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Abstract

Metabolomics or the large-scale phytochemical analysis of plants is reviewed in relation to functional genomics and systems
biology. A historical account of the introduction and evolution of metabolite profiling into today’s modern comprehensive meta-
bolomics approach is provided. Many of the technologies used in metabolomics, including optical spectroscopy, nuclear magnetic
resonance, and mass spectrometry are surveyed. The critical role of bioinformatics and various methods of data visualization are
summarized and the future role of metabolomics in plant science assessed.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recent advances in technology have brought about a
revolution in the manner in which biological systems are
visualized and queried. Advances in genetics and auto-
mated nucleotide sequencing have made possible the
large scale physical mapping and sequencing of over
twenty genomes including Arabidposis thaliana (The
Arabidopsis Initiative, 2000), rice (Goff et al., 2002; Yu
et al., 2002), and humans (Venter et al., 2001). Expres-
sed sequence tag (EST) sequencing and mRNA profiling
using either microarrays (Kehoe et al., 1999) or serial
analysis of gene expression (SAGE) (Velculescu et al.,
1995) now allow for the comprehensive analysis of the
transcriptome. Advances in mass spectrometry have
enabled the analysis of cellular proteins and metabolites
(proteome and metabolome respectively) on a scale
previously unimaginable. The cumulative utilization of
these technologies has advanced the fields of functional
genomics (Holtorf et al., 2002; Oliver et al., 2002;
Somerville and Somerville, 1999) and systems biology
(Ideker et al., 2001; Kitano, 2000). Both fields comprise
traditional molecular biology, enzymology and bio-
chemistry; however, the predominant difference from
previous approaches is the significantly larger scale
upon which they are conducted.

Functional genomics seeks to decipher unknown gene
function. The functions of many genes revealed in large
scale sequencing projects can be inferred through
nucleotide similarity with gene sequences of known
function determined through traditional empirical
methods. However, there still remains a large number of
predicted open reading frames (ORFs) that have no
assigned function based on similarity (The Arabidopsis
Initiative, 2000; The EU Arabidopsis Project, 1998;
Somerville and Dangl, 2000) and of those that have
been functionally annotated, only a small proportion of
them have been demonstrated experimentally to have
the function assigned (The Arabidopsis Initiative, 2000).
Thus, empirical methods of functional determination
are required. Functional elucidation of genes can be
pursued through the systematic perturbation of gene
expression followed by quantitative and qualitative
analyses of gene expression products including mRNA,
protein, and now metabolite levels (see Fig. 1). Genetic

perturbations can be achieved by mutations caused by
chemicals or ionizing radiation, or by integration of
foreign DNA sequences leading to either over- or
under-expression of genes in either targeted or random
approaches (Weigel et al., 2000; Wesley et al., 2001).
Transient alterations in gene expression can also be
generated, for example, by the use of viral vectors
(Baulcombe, 1999; Burton et al., 2000). Once expression
has been altered, expression products are quantified
through various profiling approaches and the resultant
changes are assessed to infer gene function. Function
may also be deciphered through analysis of co-respon-
ses. Stephen Oliver’s group has coined the term
FANCY or functional analyses by co-response in yeast
(Raamsdonk et al., 2001; Teusink et al., 1998). This
method relies on the pair-wise comparisons of metabo-
lite concentration changes obtained following perturba-
tion of known genes (60% of the yeast genome) with
those following perturbation of genes with unknown
function. If an unknown gene yields a similar response,
it is assigned a similar function. An advantage of the
FANCY approach is that it assigns cellular rather than
molecular “‘function™, e.g. one assigns a gene to be
involved in oxidative phosphorylation rather than
naming it a kinase. Cellular function is more informa-
tive with regards to phenotype and from a systems
biology perspective.

Systems biology is similar to functional genomics in
its approach, but is slightly different in its objectives.
Systems biology encompasses a holistic approach to the
study of biology and the objective is to simultaneously
monitor all biological processes operating as an inte-
grated system. Through the study of systems, one can
begin to visualize how individual pathways or metabolic
networks are interconnected. This approach is based on
solid theoretical frameworks and uses computer model-
ing to explain experimental observations. It is envi-
sioned that holistic biology will be of great value for
directing metabolic engineering strategies because
modifications to the expression of single genes do not
always bring about the predicted or desired effects due
to cross-talk between pathways (Oliver, 2002).

At the analytical level, both functional genomics and
systems biology rely on the comprehensive profiling of
large numbers of gene expression products. These
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Fig. 1. Integrated functional genomics. The eflects of gene perturbations are evaluated at multiple levels including the transcriptome, proteome, and
metabolome. Changes in the metabolome occur as a consequence of those changes in the transcriptome that result in changes in the levels or cata-
lytic activities of enzymes. Therefore, metabolome analysis is a valuable tool for inferring gene function.

approaches are commonly referred to as transcriptomics
(Holtorf et al., 2002; Oliver et al., 1998), proteomics
(Blackstock and Weir, 1999; Thiellement et al., 1999;
van Wijk, 2001), and metabolomics (Fiehn et al., 2000;
Oliver et al., 1998; Trethewey et al., 1999; Tretheway,
2001). The use of these “omics™ technologies in biolo-
gical research during the last 6 years is summarized in
Fig. 2, based on the number of publications per year for
each area. It is clear from Fig. 2 that the concept of
profiling the metabolome has not been as eagerly
engaged as its parallel ““omics™ counterparts even
though the necessary technologies have a much longer
history. This is primarily due to the technical complex-
ity of metabolomics, as will be discussed later. Never-
theless, exponential growth is being observed in the use
of metabolomics, and the impact of this approach is
now being felt in many areas of biology.

There appear to be differences of opinion as to how
best to define the comprehensive profiling of the meta-
bolome. Some have chosen ‘“Metabolomics™ while oth-
ers have chosen “Metabonomics™. The term
metabonomics is believed to have arisen from the root
word “‘genomics” and has been largely utilized in the
realm of toxicology. Alternatively, it has been suggested
that the origins of the different terms are founded in the
technology platform chosen for analyses, i.e. metabo-
lomics for mass spectrometry based approaches and
metabonomics for NMR based approaches. Regardless
of the approach, we believe that the term metabolomics

should be used because it is most consistent with the
parallel terminology of transcriptomics and proteomics.
Cases for the definition and differentiation of the terms
target analysis, metabolite/metabolic profiling, metabo-
lomics, and metabolic fingerprinting have been recently
made (Fiehn, 2002) with the suggestion that metabo-
nomics has been erroneously used to describe compre-
hensive analysis of the metabolome, and that a more
correct terminology for metabonomics would be meta-
bolic fingerprinting. We have also seen a similar misuse
of the term metabolomics for less comprehensive meth-
ods such as biomarker analysis. We propose that any
technology whose output is processed with pattern
recognition software and without differentiation of
individual metabolites should be termed metabolic fin-
gerprinting and not metabolomics or metabonomics.

2. The metabolome

The components of the metabolome can be viewed as
the end products of gene expression and define the bio-
chemical phenotype of a cell or tissue. Quantitative and
qualitative measurements of large numbers of cellular
metabolites thus provide a broad view of the biochem-
ical status of an organism that can be used to monitor
and assess gene function (Fiehn et al., 2000). Profiling of
the transcriptome and proteome has received some cri-
ticism due to its inability always to predict gene function.
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Fig. 2. PubMed literature search results document the continuously growing research areas of, (A) metabolite or metabolic profiling, (B) functional
genomics, (C) transcriptomics, (D) proteomics and (E) metabolomics based on numbers of publications. Although metabolite profiling is much the
oldest technology, the number of metabolomics publications is still relatively low compared to those describing other “omics” approaches.

