-mean mass concentrations of cloud ice and liquid and uses the 

random overlap assumption to determine structure in the vertical. Clouds are assumed to be uniform within 

the cloudy portion of each cell. The overlap assumption is implemented in radiation calculations by com-

puting the transmittance (and reflectance, in the shortwave) of each layer in the column as the cloud frac-

tion-weighted sum of clear- and cloudy-sky transmittance. Fluxes of stratiform precipitation are computed 

separately for the clear and cloud portions of each layer, beginning at the top of the model atmosphere, and 

using the fractional areas occupied by cloud-over-cloud, cloud-over-clear, etc. transitions at each layer 

interface (Jakob and Klein, 2000). 

We had several reasons to want to change this state of affairs. One was the reliance on the random over-

lap assumption, which is inconsistent with observations (Hogan and Illingworth, 2003; Mace and Benson-

Troth, 2002; Tian and Curry, 1989) and produces vertically-projected cloud fractions that depend on the 

number of model layers spanning a given cloud layer. The implementation in AM2 was also inflexible, 

since neither the random overlap assumption nor the assumption of cloud homogeneity within the model 
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grid cell could be relaxed. The small- (subgrid-) scale variability in cloud condensate that exists in nature 

was treated in AM2 by tuning parameters in physical parameterizations: in radiation calculations, for 

example, cloud ice and liquid water concentrations are reduced by 15% before computing radiative proper-

ties (Tiedtke, 1996). We are considering a cloud scheme that takes a more physically-based approach to 

subgrid-scale variability by assuming a probability distribution function (PDF) for the total water specific 

humidity within each grid cell (Tompkins, 2002), We hope that this approach will reduce or eliminate the 

need for tuning, but it is not clear how we would couple the potentially complicated distributions of con-

densate predicted by the assumed-PDF cloud scheme to radiation and precipitation calculations. 

This paper describes the implementation in AM2 of a general scheme to represent subgrid-scale cloud 

structure, including cloud overlap, as a set of subcolumns within each grid column. We detail the ways sub-

columns are generated in AM2 and how these subcolumns are linked to radiation and precipitation calcula-

tions and to model diagnostics. We then take advantage of the flexible way cloud structure can be 

represented using subcolumns to calculate the impact that overlap and subgrid-scale homogeneity assump-

tions have on the radiative fluxes computed from the cloud fields produced by AM2. The impact on multi-

year interactive simulations with specified sea surface temperature is then assessed. 

 

2 Representing cloud structure using an ensemble of subcolumns

 

a. Creating ensembles of subcolumns

 

We represent cloud structure within each column of the large-scale model as an ensemble of stochasti-

cally-generated subcolumns (Räisänen

 

 et al.

 

, 2004). Each layer within each subcolumn is homogeneous, 

with cloud fraction either zero or one and uniform cloud liquid and ice concentration. The ensemble as a 

whole, however, reproduces the probability distribution function of cloud ice and liquid, including the 

cloud fraction, within each layer, and also obeys the overlap assumptions that specify the correlation of 

clouds and possibly water vapor in the vertical. Arbitrarily complicated PDFs and overlap assumptions can 

be represented, and sampling errors for cloud properties (i.e. cloud fraction or the cloud condensate PDF) 
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within individual model columns can be controlled by varying the number of subcolumns used. Detailed 

discussion of how ensembles of subcolumns are generated may be found in Räisänen

 

 et al. (

 

2004) and Pin-

cus 

 

et al.

 

 (2005). An example of one set subcolumns produced from a profile of cloud properties is shown 

in Fig. 1. 

We include four possible overlap assumptions: random, maximum, maximum-random, and one in 

which overlap changes inverse-exponentially from maximum to random as the distance between a pair of 

layers increases (Bergman and Rasch, 2002; Hogan and Illingworth, 2000). The latter assumption, which 

we call “exponentially-decaying overlap,” requires the specification of a length scale, and has the advan-

tage that the vertically-projected cloud fraction in a given column does not depend on the number of layers 

over which a cloud extends. We also include an option to diagnose the subgrid-scale distribution of con-

densate within each grid cell in a way that is consistent with both the model’s current predictions of cloud 

fraction and mean condensate and also with the PDF used in the cloud scheme were are developing. The 

method for estimating variability is detailed in Appendix 1. When internal variability is included the over-

lap of cloud existence and condensate concentration is specified by defining the overlap assumption in 

terms of the rank correlation of total water (Pincus

 

 et al.

 

, 2005). 

The subcolumns are created using a pseudo-random number generator. In our experience, incorporating 

a random number generator into a deterministic forecast model requires the careful balancing of two con-

cerns. On the one hand, model forecasts should be completely reproducible and depend only on the state of 

the atmosphere. In particular, forecasts may not depend on the number of processors on which the model is 

run or on how long the model has been running. In our implementation this is enforced by using a separate 

random number stream for each large-scale model grid column and initializing each sequence uniquely 

and deterministically at the beginning of each time step. On the other hand, techniques that rely on Monte 

Carlo sampling (like the decomposition of columns into subcolumns) require samples, and hence random 

number sequences, that are uncorrelated in space and time. Unfortunately, some popular random number 

generators (e.g. RAN0 and RAN1 from Press

 

 et al.

