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ABSTRACT

Discovery of bioactive molecules and elucidation of their molecular mechanisms open up an enormous
opportunity for the development of improved therapy for different inflammatory diseases, including
cancer. Triterpenoids isolated several decades ago from various medicinal plants now seem to have a
prominent role in the prevention and therapy of a variety of ailments and some have already entered
Phase I clinical trials. One such important and highly investigated pentacyclic triterpenoid, ursolic acid
has attracted great attention of late for its potential as a chemopreventive and chemotherapeutic agent
in various types of cancer. Ursolic acid has been shown to target multiple proinflammatory transcription
factors, cell cycle proteins, growth factors, kinases, cytokines, chemokines, adhesion molecules, and
inflammatory enzymes. These targets can potentially mediate the chemopreventive and therapeutic
effects of ursolic acid by inhibiting the initiation, promotion and metastasis of cancer. This review not
only summarizes the diverse molecular targets of ursolic acid, but also provides an insight into the
various preclinical and clinical studies that have been performed in the last decade with this promising

triterpenoid.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Plants continue to provide a vibrant source for drug discovery
[1] since phytochemicals serve as possible starting material for the
identification of many novel anticancer drugs [2]. One important
class of bioactive phytochemicals is triterpenoids, which represent
a large family of compounds classified according to the number of
isoprene units [3,4]. Triterpenoids are synthesized in plants by
cyclization of squalene and are ubiquitously present in nature [4].
To date, ~20,000 triterpenoids, including dammarane, ergostane,
friedelane, lupane, oleanane, taraxastane, and ursane, have been
identified from the various parts of medicinal plants. These

* Corresponding author at: Department of Pharmacology, Yong Loo Lin School of
Medicine, National University of Singapore, Singapore. Tel.: +65 65163267;
fax: +65 68737690.

** Corresponding author at: Department of Pharmaceutical Sciences, School of
Pharmacy, American University of Health Sciences, 1600 East Hill Street, Signal Hill,
CA, United States. Tel.: +1 562 988 2278x2038; fax: +1 562 988 1791.

E-mail addresses: phcgs@nus.edu.sg (G. Sethi),
abishayee@auhs.edu (A. Bishayee).

0006-2952/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.bcp.2013.03.006

emphasize the potential of various plant-derived cyclosqualenoid
molecules to be used as anti-inflammatory, anticancer and
antimicrobial agents [5]. Among various terpenoids, pentacyclic
triterpenoids have been shown from various studies to be having
wide ranging anti-inflammatory, chemopreventive, and anticancer
activities and have been extensively studied previously [6-9].
Ursolic acid, 3pB-hydroxy-urs-12-en-28-oic-acid (Fig. 1), an
ursane-type pentacyclic triterpenic acid, belongs to the cyclos-
qualenoid family and is ubiquitous in the leaves and berries of
natural medicinal plants, such as Arctostaphylos uva-ursi (L.) Spreng
(bearberry), Vaccinium macrocarpon Air. (cranberry), Rhododendron
hymenanthes Makino, Rosemarinus officinalis, Eriobotrya japonica,
Calluna vulgaris, Ocimum sanctum, and Eugenia jambolana and in
the protective wax-like coatings of apples, pears, prunes and other
fruits [10]. Ursolic acid may occur as free acid or as aglycone of
saponins. Recent evidences have supported the beneficial effects of
ursolic acid in a variety of human diseases, including various types
of inflammation-driven cancers [11]. Anti-inflammatory and
antiproliferative, proapoptotic, antimetastatic and antiangiogenic
potential of ursolic acid have been reported in both in vitro and in
vivo models of cancer [7]. Many preclinical efficacy studies using
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Fig. 1. Oncogenic cascades modulated by ursolic acid in tumor cells. These include wide variety of transcription factors, protein kinases, and molecules involved in tumor cell

proliferation, angiogenesis, metastasis, survival and apoptosis.

chemically induced, subcutaneous and orthotopic human xeno-
graft models and recently developed spontaneously developing
transgenic tumor growth models have provided ample evidence
that naturally occurring and synthetic derivatives of ursolic acid
have chemopreventive and therapeutic properties [7]. Here, we
discuss in detail the potential of ursolic acid as a chemopreventive
and anticancer drug and its reported beneficial effects based on
these preclinical and clinical investigations. Also, we highlight in
detail various mechanisms by which ursolic acid modulates
cellular transcription factors, growth factor receptors, inflamma-
tory cytokines, and other major intracellular molecular targets that
regulate cancer cell proliferation, apoptosis, invasion, metastasis
and angiogenesis.