Although the transcriptome represents the delivery
mechanism of a translational code to the cellular
machinery for protein synthesis, increases in mRNA
levels do not always correlate with increases in protein
levels (Gygi et al., 1999). Furthermore, once translated a
protein may or may not be enzymatically active. Due to
these factors, changes in the transcriptome or the pro-
teome do not always correspond to alterations in bio-
chemical (i.e. metabolic) phenotypes. Another
consideration when profiling the transcriptome and
proteome is that most modern techniques identify
mRNA and protein through sequence similarity or
database matching; thus, identification is based pri-
marily on the quality of the match and is therefore
indirect. In the absence of existing database information,
transcript or protein profiling often yield only limited
information. Based on the above limitations, profiling

the metabolome may actually provide the most “func-
tional” information of the “omics™ technologies. There
are, nevertheless, many instances in which transcriptome
and proteome profiling have successfully pointed the
observer to functional information, and therefore an
integrated approach is preferred when resources permit.

The comprehensive quantitative and qualitative ana-
lysis of all metabolites within a cell, tissue or organism is
a very ambitious goal and is still far from a reality for
any system, although substantial progress is being
made. Many responses involving altered gene expres-
sion, particularly those of plants to environmental sti-
muli, result in qualitative changes in metabolite pools,
and therefore qualitative identification of the metabo-
lites will be critical. At the same time, some genetic
modifications or environmental responses may result
only in temporal or spatial changes in metabolite con-
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centrations. Thus. accurate and reproducible quantita-
tive methods are also necessary to differentiate samples
at a level that can provide an understanding of func-
tional relationships between genomes and metabolomes.

Central to the metabolomic process are a variety of
chemical profiling technologies. These technologies are
used to compare different metabolic states resulting
from differences in gene expression. Variations in meta-
bolic states are manifested in “differential display™ of
metabolites or ““discovery events™” in the metabolome
data set. To interpret the discovery event, the differen-
tially expressed metabolites must be chemically identi-
fied. Single metabolites are identified first. Correlations
are then sought between sets of differentially displayed
metabolites. The individual as well as the correlated
metabolites are then used to identify metabolic path-
ways or networks that have been affected. These path-
ways are then used to determine the broader biological
significance of the response or to assign gene function.
This can be done in a systematic way using the method
of clique-metabolite matrices, developed in Fiehn's
group (Kose et al., 2001).

“Omics™ technologies are based on comprehensive
biochemical and molecular characterizations of an
organism, tissue or cell type. However, what constitutes
a comprehensive analysis? A truly comprehensive ana-
lysis of the metabolome is currently not feasible and the
number of primary and secondary metabolites in any
given plant species is still uncertain. We suggest that in
practice, a comprehensive analysis for plants should
cover multiple metabolic pathways in both primary and
secondary metabolism. We suggest at minimum inclu-
sion of carbohydrates, amino acids, organic acids,
lipids/fatty acids, vitamins and various classes of natural
products such as phenylpropanoids, terpenoids, alka-
loids, and glucosinolates, the latter classes depending
upon the taxonomy of the species under consideration.

2.1. The development of metabolomics

Metabolomics originates from metabolite profiling.
The earliest metabolite profiling publications originated
from the Baylor College of Medicine in the early 1970s
(Devaux et al., 1971; Horning and Horning, 1970,
1971a,b). These authors illustrated their concept
through the multicomponent analyses of steroids, acids,
and neutral and acidic urinary drug metabolites using
GC/MS. They are also credited with coining the term
“metabolite profiling™ to refer to qualitative and quan-
titative analyses of complex mixtures of physiological
origin. Soon afterwards, the concept of using metabolite
profiles to screen. diagnose, and assess health began to
spread (Cunnick et al., 1972; Mroczek, 1972). Thomp-
son and Markey expanded on the quantitative aspects
of using GC'MS for metabolite profiling in 1975
(Thompson and Markey. 1975) and by the late 1970s

the methodology had attained enough interest to sup-
port a review article (Gates and Sweeley, 1978). Pub-
lications on the automation (Vrbanac et al., 1982) and
expansion of GC based methods to other chemical
classes soon followed (Niwa, 1986). During the early
1980s. results from the application of HPLC and NMR
for metabolite profiling (Bales et al.. 1984, 1988;
Nicholson et al., 1984) began appearing in the literature.
Interest in this area continued and resulted in a special
edition of The Journal of Chromatography in 1986 that
focused on metabolite profiling (Deyl et al., 1986; Frid-
land and Desiderio, 1986; Holland et al., 1986; Liebich,
1986; Niwa, 1986). Metabolic profiling research reached
a steady state during the 1980s and into the early 1990s
with approximately 10-15 publications per year. Many
of these reports became more targeted and began to
deviate from the original broad scope approach; how-
ever they still utilized the familiar metabolite profiling
terminology. An example would be the pharmaceutical
determination of the metabolic fate of drugs (Gerding et
al., 1990; Woolf et al., 1992). In the early 1990s, Sauter
and colleagues from BASF reported comprehensive
GC/MS metabolic profiling as a diagnostic technique
for determining the mode of action of various herbicides
on barley plants (Sauter et al., 1991). This report estab-
lished the principles and approaches that would be used
by many soon to follow.

During the turn of the century, multiple genome and
EST sequencing projects were underway or nearing
completion and were fueling the “‘genomics era™ (Goff
et al., 2002; The Arabidopsis Initiative, 2000; Yu et al.,
2002). It soon became clear that a large number of pre-
dicted genes, revealed by high throughput sequencing
projects, could not be assigned a function based on
sequence information alone, and proposals to assess
gene function using large-scale analyses at the tran-
scriptome level initiated the “functional genomics™ era.
It then became apparent that proteomics might yield a
better or at least parallel means to monitor the results of
gene expression. Oddly, the continuation of this thought
process did not rapidly trickle down to consideration of
the metabolome. It is believed that Oliver was the first
to make this connection (Oliver, 1997) based on the
perceived need for quantitative and qualitative
measurement of phenotype to assess genetic function
and redundancy in yeast. His group estimated the num-
ber of yeast metabolites to be approximately 600 and
proposed the concept of metabolomics. This approach
was then pioneered for plants by researchers at the Max
Planck Institute (Trethewey, Willmitzer, Fiehn, Fernie
at Golm. Germany) based on the analytical approach
described by Sauter and coworkers (Sauter et al.. 1991).
Other plant groups were soon to follow. including The
Samuel Roberts Noble Foundation that selected Medi-
cago truncatula for in-depth analysis (Sumner et al..
2002). the Genomic Arabidopsis Resource Network
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(GARNet), lowa State University, and others listed in
Table 1. Commercial entities such as Metanomics,
Paradigm Genetics, and Phenomenome Discoveries
were also quick to capitalize on the utility of metabolic
profiling in plants. The number of academic and com-
mercial groups using and entering this field is growing
exponentially.

2.2. Limitations of metabolomics

The major limitation of metabolomics is its current
inability to comprehensively profile all of the metabo-
lome. This inability is directly related to the chemical
complexity of the metabolome, the biological variance
inherent in most living organisms, and the dynamic
range limitations of most instrumental approaches. In
many ways, this is similar to the situation of the Human
Genome Project in 1990, when the technological means
to sequence genomes were not yet available.