 

, 1986), given similar seeds, produce sequences whose 
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first few values are correlated. After extensive experimentation we chose a Fortran 95 implementation of 

the Mersenne Twister (Matsumoto and Nishimura, 1998) initialized with a vector of integers comprising 

the model date and time and the latitude and longitude of the column center. 

 

b. Computing process rates using subcolumns

 

Once a given model grid column has been divided into subcolumns, all-sky radiation fluxes and heating 

rates within the column may be computed using the Independent Column Approximation (ICA), i.e. by 

calculating the broadband flux in each subcolumn and averaging. Each of these radiation calculations 

requires integrating across the spectrum, typically by computing fluxes in some number of spectral inter-

vals and composing a weighted average. Given 

 

J

 

 subcolumns 

 

s

 

j

 

 and 

 

K

 

 spectral intervals with central wave-

lengths 

 

λ

 

k

 

 and spectral weights 

 

w

 

(

 

λ

 

k

 

) the column-mean ICA flux is defined as

 

(1)

 

Radiative fluxes are computed every three hours in AM2, as compared to the half-hour time step for 

other physical parameterizations, and yet radiation consumes about 30% of the model runtime. To avoid 

the large expense that would be incurred by implementing (1) directly we use a simple all-sky implementa-

tion of the Monte Carlo Independent Column Approximation (McICA; Pincus

 

 et al.

 

, 2003). The radiation 

scheme used in AM2 has 18 spectral intervals in the shortwave and 7 in the longwave. We generate a ran-

dom sample of 18 + 7 = 25 sub columns in each model grid column. Radiative transfer in each spectral 

band is computed on a different subcolumn and the column-mean all-sky radiative fluxes and heating rates 

determined by summing across the spectral intervals (equivalently, the subcolumns), i.e. 

 

(2)

 

Generating the subcolumns and implementing (2) increases the runtime of AM2 by 2-3%. 
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Compared to other radiative transfer schemes (e.g. Mlawer

 

 et al.

 

, 1997; Räisänen

 

 et al.

 

, 2005) AM2 

uses relatively few spectral intervals, so we have been able to include the option to use the ICA by applying 

(1) directly. The model runs about three times slower using ICA than McICA, though, so this is not a via-

ble alternative for routine integrations. 

Calculations of stratiform precipitation could, in principle, be treated using ICA, but this would be 

extremely expensive, as no time-saving algorithm like McICA has yet emerged (though see Larson

 

 et al

 

, 

2005 for a promising candidate). In our implementation of AM2 the overlap assumption affects precipita-

tion calculations only by determining the likelihood of transitions between clear and cloudy skies (Jakob 

and Klein, 2000), and subgrid-scale inhomogeneity in condensate amounts is neglected.

 

c. Computing model diagnostics using subcolumns 

 

The use of subcolumns to represent subgrid-scale structure in large-scale models has a historical prece-

dent: the technique has been in use for more than a decade as part of the ISCCP simulator (Klein and 

Jakob, 1999; Webb

 

 et al.

 

, 2001; Yu

 

 et al.

 

, 1996). The International Satellite Cloud Climatology Project 

(ISCCP; Rossow and Schiffer, 1999) produces joint histograms of cloud top pressure and cloud optical 

thickness as a function of location. These histograms provide a more refined dataset for model evaluation 

than do top-of-atmosphere radiative fluxes but can not be compared directly to large-scale model profiles 

of cloud fraction and condensate. The ISCCP simulator bridges this gap by creating an ensemble of col-

umns, roughly mimicking the ISCCP retrieval process on each subcolumn, and aggregating the results. 

The ISCCP simulator consists of two parts: one generates subgrid-scale structure according to overlap 

rules (assuming no in-cloud variability) and the other simulates retrievals made in those subcolumns. We 

re-coded the simulator to separate these functions. We also added an option to produce the parameter 

 (Rossow

 

 et al.

 

, 2002) where  is the (linear) mean optical depth of the cloudy subcolumns 

and  the radiative-mean optical thickness, i.e., the optical thickness that produces the mean albedo of the 

cloudy subcolumns. The quantity 

 

ε

 

 describes the variability of optical depth 

 

τ

 

 within each grid cell. In 

AM2 retrieval simulations now use the subcolumns generated for radiation calculations, so that the ISCCP 

ε 1 τ̂ τ⁄–= τ

τ̂
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diagnostics reported by the model are consistent with the cloud structure used in the process rate calcula-

tions. 

 

3 How radiative fluxes depend on assumptions about cloud structure and on 

how overlap is implemented

 

In this section we use the flexibility of stochastically-generated subcolumns to assess the impact of 

assumptions regarding overlap and subgrid-scale inhomogeneity on the instantaneous radiation and precip-

itation fluxes in AM2. These impacts depend on the profiles of cloud fraction and cloud condensate pro-

duced by the model, so results from other models (e.g. Morcrette and Jakob, 2000) provide only loose 

guidance. To sample the diurnal and seasonal cycles of cloud properties we choose profiles produced by 

AM2 every three hours beginning at 0Z on the first day of every month for one year (1983) taken from a 

run in which sea surface temperatures are specified. Results below are the average of these 96 time steps 

and, in most cases, a global average weighted by the area of each model grid column. 