2. Isolation and chemical properties of ursolic acid

Isolation of ursolic acid is achieved by a variety of methods [12].
In general, pulverized plant material is extracted with two solvents
of increasing polarity, hexane and ethyl acetate, in a Soxhlet
apparatus. The ethyl acetate extract is then concentrated in a
rotary evaporator and kept in sealed flasks. Since ursolic acid is a
ubiquitous compound and is found in many medicinal plants, the
most common method of isolation is extraction with an organic
solvent using either partition chromatography, column chroma-
tography, high pressure liquid chromatography (HPLC) or high
performance thin layer chromatography (TLC) after iodine
derivatization [13]. General procedures such as gas chromatogra-
phy including the essential silylation [14] or methylation step [15],
liquid chromatography coupled with UV [16] and MS spectrometry
[12] have been used for the isolation and analysis of ursolic acid.
Kontogianni et al. [17] demonstrated that the combination of two-
dimensional "H-'3C HSQC and "H-'3C HMBC NMR spectroscopy is
a useful and rapid analytical tool for structure elucidation and
quantification of the triterpene acids present in complex extracts
obtained from plants. Bioassay-guided fractionation is one of the
commonly employed methods to detect compounds in new plant
extracts that exhibit inhibitory activity against cancer cells.
However, this method requires chromatographic fractionation of
the crude extract. The fractions are then tested in vitro for
inhibitory activity against cancer cell cultures. The bioactive
fraction is then taken for further fractionation, purification and
finally isolation of the bioactive compound. Ursolic acid is isolated

as large, lustrous prisms purified from absolute alcohol and forms
fine hair-like needles from dilute alcohol, with a melting point of
284 °C, and octanol/water partition coefficient log Kow = 7.92.

3. Anticancer potential of ursolic acid

Decades of research have provided ample evidence that the
triterpenoids are multi-faceted in their molecular mechanism(s) as
they modulate multiple targets and multiple pathways [7] (Fig. 1).
Numerous biochemical and pharmacological effects of ursolic acid,
including anti-inflammatory, antioxidant, antiproliferative, anti-
cancer, antimutagenic, antiartherosclerotic, antihypertensive, an-
tileukemic, antiviral, and antidiabetic, have been reported
previously [18]. We will discuss the reported anticancer effects
of ursolic acid in brief below.

3.1. In vitro anticancer effects of ursolic acid

Several inflammatory signaling cascades including nuclear
factor-kB (NF-kB), signal transducer and activator of transcription
3 (STAT3), serine/threonine protein kinase B (AKT), and cyclooxy-
genase-2 (COX-2) have been linked with different stages of cancer
progression and are reported to regulate tumor proliferation,
survival, invasion, metastasis and angiogenesis [19-21]. The
transcription factor, NF-kB is a key regulator of cellular events
[22]. NF-kB activation is often associated with chronic inflamma-
tion and tumorigenesis [23] and tumor chemoresistance and
radioresistance [24]. Numerous publications have provided evi-
dence that up-regulated NF-kB leads to chronic inflammation,
which has been causally linked to the development of several
human diseases including cancer and that understanding the
mechanisms of constitutive NF-kB can lead to the development of
novel therapeutics for cancer treatment. Phosphorylation of IkB
proteins by IkB kinases is a vital process that leads to NF-kB-DNA
binding and transcriptional activation of target genes [25].

Decades of research on natural product agents that inhibit or
deregulate this pathway have provided ample evidence that
numerous dietary constituents and nutraceuticals may have anti-
inflammatory and chemopreventive effects [7,26]. In vitro studies
using a variety of tumor cell lines have demonstrated the
usefulness of ursolic acid in chemoprevention and in the treatment
of inflammation-driven disease (Table 1). Although ursolic acid has
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Table 1