The genome and transcriptome consist of linear poly-
mers of four nucleotides with highly similar chemical
properties, facilitating high throughput analytical
approaches. The proteome is substantially more com-
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plex, but is still based on a limited set of 22 primary
amino acids. The chemistry of these biopolymers are
nevertheless well defined and two-dimensional poly-
acrylamide gel electrophoresis (2-DE) can readily dif-
ferentiate a large number of proteins in a single analysis,
with several thousand being routine and 10,000 repre-
senting the upper boundary (Klose and Kobalz, 1995).
When one surveys the metabolome, the chemical com-
plexity is significantly greater. The chemical properties
of metabolites range from ionic inorganic species to
hydrophilic carbohydrates, hydrophobic lipids, and
complex natural products. The chemical diversity and
complexity of the metabolome make it extremely chal-
lenging to profile ALL of the metabolome simulta-
neously. Currently, no single analytical technique
provides the ability to profile all of the metabolome.
This obstacle is being circumvented through the use of
selective extraction and parallel analyses using a com-
bination of technologies to obtain the most compre-
hensive visualization of the metabolome (Sumner et al.,
2002).

Analytical variance is defined as the coefficient of
variance or relative standard deviation that is directly

Table |
Plant metabolomics programs accessible via the internet

Academic/non profit

2nd International Meeting on Plant Metabolomics
Max Planck Institute

The Noble Foundation

GARNet

Towa State University

Platform for Plant Metabolomics

Plant Research International

John Innes Centre

Norwich Research Park

Chiba University, Japan

Leibniz Institute of Plant Biochemistry, Germany

Wageningen University. The Netherlands

Leiden University

Imperial College. London

Michigan State University

Institute of Biological Sciences, University of Wales, Aberystwyth

Center for Novel Agricultural Products (CNAP). University of York

Commercial

Metanomics

Paradigm Genetics

Phenomenome Disoveries

The Netherlands Organization for Applied Scientific Rescarch (TNO)
Pioneer Hybrid

Syngenta

Unigen. Korca Crop Design. Belgium
Exelixis Plant Sciences

Large Scale Biology. USA

Unilever

Numico

http://www.metabolomics-2003.mpg.de
http://www.mpimp-golm.mpg.de/fiehn/index-e.html
http://www.noble.org/plantbio/MS/index.htm
http://www.york.ac.uk/res/garnet/becale.htm
http://www.plantsciences.iastate.cdu/
http://www.bb.iastate.edu/faculty/dimmas/index.html
http://www.public.iastate.edu/ ~ botany/wurtele.html
http://www.dpw.wau.nl/pf/PPM/indexppm.html
http://www.plant.wageningen-ur.nl
http://www_jic.bbsrc.ac.uk/corporate/Facilities/metabolomics.html
http://www.metabolomics-nrp.org.uk/nrp.html
http://www.p.chiba-u.ac.jp/lab/idenshi/index-c.html
http://www.ipb-halle.de/english/institute/institute.htm
http://www.ipb-halle.de/english/institute/research.htm
http://www.wau.nl/welcome.html
http://www.fwn.leidenuniv.nl/gs/bio_pharmaceutical_sciences;staff/Verpoorte.htm
http://www.med.ic.ac.uk/divisions/1/nicholson.asp
http://www.bch.msu.cdu/faculty/dellapenna.htm
http://www.aber.ac.uk/biology/
http://gepasi.dbs.aber.ac.uk/dbk/metabol.htm
http://www.york.ac.uk/org/cnap/01_research/0lc¢_labB/01c6_plant/01c6_plant.htm

http://www.mectanomics.de

http:; ' www.paradigmgenetics.com,default.asp
http:/‘www.phenomenome.com

http:- www.voeding.tno.nl-biotechnology

http:.. www.pioneer.com

http: " www.syngenta.com en.index_flash.asp
http: www.cropdesign.com

http: www.exelixis.com discovery. plant_biotech
http: ‘www.Isbc.com index.php

http: research.unilever.com

http: www.numico-rescarch.com splashpage.html
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related to the experimental approach. This variance
differs in accordance with the technology platform being
used and is indeterminate in origin. Biological variance
is also indeterminate in origin and arises from quanti-
tative variations in metabolite levels between plants of
the same species grown under identical or as near as
possible identical conditions. Biological variations typi-
cally exceed analytical variations. Recently, Roessner
and coworkers reported that the biological variability
exceeded the analytical variability of GC/MS by a fac-
tor of ten (Roessner et al., 2000). Our data suggest that
the average biological variance for Medicago truncatula
is approximately 50% (unpublished data). These large
biological variations represent the major limitations of
the “‘resolution’ of the metabolomics approach. One
way to reduce biological variance is to pool samples,
either by analyzing different tissues of the plant within a
single sample, or by pooling multiple replicate plants.
This helps minimize random variations through statis-
tical averaging; however, many variations in metabolite
levels often have biological significance and result from
functional differentiation of tissues. Pooling tissue can,
therefore, result in undesirable dilution of site or tissue
specific up/down-regulated metabolites. An alternative,
if relevant to the goals of the experiment, is to start with
homogeneous tissue such as cell cultures, but this has
obvious restrictions since the synthesis of some plant
metabolites, particularly natural products, may be
linked to cellular differentiation. Plant growth stage,
environmental parameters, and sampling are critical.
Therefore, strategies need to be incorporated to mini-
mize variations.

A major technological challenge encountered in
metabolomics is dynamic range. Dynamic range defines
the concentration boundaries of an analytical determi-
nation over which the instrumental response as a func-
tion of analyte concentration is linear. The dynamic
range of many techniques can be severely limited by the
sample matrix or the presence of interfering and com-
peting compounds. This is one of the most difficult
issues to address in metabolomics. Most analytical mass
spectrometric methods have dynamic ranges of 10#-10°
for individual components; however, this range is com-
monly and significantly reduced by the presence of other
chemical components. In other words, the presence of
some excessive metabolites can cause significant or
severe chemical interferences that limit the range in
which other metabolites may be successfully profiled.
For example, high levels of primary metabolites such as
sugars often interfere with the ability to profile second-
ary metabolites such as flavonoids. The positive aspect
of this dilemma is that many of the highly expressed
metabolites are often unique and can provide exclusive
bases for the differentiation of cell states, organs, tis-
sues, varieties and organisms. These exclusive com-
pounds are often referred to as biomarkers. Selective

profiling of these biomarkers is very useful in high
throughput diagnosis of specific disorders such as dia-
betes (i.e. glucose monitoring) or cancer, but should not
be classified as metabolomics due to the highly targeted
nature of the profiling (Fiehn, 2002).

Interfering or competing analytes that may not
necessarily be present in excess can nevertheless often
lower performance and/or bias MS profiling techniques.
For example, it is difficult to profile oligosaccharides by
LC/MS in the presence of peptides or amino acids. The
reason is that amino acids have greater proton affinities
than oligosaccharides and, therefore, yield higher abun-
dances of the charged species necessary for mass
measurement. Another problem in electrospray ioni-
zation mass spectometry (ESI/MS) is salts. Low levels
(i.e. submillimolar) of ionic species are known to reduce
the ionization efficiency in ESI/MS and significantly
interfere with profiling all species (Smith et al., 1991).
Different analytical approaches have been developed to
improve dynamic range and to minimize complications,
and are discussed later.