Figure 2 shows the difference between top-of-atmosphere (TOA) radiative fluxes as computed (1) using 

the standard implementation of overlap, and (2) using the stochastic subcolumns to represent random over-

lap of uniform clouds. The difference in the two calculations of longwave fluxes (panel a) is spatially 

uncorrelated and almost exactly 0, while the difference between the shortwave flux calculations (panel b) 

has substantial spatial correlation and the global mean reflected flux computed using subcolumns is 4.1 

W/m

 

2

 

 larger than the operational implementation. (The calculations in this section include all columns, 

including those with no clouds or those with no incoming solar radiation, since it is the global average bias 

which affects model evolution.) The difference in reflected solar radiation between the two implementa-

tions of the same overlap, though discouraging, is not surprising: bulk treatments of overlap are known not 

to agree in general with column-by-column radiative transfer calculations, especially in the shortwave 

where multiple scattering is common (Barker

 

 et al.

 

, 2003), and the difference increases as the overlap 
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assumption becomes more important in determining radiative fluxes (i.e. as the number of partially cloudy 

layers increases, e.g. in regions of deep convection like the tropics). 

One advantage of using subcolumns is that it becomes relatively easy to test the impact of particular 

assumptions about cloud structure (Pincus

 

 et al.

 

, 2003). Table 1, for example, shows the change in glo-

bally-averaged TOA fluxes and vertically-projected cloud fraction as the overlap assumption applied to 

AM2’s cloud fields is changed and clouds are assumed to be uniform, and Table 2 the impact of introduc-

ing diagnostic in-cloud inhomogeneity while the overlap assumption is fixed. Table 2 indicates that diag-

nostic inhomogeneity (based on the model’s cloud fraction and mean condensate amount, and on two 

assumptions about the shape of the distribution of total water) has about the same effect on TOA fluxes as 

does the tuning of cloud optical properties (based on a linear scaling of cloud condensate amounts intended 

to account for subgrid-scale variability). This fact that these two treatments agree so closely is no doubt 

lucky, but it also suggests that cloud schemes that predict (or even diagnose) the PDF of condensate may 

well require substantially less tuning than schemes that assume that clouds are homogeneous. 

McICA sampling noise depends in part on the structure of the clouds in which radiative transfer is 

being computed, with zero bias in cloud-free columns and smaller biases when fewer layers are partially 

cloudy and/or if clouds are known (or assumed) to be homogeneous. Figure 3 shows a histogram of 

McICA sampling noise for the global cloud field produced by AM2 at a single time step, computed as the 

difference of McICA and full ICA calculations on the set of 25 subcolumns. Here we use the exponen-

tially-decaying overlap assumption for the rank correlation of total water with a length scale of 1 km. The 

standard deviation of instantaneous column-by-column sampling noise in top-of-atmosphere fluxes is AM2 

is about 2.5 W/m

 

2

 

 for longwave radiation and 17.8 W/m

 

2

 

 for shortwave radiation - substantially smaller 

than estimates made from off-line calculations in more complicated clouds fields (e.g. Pincus 

 

et al.

 

, 2003) 

even after accounting for the diurnal variation in incoming sunlight. Sampling errors in the shortwave can 

be much larger (up to 225 W/m

 

2

 

) than in the longwave (up to 25 W/m

 

2

 

) because reflected shortwave radia-

tion depends on cloud optical thickness at all values of optical thickness, while outgoing longwave radia-
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tion depends only on cloud-top temperature in all but the thinnest clouds. Since McICA noise is purely 

random the mean error decreases as the inverse square root of the number of calculations; instantaneous 

global mean errors for both reflected solar and outgoing longwave radiation are less than 0.1 W/m

 

2

 

. 

 

4 Changes in climate simulations with AM2 when subcolumns are used to 

implement new assumptions about subgrid-scale cloud structure

 

We made three simultaneous modifications to AM2: shifting the implementation of overlap from a sin-

gle computation in each column using mean reflectance and absorption to a set of calculations on stochas-

tically-generated subcolumns; changing the subgrid-scale assumptions from homogenous clouds randomly 

overlapped to inhomogeneous clouds following exponentially-decaying overlap; and using McICA in lieu 

of a deterministic scheme (e.g. ICA) to compute the radiative fluxes. The net impact of the first two 

changes on radiative fluxes is fairly small in off-line calculations (see Section 3) so we expect a negligible 

impact on the model’s simulated climate. The impact of the sampling noise introduced by McICA on free-

running simulations, however, is less clear, since it is possible that even small amounts of sampling noise 

might be amplified by the many nonlinear feedbacks between clouds, radiation, and atmospheric tempera-

ture and moisture in the model. Before we can routinely incorporate our changes into AM2 we must 

answer two related questions. First, are climate simulations with AM2 running McICA better, worse, or 

about the same as those using the operational scheme? Second, are simulations with McICA different (in 

the sense of statistical significance) from those using the standard radiation scheme? Since sampling noise 

from both the subcolumn generation and the McICA are known to be unbiased, different results would 

indicate that the sampling noise itself was processed by the model non-symmetrically. Because sampling 

noise depends on the model state itself, a model which changed systematically when small random noise 

was introduced would be difficult to tune, since changes to the tuning would affect the mean state, which 

would then affect the bias produced by the sampling noise, requiring further retuning, and so on. As a point 

of comparison, in the NCAR Community Atmosphere Model (version 1.8) McICA sampling noise alone 



 

December 7, 2005 9

 

introduces statistically significant but physically unimportant changes in low cloud cover and related quan-

tities (Räisänen et al. 2005). Since the sensitivity of any given model’s simulation to sampling noise 

depends on both the details of the implementation (i.e. the number of subcolumns and bands used, and any 

methods used to refine McICA, e.g. Räisänen and Barker, 2004) and on the sensitivity of other parameter-

izations to noise in radiative fluxes, our implementation in AM2 must be tested independently of other 

models. 

In the simulations described below we use 25 subcolumns within each column of AM2 to represent 

cloud structure. Overlap changes from maximum to random inverse-exponentially with a length scale of 

1 km, and internal variability in cloud condensate is diagnosed from model values of grid-mean condensate 

and cloud fraction as described in Appendix 1. 

 

a. Evaluating the climate produced by the modified global model

 

To assess the climate simulated by the modified model we perform a seventeen year integration begin-

ning Jan 1 1982 using observed monthly-mean sea surface temperatures. As noted above, the model differs 

from the standard implementation of AM2 in three ways: it uses subcolumns to represent subgrid-scale 

cloud structure, incorporates new overlap assumptions, and uses McICA to compute radiative fluxes. 

Changes to globally-averaged cloud and radiation fields between the modified and operational versions 

of the model are only slightly different than in diagnostic calculations in which the cloud fields are held 

fixed. During the last 16 years of the 17 year run, total cloud cover in the modified model decreases by 

4.8%, with outgoing longwave radiation increasing by 1.2 W/m

 

2

 

, and reflected shortwave radiation 

decreasing by 3.4 W/m

 

2

 

. The changes to cloud cover and outgoing longwave radiation are just a little 

larger than the diagnostic calculations in which the cloud fields are held constant (see the first column of 

Table 1), indicating that feedbacks to the clouds and radiation fields are amplified only slightly. 

Many standard diagnostics of the climate model (e.g. latitude-height plots of the zonal mean tempera-

ture or zonal wind) are nearly identical in the original and modified models. The largest changes involve 
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the vertically projected low cloud amount, which exhibits sizable reductions occur over the world's oceans 

in the tropics, subtropics, and at midlatitudes (Figure 4, panel a). Most of this change is the direct result of 

the change in overlap assumption, although there is a small reinforcing component from a reduction in the 

vertically resolved cloud amount. Vertically integrated liquid water also decreases by 10% globally (from 

72 g/m

 

2

 

 to 65 g/m

 

2

 

), indicating that the clouds are responding slightly to the change in radiation. Changes 

to the reflected shortwave radiation are well correlated in space with the changes in low cloud (Figure 4, 

panel b). All changes in reflected solar radiation are accompanied by compensating changes in radiation at 

the surface, so there is no difference in absorption between the two runs. 

Low clouds differ most strongly between the operational and modified models because the vertical res-

olution in both models is highest near the surface, so that near-surface layers are most strongly affected by 

changes in the overlap assumption. If a given (physical) layer in the atmosphere is partially cloudy, the ver-

tically-projected cloud fraction increases uniformly with the number of layers when random overlap is 

used, but stays constant under exponentially-decaying overlap. AM2 has nine levels in the lowest 1500 

meters of the atmosphere, while in the upper troposphere the vertical resolution is about 2000 meters. In 

models where the vertical resolution is more uniform throughout the troposphere (e.g. the ECMWF model) 

changes in radiative fluxes and heating rates in the upper atmosphere are much more sensitive to the choice 

of overlap than in AM2. Morcrette and Jakob (2000), for example, report a change in cooling rate in the 

middle and upper troposphere in excess of 1 K/day; in AM2 this change is about an order of magnitude 

smaller. That the change in overlap determines most of the differences between the operational and modi-

fied models suggests that the implementation of stochastic sub-columns itself does not greatly affect AM2.

The direct impacts of the reduction in low cloud and reflected shortwave exacerbate biases relative to 

standard observations of the atmosphere (GAMDT 2004). This reflects the fact that a assumption known to 

contradict observations (i.e. the use of the random overlap assumption in the many shallow layers near the 

surface) inadvertently masked problems resulting from other parts of the model. The change in globally, 

annually averaged radiation between the operational and modified models is modest (2.2. W/m

 

2

 

) but large 
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enough to warrant a small “retuning” to bring it back into radiative balance before coupling with an ocean 

model. In a retuning process, some of these changes in low cloud could be counteracted.