2.3. Metabolome technologies

It is generally accepted that a single analytical tech-
nique will not provide sufficient visualization of the
metabolome and, therefore, multiple technologies are
needed for a comprehensive view (Hall et al., 2002;
Sumner et al.,, 2002). Accordingly, many analytical
technologies have been enlisted to profile the metabo-
lome. Methods based on infrared spectroscopy (IR)
(Oliver et al., 1998), nuclear magnetic resonance (NMR)
(Bligny and Douce, 2001; Ratcliffe and Shachar-Hill,
2001; Roberts, 2000), thin layer chromatography (TLC)
(Tweeddale et al., 1998), HPLC with ultraviolet and
photodiode array detection (LC/UV/PDA) (Fraser et
al., 2000), capillary electrophoresis coupled to ultravio-
let absorbance detection (CE/UV) (Baggett et al., 2002),
capillary electrophoresis coupled to laser induced fluo-
rescence detection (CE/LIF) (Arlt et al., 2001), capillary
electrophoresis coupled to mass spectrometry (CE/MS)
(Soga et al., 2002), gas chromatography-mass spectro-
metry (GC/MS), liquid chromatography-mass spectro-
metry (LC/MS) (Huhman and Sumner, 2002), liquid
chromatography tandem mass spectrometry (LC/MS/
MS) (Huhman and Sumner, 2002), Fourier transform
ion cyclotron mass spectrometry (FTMS) (Aharoni et
al., 2002), HPLC coupled with both mass spectrometry
and nuclear magnetic resonance detection (LC/NMR/
MS) (Bailey et al., 2000a), and LC/NMR/MS/MS (Bai-
ley et al., 2000b) have all been used.

The selection of the most suitable technology is gen-
erally a compromise between speed. selectivity and sen-
sitivity. The sensitivities of various techniques are
illustrated in Fig. 3. Tools such as NMR are rapid and
selective. but have relatively low sensitivity. Other
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methods such as capillary electrophoresis coupled to
laser induced fluorescence (CE/LIF) detection are
highly sensitive, but lack selectivity. Hyphenated mass
spectrometry methods such as GC/MS and LC/MS
offer good sensitivity and selectivity, but relatively
longer analysis times.

2.3.1. Thin layer chromatography

Two-dimensional thin layer chromagtography (2D-
TLC) has been used to follow changes in the 70 most
abundant '*C-glucose labeled compounds in E. coli under
varying culture conditions (Tweeddale et al., 1998). This
is a relatively simple and low resolution tool that will
have difficulties accommodating complex mixtures.

2.3.2. Optical spectroscopic methods

Optical spectroscopic methods using IR and UV are
rapid and provide metabolic fingerprints that can be
processed with pattern recognition to determine simila-
rities or differences. Oliver and coworkers used Fourier
transform infrared spectroscopy (FTIR) to differentiate
the metabolic complement of yeast respiratory mutants
from that of wildtype FY23 yeast (Oliver et al., 1998).
This tool offers rapid assessment of similarities and dif-
ferences; however, other more selective tools would be
necessary in plants to identify specific metabolites
responsible for the similarities or differences.

2.3.3. Nuclear magnetic resonance

NMR methods provide metabolic fingerprints with
good chemical specificity for compounds containing
elements with non-zero magnetic moments such as 'H,
13C, N, and 3?P that are commonly found in most

NMR 10mol
LC/UV 10°mol
GC/MS 102mol
LC/MS 10'5mol

LC/L.LF 10"®mol
CE/L.LF 10-mol

Fig. 3. A comparison of the relative sensitivities of various metabo-
lomic tools. NMR has rapid analysis times but suffers from lower
sensitivity thus allowing visualization only of the more concentrated
metabolites (i.e. the tip of the iceberg). GC/MS and HPLC/MS pro-
vide good selectivity and sensitivity. CE/LIF (laser induced fluores-
cence) provides very high sensitivity but lower selectivity.

biological metabolites (Bligny and Douce, 2001).
Increased specificity is further realized with the use of
high magnetic fields that provide greater resolution and
separation of signature chemical shifts. These non-
destructive methods can be highly automated to achieve
very high sample throughput. Most NMR based pro-
grams appear to be focused on biomarker analyses or
the pursuit of specific chemical signatures related to a
specific metabolic process that is indicative of disease or
mode of action, and not on the comprehensive analyses
of a large number of metabolic pathways. The Nichol-
son group at Imperial College, London has provided
many examples of the use of NMR in metabolomic
approaches (Bailey et al., 2000a,b; Bales et al., 1984,
1988; Bundy et al., 2002; Nicholson et al., 1984, 1999,
2002). Recently, NMR has been interfaced with HPLC
and simultaneous mass spectrometry to yield very
informative multidimensional data (Bailey et al., 2000a,
2000b). This multidimensional approach appears very
promising. The disadvantages of HPLC/NMR would be
lower duty cycles of the NMR and elevated expenses
due to the need for deuterated mobile phases.

2.3.4. Mass spectrometry

Flow-injection mass spectral analyses have been used
for metabolic fingerprinting. For example, flow-injec-
tion ESI/MS metabolic fingerprints of cell free extracts
have been used for bacterial identification (Vaidya-
nathan et al., 2001). Similarly, multiple ionization tech-
niques coupled to Fourier transform mass spectrometry
(FTMS) were used to identify metabolites specifically
associated with the development and ripening of straw-
berry fruit (Aharoni et al., 2002). FTMS has the added
capability of high resolution and high mass accuracy.
High resolution allows for the separation and differ-
entiation of very complex mixtures and high mass
accuracies allow for the calculation of elemental com-
positions to aid in structural differentiation and char-
acterization. Unfortunately, this approach cannot
differentiate chemical isomers such as those of common
hexoses since they have the same exact mass. Differ-
entiation of isomers is commonly achieved by separation
technologies such as GC and HPLC, but this adds addi-
tional analysis time. The duty cycle of a FTMS operated
in high resolution and broad band (wide m/z window) is
limited and typically does not provide statistical sampling
across most chromatographic peak widths. In addition,
the current high cost of FTMS instrumentation is prohi-
bitory for widespread utilization.

GC/MS is a relatively low cost alternative that pro-
vides high separation efficiencies that can resolve com-
plex biological mixtures; however, it requires that
samples be volatile. This requirement is readily accom-
plished by chemical derivatization, but at the cost of
additional time, processing, and variance. Typically,
GC/MS is performed with affordable single quadrupole
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mass analyzers for the separation and analysis of com-
plex mixtures. The utilization of an automated mass
spectral deconvolution and identification system
(AMDIS) enhances the ability to deconvolute and suc-
cessfully identify overlapping chromatographic peaks
(Halket et al., 1999). Newer GC/TOFMS systems
incorporating time-of-flight mass analyzers offer an
attractive alternative to quadrupoles and provide
greater m/z accuracies. These instruments also provide
detectors with high scan speeds supporting ultrafast
GC/MS (Davis et al., 1999) and the potential to profile
increasingly complex mixtures.

HPLC coupled to on-line photodiode array detection
(HPLC/UV/PDA) is a good choice for compounds
containing chromophores. Recently HPLC/UV/PDA
has been utilized in the metabolic profiling of plant iso-
prenoids (Fraser et al., 2000). HPLC coupled to MS is a
powerful alternative that offers high selectivity and
good sensitivity. Utilization of a liquid introduction
system allows for the analysis of nonvolatile and labile
species without the need for derivatization. HPLC can
also be simultaneously coupled to both UV/PDA and
MS to provide multiple levels of information useful in
chemical structure elucidation. Recently, reversed-phase
LC/MS has been used for the metabolic profiling of
saponins in legumes (Huhman and Sumner, 2002).
Hydrophilic interaction liquid chromatography coupled
to mass spectrometry (HILIC/MS) has also been used
to analyze highly polar plant extracts in Cucurbita
maxima (Tolstikov and Fiehn, 2002).

2.3.5. Phenotype microarrays

Although not strictly a metabolic profiling method, an
interesting alternative method of assessing metabolism
entitled ‘“‘Phenotype Microarrays”, has recently been
demonstrated in Escherichia coli (Bochner et al., 2001).
This array-based (96 well-plate) colorimetric assay quan-
tifies color changes induced in a tetrazolium dye based on
cellular respiration. Metabolism of various nutrient
sources results in NADH production and electron flow at
membranes and mitochrondria. This electron flow results
in quantifiable color change in the assay. The array is
composed of up to 700 various nutrient sources including
sugars, amino acids, or chemical compounds such as
kanamycin and penicillin. The authors demonstrate this
technology with various E. coli mutants such as the xy/4
mutant that has lost its ability to metabolize maltose and
maltotriose. This approach could be used for biochemical
phenotype assessment in plant cells in relation to traits
such as herbicide or salt tolerance.

3. Bioinformatics

It is obvious that all “omic™ approaches will rely
heavily upon bioinformatics for the storage. retrieval,

and analysis of large datasets; and metabolomics is no
exception. Unfortunately, metabolomics is still in an
infant state and many of the necessary tools are not
available. We describe below the basic tools currently
being used and those on the horizon. These tools serve
to align, visualize, and differentiate, components in
large datasets. Individual components then need to be
correlated and placed in metabolic networks or path-
ways. This information, together with quantitative
kinetic indices, can be used to model and simulate
pathways that ultimately lead to a better understanding
of biological and biochemical phenomena.

Changes in metabolite levels may be dramatic or sub-
tle. The dramatic changes will be easily recognized;
however, subtle changes will require statistical proces-
sing to determine whether or not the observed changes
are significant (Miller and Miller, 2000; Koosis, 1997).
Statistical approaches require careful experimental
design including replicate sampling, replicate analyses
and application of statistical tests. General statistical
tests such as Student’s t-test should first be performed to
eliminate erroneous data. Means and standard devia-
tions should then be calculated. F-ratios can then be
used to determine whether or not a change is significant
at a given confidence level. Most often used methods
assume that the data follow a normal distribution;
however, it may be more prudent to use non-parametric
methods, since the normality assumption may not be
correct. It is interesting to note that enzyme kinetic data
appear to be leptokurtic (Cornish-Bowden and Eisen-
thal, 1974), i.e. with a higher frequency of “outliers”
than the Gaussian distribution. This should guide our
expectations for metabolomic data since the transfor-
mations of metabolites are indeed dependent on enzyme
function.

Statistical analyses must be performed to ensure good
analytical rigor, but unfortunately are often a burden
when working with large datasets. Tools are therefore
needed for high throughput statistical analyses of all
components in a dataset to provide sound evidence for
the relevance of changes in a metabolite level contained
in the raw data. Computer based applications are
required that can differentiate whether or not samples
are statistically similar or different and what the exact
differences/similarities are. Ideally, this would be per-
formed in a fully automated manner. For example, a
system should be able to compare the UV, NMR, GC/
MS, LC/MS, or CE/MS profiles of a sample set auto-
matically and direct an investigator to the component(s)
that are statistically different. The chemical identity of
these components could then suggest gene function or
the biological response of the system.

A single GC/MS metabolite profile can yield 300-500
distinct components. This provides a wealth of infor-
mation to be interpreted and leads to significant chal-
lenges in processing the data. To simplify the task.
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many researchers have used techniques to reduce the
dimensionality of the data set and to visualize the data.
The most popular approaches include unsupervised
methods such as principal component analysis (PCA),
hierarchical clustering (HCA) and K-means clustering;
however, the utility of machine-learning methods such
as self-organizing maps (SOM, also known as Kohonen
neural netoworks) (Kohonen, 1995) are promising.

3.1. Principal component analysis (PCA)

Principal component analysis is one of the oldest and
most widely used multivariate techniques (Hotellin,
1933). The concept behind PCA is to describe the var-
iance in a set of multivariate data in terms of a set of
underlying orthogonal variables (principal compo-
nents). The original variables (metabolite concentra-
tions) can be expressed as a particular linear
combination of the principal components. PCA is a lin-
ear additive model, in the sense that each principal
component (PC) accounts for a portion of the total
variance of the data set. Often, a small set of principal
components (2 or 3) account for over 90% of the total
variance, and in such circumstances, one can resynthe-
size the data from those few PCs and thus reduce the
dimension of the data set. Plotting the data in the space
defined by the two or three largest PCs provides a rapid
means of visualizing similarities or differences in the
data set, perhaps allowing for improved discrimination
of samples.

3.2. Hierarchical cluster analysis (HCA) and K-means
clustering

Hierarchical cluster analysis (HCA) is a method of
grouping samples in a data set by their similarity. HCA
involves a progressive pair-wise grouping of samples by
distance. Several distance measures can be used in
HCA, such as Euclidean distance, Manhattan distance,
or correlation. Results vary according to which distance
metric is used. The result of hierarchical clustering is
usually visualized as a dendogram or a tree. Branch
lengths can be made proportional to the distances
between groups. This can provide an easy visualization
of the similarities of samples within data sets.

K-means clustering is another method of grouping
data, which uses a fixed number (K) of groups. The
principal is similar to HCA, in which one must define a
distance metric which will govern the clustering. but the
way in which the grouping is made is different. Several
other clustering algorithms exist. which are variations
on the same theme. and it is unclear which ones are best
for a specific problem. given that they usually produce
different results. Indeed. even using different metrics
with the same clustering algorithm (e.g. HCA with
Euclidean distances versus HCA with correlations)

usually produces different results. Clustering is most
useful to classify samples in groups. It is often applied
to the data after transformation with PCA, in which
case it becomes a means of identifying groups in the
reduced dimension data space.

3.3. Self-organizing maps (SOMs)

Self-organizing maps (SOMs) (Kohonen, 1982, 1995)
are artificial intelligence methods that are designed to
group data. They are similar to K-means clustering in
the sense that one predefines the number of groups that
data will be classified within (in this case that number
must be a power of two). SOMs are gaining popularity
due to their enhanced ability to differentiate and visua-
lize data relative to PCA (Kohonen, 1995; Tor6nen et
al., 1999). Recently, SOMs have been applied to the
correlation of GC/MS data to compare the morphology
of 88 species of ants (Nikiforow et al., 2001).

All of the above methods can be classified as unsu-
pervised because they require no other information than
the original data set. A different set of methods, called
supervised, create a calibration using a “‘training’ data
set, i.e. a set of observations that have been classified by
independent means. An example of a supervised method
is the use of standards to calibrate a protein concen-
tration assay. Supervised methods can thus only be
carried out if one is able to provide known examples.
Despite this drawback, supervised methods are usually
more powerful than unsupervised methods. Raamsdonk
and coworkers (Raamsdonk et al., 2001) have used dis-
criminant function analysis (Lachenbruch, 1975) for this
purpose. Other supervised methods that could be used
are feed-forward neural networks (Cowan and Sharp,
1988), support vector machines (Cristianini and Shawe-
Taylor, 2000), genetic algorithms (Goldberg, 1989), and
genetic programming (Koza, 1992). Kell, Goodacre and
coworkers have pioneered the application of supervised
methods to metabolomic data (Goodacre and Kell,
1996; McGovern et al., 2002; Oliver et al., 1998; Shaw et
al., 2000). A particular supervised method of analysis is
the proposed FANCY approach (Raamsdonk et al.,
2001; Teusink et al., 1998). FANCY is based on co-
response analysis (Hofmeyr et al., 1993; Hofmeyr and
Cornish-Bowden, 1996), a branch of metabolic control
analysis. Co-response is a measurement of how two
metabolite concentrations (or fluxes) respond to a com-
mon perturbation. It can be estimated by the ratio of
change in one metabolite concentration to the change in
the other metabolite concentration. both following the
same perturbation. The FANCY approach has been
applied to the case of yeast null mutants, where one
classifies mutants of genes of known function according
to their patterns of metabolite co-responses (measured
with metabolomic methods). Then the mutants of genes
of unknown function are classified by comparison of
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their co-response pattern to the set of known genes.
This approach assumes that genes with functions in
related metabolic sections produce similar patterns of
co-response, i.e. similar changes in metabolite con-
centrations.