 

b. Evaluating predictions of subgrid-scale variability 

 

In addition to the changes to the physics we made to the model we have a new diagnostic: the parameter 

 

ε

 

 that quantifies the subgrid-scale variability of cloud optical thickness. Figure 5 compares the predictions 

of our modified version of AM2 with the mean of this quantity as provided by ISCCP (available from 

http://isccp.giss.nasa.gov). Note that the grid sizes for the two datasets are comparable near the equator, 

which in turn makes the estimate of 

 

ε

 

 comparable, since cloud variability decreases with spatial scale. 

Although the model shares some features with the observations, the comparison is not very encourag-

ing. AM2 agrees with ISCCP that tropical convective regions are more inhomogeneous than regions in 

which only shallow clouds are prevalent, such as the stratocumulus regions to the west of major continents, 

but the model greatly overestimates the amount of variability in the deep convective regions relative to 

observations. At higher latitudes, and over land in particular, AM2 underestimates inhomogeneity, perhaps 

consistent with AM2's relatively poor representation of the sub-grid variability of column cloud optical 

depth in frontal cloud environments (Gordon

 

 et al.

 

, 2005). 

The subgrid-scale variability in optical depth obtained from the model depends only slightly on the sub-

grid-scale variability in cloud water content we diagnose from the cloud fraction and mean condensate 

amount: ε decreases by less than 0.05 when clouds are assumed to be uniform. This implies that the mean 

cloud optical properties and the vertical distribution of those properties is responsible for the error. Indeed, 

AM2 (like many global models) produces more clouds with large optical thicknesses than are observed by 

ISCCP (Zhang et al., 2005). It’s hard to imagine that estimates of higher order moments of the optical 

depth distribution would agree with observations when the agreement of the mean is poor. 

c. Do simulations made using McICA differ from those using more accurate radiation 



December 7, 2005 12

calculations? 

The climate simulated by AM2 in its new configuration does not differ in dramatic ways from the 

default configuration, but there remains the question as to whether sampling noise can cause discernible 

systematic shifts in the model’s climate. To evaluate this question we must compare any systematic 

changes that occur when McICA is used to the internal variability of the model in both its approximate 

(McICA) and deterministic (ICA) modes. To this end we construct two ten-member ensembles by select-

ing the state of the simulation described in the previous section on the first ten days of model year 1990 as 

initial conditions for a one-year integration. The simulations are identical except that in one ensemble a full 

broadband radiation calculation is performed on each of 25 subcolumns in each model column (i.e. the 

ICA is used) while the other ensemble uses McICA. 

The variability in cloud and radiation-related fields within each of these ensembles is substantially 

larger than the mean difference between them. The top two panels of Figure 6 show the variability in annu-

ally averaged reflected shortwave radiation within the ICA and McICA ensembles, respectively, computed 

as the set of differences between the ensemble mean and the value at each grid point in each ensemble 

member. (Histograms for the operational version of AM2, not shown, are indistinguishable from the ICA 

and McICA ensembles.) The lowest panel shows the grid-point differences between the ensemble mean 

ICA and McICA calculations, which has a much narrow distribution than is obtained within either ensem-

ble. As a quantitative test of statistical significance we use a Student’s t-test applied at each grid point. The 

null hypothesis for this test is that the mean of the two samples being tested (in this case, ten pairs of a 

given cloud or radiation quantity at a given location) is the same; the significance level (p value) for the test 

indicates the likelihood that the means of two samples drawn from a single distribution might be expected 

to differ by a given amount by chance alone. Figure 7 shows the significance levels for annually-averaged 

reflected solar radiation. These values are distributed approximately uniformly between 0 and 1, consistent 

with the hypothesis that the ICA and McICA runs are statistically indistinguishable. These results are sim-
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ilar to those for long- and shortwave radiation fields at the surface and top of the atmosphere, as well as 

low, middle, and high cloud amounts. 

5 Conclusions 

We have described changes to the way subgrid-scale cloud structure is represented in AM2, and have 

used the new technique’s flexibility to implement new assumptions regarding horizontal and vertical vari-

ability. As it turns out, the net effect of these impact on radiative fluxes is small because the changes caused 

by the new overlap assumption acts, by chance, to oppose the change incurred when the operational imple-

mentation is replaced with subcolumns. Although the new schemes have not produced immediate improve-

ments in the climate simulated by AM2, the model now allows for arbitrary assumptions about subgrid 

scale structure in clouds (and potentially water vapor). The diagnostic variability in cloud condensate used 

here may be replaced with a distribution drawn from an assumed-PDF cloud scheme (Tompkins, 2002 ), 

for example, with no further modifications, and the radiative effects of convective clouds (e.g. those treated 

by the Donner (1993) convection scheme under development at GFDL) included in a consistent way. 

Subcolumns might be used to account for the effects of subgrid-scale variability on other processes. 