It is also very important to develop means of visua-
lizing large amounts of multivariate or metabolomic
data (Tabachnick and Fidell, 1983). Data visualization
1s the activity of displaying data sets in such a way as to
allow direct visual identification of properties of the
data sets. Several methods exist for visualization of
generic multivariate data sets (Meyer and Cook, 2000),
including some that use the analyses described above,
which are readily applicable to metabolomics. There
are, however, specific properties of metabolomic data
that can be capitalized upon to produce visualizations
specific for this data type. We know that metabolites are
related by their molecular structure and by the fact that
they are put together by alteration/combination of other
metabolites. Diagrams representing the networks of
reactions linking metabolites have been used for a long
time as a powerful tool for visualizing relationships
between metabolites; see for example (Michal, 1999;
Umbreit, 1952). Such metabolic network diagrams are
also useful to visualize metabolomic data (Mendes,
2002) and indeed to combine it with gene expression
(Wolf et al., 2000) or proteomics data. This form of
visualization is done in the context of the underlying
biochemistry and has different objectives from other
forms of multivariate data visualization, such as the
Grand Tour (Asimov, 1985) or exploratory projection
pursuit (Swayne et al., 1998). While the latter techniques
display the data in a space of variables (each axis is a
metabolite) attempting to find the most “‘informative”
projections onto two dimensions, metabolic networks
attempt to directly identify the chain of causality that
has led to the observations. If one metabolite concen-
tration has increased, it can be because the reactions
producing it increased flux, or that the reactions con-
suming it decreased flux (or a combination of these
effects). Indeed, such visualizations may be instrumental
in identifying the functions of mutated genes directly, by
visual inspection. However, for this to be possible, it is
important that the diagrams be complete, i.e. that they
display all the reactions that surround the metabolites in
question. The traditional metabolic pathway diagrams,
such as the ones in the popular database KEGG
(Kanehisa et al., 2002: see this and other resources listed
in Table 2), are not useful for such analysis, since each
diagram omits several “'side™ reactions. To visualize side
reactions, diagrams are needed that display the neigh-
borhood of a metabolite of interest. consisting of all
the reactions in which the metabolite enters either as
substrate or product. One of us (Mendes) is indeed
producing such diagrams and software to visualize
metabolomic data. Fig. 4 depicts metabolomic data

from Medicago truncatula development, focusing on the
neighborhood of fumarate.

The above bioinformatic tools provide methods of
determining differences or similarities in datasets. The
next step is to incorporate metabolomic data with other
expression information including mRNA and proteins
to infer gene function. To accomplish this. metabolomic
data sets must be integrated and correlated in a global
manner with genetic and enzymatic data, pathways
assembled into systems, and literature references incor-
porated as learning tools to annotate existing data to
yield in silico biological information (Palsson, 2000).
Approaches and tools are now available for modeling
metabolic systems and are very vital in understanding
metabolism (Mendes and Kell, 1998). The challenge of
the future is to integrate these approaches and obtain
complete integrated functional genomic systems to bet-
ter understand and visualize systems biology (Mendes,
2001; Voit and Radivoyevithc, 2000).

3.4. Databases

Perhaps the biggest challenge of metabolomics for
bioinformatics comes from the current lack of appro-
priate databases and data exchange formats. The sit-
uation is in many ways similar to gene expression a few
years ago, but is complicated by the very weak role of
sequence analysis here. There is a need for biochemical
ontologies that clearly specify what each entity (meta-
bolite) is and how it relates to others and for databases
that can store metabolomic data in a way to facilitate
relevant queries. It is extremely important that such
databases can interoperate with gene expression data-
bases.

3.4.1. Reference biochemical databases

As mentioned above, it is quite useful to use a bio-
chemical context for visualization and interpretation of
metabolomic data. Such context is formed by the net-
work of reactions that exist in the organism of interest.
To be useful, the biological context should also include
the known enzyme activities that catalyze each reaction,
the proteins that carry such activities and the genes that
code for them. In brief, we need databases that describe
the known biochemistry. Such databases already exist
(see Table 2), although as we will argue, none is really
appropriate for wide use in metabolomics. Perhaps the
most popular one. and certainly the most easily acces-
sible. 1s KEGG (Kanehisa et al., 2002). KEGG also
includes the LIGAND (Goto et al.. 2002) database of
molecules and reactions. KEGG is based on two major
resources: information about genes from GenBank:
EMBL DDIJB. and information about reactions and
enzymes from the Enzyme Nomenclature of the
IUBMB. accessible from the ENZYME database
(Bairoch. 2000). It is important to realize that KEGG
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Fig. 4. Ratio of metabolite levels between two samples of Medicago truncatula displayed on the metabolite neighborhood of fumarate. Ratios of
metabolite levels are indicated by the color that fills the circles representing individual metabolites (in this example a grayscale is used rather than

colors).

lists enzymes in a specific organism only if a sequence
exists in GenBank that is annotated as coding for such
an enzyme. Unfortunately, many enzymes are known to
exist in organisms but their genes have not yet been
identified, even in well-characterized genomes such as F.
coli, and certainly not in those less well characterized
such as A. thaliana and other plants. On the other hand,
the overwhelming majority of genes in GenBank are
annotated by sequence similarity and have no experi-
mental backing. This means that KEGG has a con-
siderably incomplete set of data when compared with
the knowledge obtainable from the literature, and it also
includes information whose value is dubious. Another
problem is that the enzyme nomenclature does not
cover well all known enzyme activities and is ambiguous
in its coverage of isozymes (which become very impor-
tant to understand actual metabolite levels, though per-
haps not for classification of enzymes).

Another database that can be useful for the purpose of
reference is EcoCyc (Karp et al., 2002), which collects
genetic and biochemical information about the E. coli
bacterium recovered from the literature by human cura-
tion. The data set contained in EcoCyc is thus more

complete than KEGG for E. coli because it does not rely
exclusively on genome annotation. Although EcoCyc is
being extended to other organisms (including Arabi-
dopsis by the TAIR project, http://www tair.org) it is not
clear how much information is really being recovered
from the literature (i.e. experiments), as opposed to being
recovered from genome annotation (i.e. BLAST results).
The danger with this effort is that the biochemistry of
other organisms is being described by analogy with that
of E. coli. This may be appropriate for Enterobacteria,
but certainly not for plants. Other databases that could
be used as references are EMP (Selkov et al., 1996),
PathDB (Mendes et al., 2000), UM-BBD (Ellis et al.,
2001), and BRENDA (Schomburg et al., 2002). All these
databases contain features that make them unique, but
none of them alone fulfills all the requirements for a good
reference for metabolomics (Mendes, 2002; Wittig and
De Beuckelaer, 2001). It is most important that such a
reference lists specific molecules (not classes thereof),
that it distinguishes between different isomers and iso-
zymes, that it lists reactions independently of the
enzymes that catalyze them, that it captures the com-
plexity of relations between genes, proteins and meta-
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bolites (which are many-to-many relationships), and
finally, that it identifies the evidence that was used to
infer the existence of each particular molecule. Because
no such database exists for M. truncatula, we are con-
structing such a reference for this organism.

A particularly important role of reference biochemical
databases is to list metabolomes. A metabolome is the
complete set of all metabolites that exist in a biological
species. No complete metabolome is yet known: how-
ever, it is conceivable that metabolomics may possibly
achieve this objective. Reference databases would then
be suitable to store metabolomes, and should strive to
list the set of all known metabolites of model organisms.

3.4.2. Metabolite profile databases

Metabolite profiles are composed of measurements of
metabolites at a specific state of a biological system.
Experiments may consist of various metabolite profiles
whether they be time courses, comparisons of different
mutants under similar conditions, or comparisons of the
same biological system subjected to different environ-
mental challenges. These data are equivalent to micro-
array results or protein profiles. Like those data types
they should be stored in appropriate databases that will
become the means of publishing such data (because they
are too extensive to be printed in journal articles). No
such database of metabolite or protein profiles exist at
this time. Microarray gene expression data can already
be archived in databases such as ArrayExpress (Brazma
et al., 2002) and GEO (Edgar et al., 2002). Recently the
journal Nature has established a policy that requires
data to be deposited in either of these two databases
prior to publishing in their journal. At some point in
time we envision the same will happen with metabo-
lomic as well as proteomic data. It will then be impor-
tant to relate metabolomic, proteomic and
transcriptomic data, since these are just different aspects
of the same: the behavior of the biological system in
question. Systems biology requires that these data be
combined. Currently it is most urgent that metabolic
profile lab databases be able to export data in common
data formats. It is important that the community, small
as it is at this time, agrees on such data formats. This
would avoid much confusion and wasted time in data
conversion between labs. It would also greatly facilitate
the ability to repeat each others’ results.

3.5. Modeling and simulations

There is value in using metabolomic data to con-
struct computer models of metabolism. Models are
useful to summarize large amounts of disparate data
and to prove that they are consistent. Often. the exer-
cise of modeling reveals voids in knowledge that must
be filled for a full understanding of observed phenom-
ena. If this were the minimum objective. it would be

immensely useful. It is also possible to achieve a level
in which a model does indeed show that all the known
facts put together are consistent, and then the model
can be used for prediction and generation of hypoth-
eses. A recent example is the model of yeast glycolysis
by Teusink and coworkers (Teusink et al., 2000) and its
improvement by Pritchard and Kell (2002). Tradition-
ally, such models have been constructed from data
obtained in vitro with purified enzymes. This has several
problems, not least of which is that purified enzymes
often do not function as they do in intact cells (Srere
and Ovadi, 1990). It is thus an objective of computa-
tional biochemistry and systems biology (Mendes, 2001)
to be able to construct models of metabolism directly
from metabolomic data, i.e. observations of the working
system. The methods to carry out such an ambitious
endeavor are not all in place yet, though it is clear that
global optimization methods are going to be an essential
piece (Mendes, 2001; Mendes and Kell, 1998). Such
modeling is likely to result in proposition of novel
metabolic networks. This approach will be especially
important in plant secondary metabolism, because the
way in which the majority of natural products are syn-
thesized is not yet fully characterized.

4. Applications of metabolomics to plant systems

Metabolomics offers the unbiased ability to differ-
entiate genotypes based on metabolite levels that may or
may not produce visible phenotypes (Raamsdonk et al.,
2001; Roessner et al., 2001). Furthermore, in those
instances in which mutations or expression of trans-
genes lead to measurable phenotypic changes (Boyes et
al., 2001), metabolomic approaches can be used to
decipher the biochemical cause or consequence of the
observed phenotypes.

Metabolomics is at its most powerful when performed
on a large scale and integrated with corresponding data
on the transcriptome and proteome. However, few
examples exist of this approach in plants, although
work in this area is in progress (May, 2002). More
selective metabolic profiling has, however, been used in
a number of areas to provide biological information
beyond the simple identification of plant constituents.
These areas include:

e Fingerprinting of species. genotypes or ecotypes
for taxonomic or biochemical (gene discovery)
purposes (Gorinstein et al., 1995; Huhman and
Sumner. 2002: Stashenko et al., 2000).

e Monitoring the behavior of specific classes of
metabolites in relation to applied exogenous
chemical and or physical stimuli (Bednarek et al..
2001: Chong et al.. 2001: Lois. 1994; von Rope-
nack et al.. 1998).



830 L.W. Sumner et al. Phytochemistry 62 (2003 ) 817 836

e Studying developmental processes such as
establishment of symbiotic associations (Harri-
son and Dixon, 1993; Maier et al., 1999) or fruit
ripening (Aharoni et al., 2002).

e Comparing and contrasting the metabolite con-
tent of mutant or transgenic plants with that of
their wild-type counterparts (see later).

In each of these cases, application of metabolite pro-
filing can be coupled with other “"omics’ technologies to
provide an integrated picture encompassing all aspects
of information flow from genome to metabolome and
resulting phenotype.

4.1. Metabolic profiling of transgenic plants

To date, there are few reports of exhaustive, unbiased
metabolic profiling of transgenic plants. Roessner et al.
used GC/MS-based metabolic profiling to study trans-
genic potato plants over-expressing invertase specifically
in the tubers (Roessner et al., 2000). The data rapidly
confirmed that the reduction in starch accumulation
resulted from partitioning of carbon flux into glycolysis.
In subsequent studies, statistical data mining tools were
used to determine the major biochemical phenotypes of
transgenic potato lines overexpressing invertase, gluco-
kinase or sucrose phosphorylase (Roessner et al., 2001).
This was one of the first reports to reveal the power of
metabolite profiling coupled to statistical data analysis
for plant phenotyping.

Technologies have been developed over the past sev-
eral years for the detailed profiling of various classes of
metabolites peculiar to, or characteristic of, plants.
These include the use of HPLC methods with diode
array or mass detection for profiling flavonoids and
their conjugates (Graham, 1991; Lin et al., 2000; Sum-
ner et al., 1996) or carotenoids and related compounds
such as tocopherols and plastoquinones (Fraser et al.,
2000). Ion-paired reversed phase HPLC of fluorescent
etheno-substituted acyl CoA esters is, for the first time,
allowing detailed profiling of acyl CoAs in plant
extracts (Larson and Graham, 2001). This technology is
being applied to plant lines modified in their fatty acid
composition. GC methods are stll popular, and are
being optimized for obtaining maximum levels of infor-
mation from extracts from different plants and tissue
types (Katona et al.. 1999). The desorption-concen-
tration-induction (DCI) technique coupled to GC has
even made it possible to profile monoterpenes from sin-
gle peltate trichomes from the leaves of mint plants
(Voirin and Bayet. 1996).