Cloud microphysical processes, for example, could be computed in each subcolumn (Jakob and Klein, 

2000) to account for both arbitrary overlap assumptions and arbitrary distributions of condensate amount 

in each level. Subcolumns could also be used to represent the subgrid-scale variability of water vapor, par-

ticularly when using assumed-PDF schemes in which this distribution is explicitly available; variable rela-

tive humidity might then be used to help predict aerosol size distributions for clear sky radiation 

calculations, or used in lieu of the mean sounding to link convection to the large-scale environment. 

The process of replacing profiles of continuously-variable cloud properties with discrete sets of locally 

uniform discrete columns introduces sampling noise, and the use of the Monte Carlo Independent Column 

Approximation to compute radiative transfer adds another layer of noise. We demonstrated in Section 4 

that McICA noise does not systematically affect the evolution of clouds and radiation AM2 as it does the 
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NCAR CAM. This is likely related to the very different ways the two models determine cloud fraction, 

since the NCAR model’s diagnostic cloud-fraction scheme is liable to be more easily affected by instanta-

neous anomalies in local heating and cooling rates than the prognostic scheme used by AM2. The initial 

discretization of model columns also introduces sampling noise, but this is relatively small (an RMS error 

of 10% or less in cloud fraction when 25 columns are used, for example), especially compared with the 

accuracy of the underlying cloud scheme. In neither CAM nor AM2 does the climate degrade when sam-

pling noise is introduced, consistent with the results from short-term forecasts (Pincus et al., 2003). This 

suggests that global models are forgiving enough to admit radiation parameterizations which are unbiased 

but approximate. 
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Appendix 1: Diagnosing subgrid-scale inhomogeneity in cloud condensate

AM2 predicts three cloud properties: cloud area fraction qa, cloud liquid water specific humidity ql, and 

cloud ice specific humidity qi within each grid cell. We are considering replacing this parameterization 

with one that predicts the distribution of total water mixing ratio qt = qv + ql + qi (where qv is the water 

vapor specific humidity), from which the PDF of cloud liquid and ice can be inferred (Tompkins, 2002). 

Here we describe a method for diagnosing a PDF of total water that is consistent both with the current 

cloud scheme (i.e. the values of cloud fraction and condensate qc = ql + qi predicted in AM2) and the 

scheme under development (i.e. the distribution of total water). This allows us to get a rough idea of how 

much subgrid-scale variability might affect radiation and precipitation fluxes before devoting the consider-

able time and effort needed to build a full assumed-PDF cloud scheme. 
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The PDF scheme assumes that the total water specific humidity within each model grid cell follows a 

beta distribution. This distribution is specified by four parameters: the exponents p and q (which determine 

the shape of the distribution) and the minimum and maximum values a and b. The cloud fraction and grid-

mean condensate amounts are then given by Tompkins (2002)

(A.1)

(A.2)

where we use the incomplete gamma function  and the normalized saturation (equilibrium) spe-

cific humidity

(A.3)

Equation (A.2) differs from (14) in Tompkins (2002) in that we have included the thermodynamic factor 

 (A.4)

where Tf is the “frozen temperature” including the latent heats of vaporization and sublimation 

. This is equivalent to assuming that energy is constant within the grid cell, while 

Tompkins assumes constant temperature.

The beta distribution is described by four parameters; we have at most two pieces of information (cloud 

fraction and mean condensate concentration). To completely determine the distribution we specify q and 

assume that p = q (i.e. that the distribution is symmetric). We use a look-up table of incomplete beta distri-

bution deviates to find the value of  that solves (A.1), then solve (A.2) for the distribution width . 

When cloud fraction is unity we assume that the minimum value of qt in the grid cell is just saturated; 

because the distribution is assumed symmetric this is equivalent to specifying .

To create sample i from the distribution we choose a random number from a uniform distribution 

between zero and one, then use the beta distribution deviate table to determine the scaled value of total 

qa 1 I q̃s
p q,( )–=

qc α b a–( ) p
p q+
------------ 1 I q̃s
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⎜ ⎟
⎛ ⎞
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water , from which we determine the condensate specific humidity in those 

subcolumns containing cloud as . This condensate is then partitioned into ice 

and liquid in each subcolumn according to the ratio from the global model grid cell. 

The distribution we determine through this procedure also implies a mean vapor specific humidity 

which may differ from the value predicted by AM2. Constraining the PDF to simultaneously have the same 

mean vapor, cloud fraction, and cloud condensate as the model adds considerable complication to the diag-

nostic calculation. As vapor is not used in our calculations allowing the vapor to be consistent with the 

PDF rather than the large-scale model state seems acceptable. 

q̃t i, qt i, a–( ) b a–( )⁄=

qc i, α b a–( ) q̃t i, q̃s–( )=
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.  

 

Table 1: The impact on vertically-projected cloud fraction, outgoing longwave radiation, and 

reflected solar radiation at the top of the atmosphere due to changes in the overlap assumption in 

GFDL’s global model AM2. Changes are averaged, over the globe and the seasonal and diurnal 

cycles, and are relative to the default random overlap assumption. AM2 produces partially-cloudy 

layers relatively frequently compared to other global models, so overlap assumptions can play a 

large role in determining total cloud fraction and radiative fluxes. 

Weighted
1 km scale

Weighted
2 km scale

Maximum-
Random Maximum

Cloud Fraction (%) -4.1 -6.0 -8.6 -12.3

OLR (W/m2) 0.8 1.2 2.1 2.5

Reflected solar (W/m2) -5.4 -7.4 -9.1 -11.9

Total (W/m2) -4.6 -6.2 -7.0 -9.4
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Table 2: The impact on radiative fluxes caused by introducing subgrid-scale inhomogeneity in 

cloud optical thickness. The change is relative to clouds using the same overlap assumption, to the 

total cloud fraction is not affected. The variability in each grid cell is estimated from the cloud 

fraction and condensate amounts. Clouds in the standard model are tuned by reducing the 

condensate amount by 15% before radiative properties are computed; account for realistic 

amounts of inhomogeneity allows this tuning to be removed. (Figures are rounded so total 

changes may differ from the sum of the components.)

Relative to 
uniform clouds

Inhomogeneous, tuned Inhomogeneous, untuned 

1 km 2 km 1 km 2 km

OLR 1.3 1.4 0 0.2

Reflected solar -3.0 -3.1 -0.5 -0.8

Total (W/m2) -1.7 -1.7 -0.5 -0.5
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Figure 1. Example subcolumns created from model profiles of cloud fraction and liquid and ice water 

concentrations. The top three panels show profiles of cloud fraction and liquid and ice water 

concentrations taken from a single column of AM2 at a single time step. The bottom two panels show 

the subcolumns produced by the generator using a exponentially-decaying overlap assumption with a 

scale length of 1 km and internal variability in cloud water and ice concentrations diagnosed from the 

cloud fraction and mean condensate amount. The columns are generated in random order but are show 

here in order of ascending ice-plus-liquid water path. 

Figure 2. Difference in top-of-atmosphere (TOA) radiative fluxes due to two treatments of cloud overlap. 

The operational version of AM2p13 implements random overlap by averaging clear- and cloudy- sky 

reflectance and transmittance according to cloud fraction, then computing radiative transfer in a single 

column. An alternative is to construct an ensemble of subcolumns (as described in the text), compute 

radiative transfer in each subcolumn and average the results (the “Independent Column 

Approximation” or ICA). This figure shows the difference between these two calculations (ICA minus 

the original implementation) using the same cloud fields. Longwave fluxes (left) show some sampling 

noise from the subcolumn generation, but this noise is spatially uncorrelated and has a global mean 

difference of less than 0.01 W/m2. Reflected shortwave fluxes (right panel), however, are greater in 

almost all locations when ICA is used, and the subcolumns reflect more sunlight by about 4.1 W/m2 in 

the global mean. 

Figure 3. Sampling noise in top-of-atmosphere radiative fluxes introduced by the Monte Carlo Independent 

Column Approximation (McICA) in cloud fields produced by AM2. The noise is computed for a single 

time step using the cloud fields predicted at 3Z on May 1, 1983. We use an overlap assumption that 

changes from maximum to random exponentially with a scale length of 2 km and diagnose internal 

variability in cloud water and ice concentrations based on cloud fraction and mean condensate amount 

in each layer. McICA sampling noise is computed as the difference between McICA and ICA in each 
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grid column. The distribution of errors in the shortwave is much broader than in the longwave, with 

single grid point errors as large as 225 W/m2 in the shortwave compared to 25 W/m2 in the longwave. 

Global mean errors for both sets of fluxes, though, are less than 0.1 W/m2.

Figure 4. Differences in low cloud amount (panel a) and reflected shortwave radiation (panel b) between 

the modified and operational versions of AM2. The modified version uses exponentially-decaying 

overlap, diagnostic internal inhomogeneity in cloud condensate concentrations, and the McICA 

algorithm for computing radiative fluxes. Differences are computed over the last 16 years of a 17 year 

run with prescribed sea surface temperatures. 

Figure 5. Inhomogeneity factor ε, defined one minus the ratio of the radiative-mean and linear-mean cloud 

optical thickness, as observed by ISCCP (left) and predicted by the modified version of AM2. The 

model reproduces some basic features (e.g. the enhanced variability in the tropics) but overall 

agreement is poor, mostly because of known model deficiencies in simulating the distribution of cloud 

optical thickness. 

Figure 6. Distribution of differences of mean annually-averaged reflected shortwave radiation within and 

between two ensembles of year-long simulations. The top panel shows the distribution of grid-point 

differences of each ensemble member from the ensemble mean when a complete radiation calculation 

is performed in each subcolumn (ICA); the middle panel shows the same result for the ensemble using 

McICA. The bottom panel shows the distribution of differences between the two ensemble means at 

each grid point. There is substantially more variability within the ensembles than between them, 

indicating that the use of McICA does not change the climate simulated by AM2. 