Two examples of metabolic engineering in the phe-
nylpropanoid pathway further highlight the value of the
metabolic profiling approach for discovery and or con-
firmation of metabolic mechanisms. There is consider-
able interest in engineering plants to contain isoflavone

phytoestrogens in view of their perceived chemopreven-
tive activities against hormone-dependent cancers, car-
diovascular disease, and post-menopausal ailments.
Most non-legumes do not contain isoflavonoids, but the
pathway can be introduced by genetic transformation
with an isoflavone synthase (IFS) gene from a legume
such as soybean. In such plants, the ubiquitous flava-
none intermediate naringenin is converted. through the
action of IFS, to glycoconjugates of the isoflavone gen-
istein (Jung et al., 2000; Liu et al., 2002). However,
attempts to date have only resulted in very low levels of
genistein accumulation in non-legumes (Yu et al., 2000).
In an attempt to increase isoflavone production, a
cDNA encoding alfalfa chalcone isomerase, the enzyme
step prior to naringenin formation, was over-expressed
in transgenic Arabidopsis already expressing soybean
IFS. Profiling of flavonoid compounds by LC/MS indi-
cated that over-expression of CHI alone led to an
approximately 3-fold increase in the levels of the major
glycoconjugates of the flavonols quercetin and kaemp-
ferol, and additional types of conjugates also appeared
(Liu et al., 2002). A similar profiling approach had pre-
viously been used to show increased flavonol produc-
tion in the peel of tomato fruit over-expressing CHI
(Muir et al., 2001). Expressing IFS in the CHI over-
expressing background did not lead to elevated genis-
tein levels in Arabidopsis as had been hoped. However,
IFS expression strongly reduced the increased flavonol
levels resulting from CHI expression in a manner dis-
proportionate to the small amounts of genistein pro-
duced (Liu et al., 2002). Such cross-talk between
endogenous and introduced pathways may be a feature
of metabolically engineered transgenic plants, and more
in-depth profiling in the present case may have revealed
further unexpected consequences of transgene
expression.

The exact nature of the metabolic pathways leading to
lignin formation in vivo are still a matter of much
debate (Humphreys and Chapple, 2002), in spite of the
demonstration of all necessary enzymatic activities in
vitro. LC/MS profiling revealed an unexpected accu-
mulation of caffeic acid glucoside in the soluble phenolic
fraction in both alfalfa (Guo et al., 2000) and poplar
(Meyermans et al., 2000) following down-regulation of
caffeoyl CoA  3-O-methyltransferase  (CCOMT),
whereas this compound was not detected following
down-regulation of caffeic acid O-methyltransferase. As
caffeic acid glucoside most probably arises from gluco-
sylation of free caffeic acid (released from caffeoyl CoA
by thioesterase activity), these data are consistent with
recently proposed models in which caffeoyl CoA is the
in vivo substrate for CCOMT. but caffeic acid is not an
in vivo substrate for COMT (Humphreys and Chapple.
2002). Several enzymes of plant natural product bio-
synthesis have relatively promiscuous activities in vitro.
and metabolic profiling of transgenic plants in which
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expression of these enzymes is modified is a powerful
new approach for ascribing in vivo function.

HPLC profiling of isoprenoid compounds in tomato
expressing a bacterial phytoene desaturase confirmed
increased accumulation of B-carotene, lutein and cyclic
carotenoids (Fraser et al., 2000). Application of the
same profiling method to Arabidopsis plants treated
with different types of bleaching herbicides demon-
strated different profiles diagnostic of the site of inhibi-
tion, indicating the value of metabolic profiling for
determining sites of action of new agrochemicals (Fraser
et al., 2000).

In-depth metabolic profiling is set to become a critical
technology in the scientific and political battle for
acceptance of genetically modified organisms. The gra-
dual realization by the non-scientific community that
plants contain both beneficial and harmful chemicals
whose levels can be altered by genetic manipulation has
fueled public awareness of issues relating to transgenic
foodstuffs, and has been accompanied by extensive
efforts to define and thereby regulate pharmaceuticals,
nutraceuticals, functional foods, food additives and
food supplements (Kleter et al., 2001).

In spite of some remarkable arguments about the
dangers of genetically modified foods in the popular
press (Longman, 1999), the transgene itself is “‘chemi-
cally neutral”, being composed of the same four
nucleosoide triphosphates as any other gene. Other than
cases where the transgene protein itself might be either
toxic or cause allergic reactions, the concept of “‘sub-
stantial equivalence” between transgenic and the corre-
sponding non-transgenic plants will be based on the
biochemical phenotype that can be determined by
metabolic profiling. Although it is likely that greater
statistical differences exist in metabolite or transcript
profiles between different cultivars or ecotypes than
between a transgenic plant and its corresponding wild-
type control, it is nevertheless possible that the goal
posts for substantial equivalence may keep shifting to
more and more rigorous positions as the technology for
metabolite profiling becomes increasingly sophisticated.

Table 2
Bioinformatic resources accessible via the internet

4.2. Spatially resolved metabolomics

Most current metabolomic efforts utilize pooled tissue
samples; however, our understanding and knowledge of
metabolism will greatly improve with improvements in
the ability to spatially resolve the metabolome. Differ-
entiation of the metabolomes of individual tissues, sin-
gle cells, and subcellular organelles will remove dilution
effect and allow visualization of detailed metabolic dif-
ferences of various cell types and subcellular organelles.
The concept of high resolution spatial analysis of plants
has recently been reviewed (Kehr, 2001) whereas Kor-
olev and coworkers recently reported on the spatial and
temporal distribution of a small number of sugars and
ions in carrot taproot (Korolev et al., 2000). Farré and
coworkers recently used a nonaqueous extraction
method (Stitt et al., 1989) and GC/MS to study the
compartmentalization of glycoltyic intermediates,
nucleotides, sugars, organic acids, amino acids and
sugar alcohols in the amyloplast, cytosol, and vacuole
of potato tubers (Farré et al.,, 2001). These exciting
results offer great hope for successful subcellular meta-
bolomics; however, the approaches are still very
challenging.

5. Future perspectives

The interest in metabolomics as a large-scale assess-
ment of gene expression is greatly accelerating. We
expect that the number of successful projects using
metabolomics will continue to grow exponentially;
however for this to take place, continued advancement
of the analytical technologies will be necessary to enable
the visualization of a greater proportion of the metabo-
lome at greater speeds. To accomplish this, it will be
essential that multiple and parallel approaches for
comprehensive analyses be incorporated. It would be
desirable if these comprehensive analyses would expand
to encompass many of the chemical classes of molecules
that are currently being overlooked such as peptides (i.e.

KEGG

BRENDA

The EMP Project

Institute of Biological Sciences. University of Wales. Aberystwyth
Douglas Kell's Group

Virginia Bioinformatics Institute

IUBMB Enzyme Nomenclature

Dr. Duke’s Phytochemical and Ethnobotanical Databases
The University of Arizona Natural Products Database
lowa State University

Platform Plant Metabolomics

EcoCyc

http:/'www.genome.ad.jp kegg kegg2.html
http:’'www.brenda.uni-koeln.de

http: - www.empproject.com

http: www.aber.ac.uk biology research abml.html
http: gbab.aber.ac.uk home.html

http: www.vbi.vt.edu

http: www.chem.qmul.ac.uk iubmb enzyme

http: www.chem.gmul.ac.uk iubmb enzyme

http: npd.chem.arizona.edu about.asp

http: www.public.iastate.edu ~botany wurtele.html
hitp: www.metabolomics.nl

http: biocyc.org:1555 ECOLI class-subs-instances?object = Pathways
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the “peptidome’™). To extract the biological information
contained within these large metabolomic datasets,
bioinformatic tools capable of managing the massive
experimental data sets and processing them to yield
biological knowledge will be necessary. These tools are
needed now but are unfortunately only starting to
emerge. On the horizon are computer models of cell
biochemistry incorporating all levels of gene expression.
It is envisioned that such “virtual cells’” will help explain
and illustrate many of the more challenging details of
molecular cellular systems such as metabolite channel-
ing, compartmentalization and transport. Construction
of such computer models depends on the availability of
extensive quantitative metabolite profiles and improved
algorithms. We are hopeful that these tools will soon be
in the hands of phytochemists. These tools will have a
major impact on the ability to engineer the productive
and nutritious crops necessary to feed tomorrow’s gen-
erations. They will also have a dramatic impact on the
ability to use plants as bioreactors producing tomor-
row’s medicines and chemical stocks.
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