Figure 7. Significance values (p values) for a Student’s t-test applied to the difference in ensemble-mean 

annually-averaged reflected solar radiation at each grid point between ensembles of simulations using 

ICA and McICA. This value indicates the likelihood that the means of two samples drawn from a 
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single distribution would be expected to differ by a given amount by chance alone. The uniform 

distribution of these values confirms that the ICA and McICA simulations are statistically 

indistinguishable. 



              

Pincus et al.,  Stochastic subcolumns to represent cloud structure: Fig. 1

Example subcolumns created from model profiles of cloud fraction and liquid and ice water 

concentrations. The top three panels show profiles of cloud fraction and liquid and ice water concentrations 

taken from a single column of AM2 at a single time step. The bottom two panels show the subcolumns 

produced by the generator using a exponentially-decaying overlap assumption with a scale length of 1 km 

and internal variability in cloud water and ice concentrations diagnosed from the cloud fraction and mean 

condensate amount. The columns are generated in random order but are show here in order of ascending 

ice-plus-liquid water path.

10-6 10-4 10-2 10

10
00

60
0

40
0

80
0

Ice water content

Liquid water content

g/m2

 P
re

ss
ur

e 
(m

b)

0 0.2 0.4

80
0

60
0

40
0

20
0

0 0.05 0.15 0 2 4 x 10-3

Cloud fraction Liquid water content Ice water content



Pincus et al.,  Stochastic subcolumns to represent cloud structure: Fig. 2

Difference in top-of-atmosphere (TOA) radiative fluxes due to two treatments of cloud overlap. The 

operational version of AM2p13 implements random overlap by averaging clear- and cloudy- sky 

reflectance and transmittance according to cloud fraction, then computing radiative transfer in a single 

column. An alternative is to construct an ensemble of subcolumns (as described in the text), compute 

radiative transfer in each subcolumn and average the results (the “Independent Column Approximation” or 

ICA). This figure shows the difference between these two calculations (ICA minus the original 

implementation) using the same cloud fields. Longwave fluxes (left) show some sampling noise from the 

subcolumn generation, but this noise is spatially uncorrelated and has a global mean difference of less than 

0.01 W/m2. Reflected shortwave fluxes (right panel), however, are greater in almost all locations when ICA 

is used, and the subcolumns reflect more sunlight by about 4.1 W/m2 in the global mean.
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Sampling noise in top-of-atmosphere radiative fluxes introduced by the Monte Carlo Independent Column 

Approximation (McICA) in cloud fields produced by AM2. The noise is computed for a single time step 

using the cloud fields predicted at 3Z on May 1, 1983. We use an overlap assumption that changes from 

maximum to random exponentially with a scale length of 2 km and diagnose internal variability in cloud 

water and ice concentrations based on cloud fraction and mean condensate amount in each layer. McICA 

sampling noise is computed as the difference between McICA and ICA in each grid column. The 

distribution of errors in the shortwave is much broader than in the longwave, with single grid point errors 

as large as 225 W/m2 in the shortwave compared to 25 W/m2 in the longwave. Global mean errors for both 

sets of fluxes, though, are less than 0.1 W/m2.
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Pincus et al.,  Stochastic subcolumns to represent cloud structure: Fig. 4

Differences in low cloud amount (panel a) and reflected shortwave radiation (panel b) between the 

modified and operational versions of AM2. The modified version uses exponentially-decaying overlap, 

diagnostic internal inhomogeneity in cloud condensate concentrations, and the McICA algorithm for 

computing radiative fluxes. Differences are computed over the last 16 years of a 17 year run with 

prescribed sea surface temperatures.

Pincus et al.,  Stochastic subcolumns to represent cloud structure: Fig. 5

Inhomogeneity factor ε, defined one minus the ratio of the radiative-mean and linear-mean cloud optical 

thickness, as observed by ISCCP (left) and predicted by the modified version of AM2. The model 

reproduces some basic features (e.g. the enhanced variability in the tropics) but overall agreement is poor, 

mostly because of known model deficiencies in simulating the distribution of cloud optical thickness.

a. Change in low cloud fraction (modified - operational) b. Change in reflected shortwave radiation
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Pincus et al.,  Stochastic subcolumns to represent cloud structure: Fig. 6
Distribution of differences of mean annually-averaged reflected shortwave radiation within and between 
two ensembles of year-long simulations. The top panel shows the distribution of grid-point differences of 
each ensemble member from the ensemble mean when a complete radiation calculation is performed in 
each subcolumn (ICA); the middle panel shows the same result for the ensemble using McICA. The 
bottom panel shows the distribution of differences between the two ensemble means at each grid point. 
There is substantially more variability within the ensembles than between them, indicating that the use of 
McICA does not change the climate simulated by AM2.
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Pincus et al.,  Stochastic subcolumns to represent cloud structure: Fig. 7

Significance values (p values) for a Student’s t-test applied to the difference in ensemble-mean annually-

averaged reflected solar radiation at each grid point between ensembles of simulations using ICA and 

McICA. This value indicates the likelihood that the means of two samples drawn from a single distribution 

would be expected to differ by a given amount by chance alone. The uniform distribution of these values 

confirms that the ICA and McICA simulations are statistically indistinguishable.
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