In vitro anticancer effects of ursolic acid and its derivatives.
Biological effects References
Multiple myeloma
Suppressed activation of STAT3 [33]
Suppressed upstream activation of JAK1/2 kinases, and cSRC [33]
Prostate carcinoma
Suppressed TNF induced NF-kB activation and IL-6-induced STAT3 activation in LnCaP cells [34]
Down-regulated CXCR4 expression irrespective of HER2 status in a dose-and time-dependent manner [30]
CXCR4 down-regulation was mediated by transcriptional regulation of mRNA expression and NF-«kB inactivation in DU145 cells [30]
Induced autophagy in PC3 cells and enhanced the expression of LC3-II [45]
Induced apoptosis via Beclin-1 and Akt/mTOR pathway [46]
Breast carcinoma
Inhibited proliferation via induction of apoptosis [48]
Induced apoptosis in MDA-MB-231 via Fas receptor, caspase 3 and PARP and mitochondrial pathway [53]
Suppresses migration and invasion by modulating c-Jun N-terminal kinase, Akt and mammalian target of rapamycin signaling [92]
Inhibited the expression of FoxM1 in MCF-7 cells [93]
Hepatocellular carcinoma
Suppressed angiogenesis by inhibiting HIF-1a, BFGF, VEGF, IL-8, uPA, ROS, and NO [54,94]
Inhibited hepatoma growth [58]
Induced apoptosis via activation of caspase 3 and induces cell cycle arrest at S phase [70]
Bladder carcinoma
Induced IRE1-TRAF2-ASK1 signaling complex and activates apoptotic ASK1-JNK signaling [36]
Induced AMPK kinase and inhibits cellular proliferation
Inhibited cell proliferation at G1 phase and induces apoptosis with increase in ROS production [95]
Colorectal carcinoma
Sensitized colon cancer cells to TRAIL induced apoptosis [6]
Induced cell death and modulates autophagy via JNK pathway [38]
Down-regulated NF-kB-regulated gene products cyclin D1, MMP-9, ICAM-1 VEGF, c-FLIP, survivin, Bcl-2, Bcl-xL [39]
Induced apoptosis by modulating purinergic receptor P2Y(2)/Src/p38/Cox2 pathway [41]
Reversed multidrug resistance in SW480 and SW620 [48]
Ovarian carcinoma
Suppressed cell proliferation, upregulated phosphorylation of ERK, and induced caspase 9 and 3 and effectively cleaved PARP [96]
Down-regulated the expression of survivin, c-Myc and astrocyte elevated gene [96]
Pancreatic carcinoma
Inhibited proliferation of MIA-PaCa-2, PANC-1 and Capan-1 via PI3 K/AKT/NF-kB and JNK pathways [40]
Induced cytotoxicity and induced p53, p21waf1, and NOXA in AsPC-1 cells [71]
Chronic myelogenous leukemia cells and HL60 monocytes
Induced apoptosis via down-regulation of Akt, up-regulation of PTEN and by activating mitochondrial pathway in K562 cells [42]
Induced HL60 monocyte differentiation and up-regulated C/EBP via ERK activation [43]
Reversed multidrug resistance in K562/ADR and HL60/ADR [48]
Lung carcinoma
Induced apoptosis in A549, H3255 and Calu-6 in a dose and time dependent manner [51]
Neuronal glioblastoma (astrocytoma)
Inhibits proliferation and induces apoptosis in human glioblastoma cell lines U251 by suppressing TGF-betal/miR-21/PDCD4 pathway [60]

been shown to prevent a variety of inflammation-associated
diseases, the exact molecular mechanism is yet to be elucidated
[27-29]. Ursolic acid has been previously reported to suppress the
proliferation of a number of tumor cells, induce apoptosis [30] and
inhibit tumor promotion, metastasis, and angiogenesis [31].
Shishodia et al. [32] demonstrated that ursolic acid can inhibit
NF-kB activation induced by carcinogenic agents, such as tumor
necrosis factor (TNF), phorbol ester, okadaic acid, hydrogen
peroxide, and cigarette smoke, through the suppression of IkBa
kinase and p65/RelA phosphorylation. The inhibition of NF-kB
activation correlated with the suppression of NF-kB-dependent
cyclin D1, COX-2, and matrix metalloproteinase-9 (MMP-9).

On the other hand, Pathak et al. [33] clearly highlighted the
potential of ursolic acid to modulate STAT3 signaling cascade in
multiple myeloma. They found that ursolic acid can inhibit both
constitutive and interleukin-6-inducible STAT3 activation in a
dose- and time-dependent manner that correlated with the
suppression of activation of upstream kinases (c-Src, Janus-
activated kinase 1, Janus-activated kinase 2, and extracellular
signal-regulated kinase 1/2). We recently investigated the effect of
ursolic acid on NF-kB and STAT3 signaling pathways in both

androgen-independent (DU145) and androgen-dependent (LNCaP)
prostate cancer cell lines and also prospectively tested the
hypothesis of NF-kB and STAT3 inhibition using a virtual
predictive functional proteomics tumor pathway technology
platform. Ursolic acid inhibited constitutive and TNF-a-induced
activation of NF-kB in DU145 and LNCaP cells in a dose-dependent
manner. Ursolic acid also downregulated the expression of various
NF-kB and STAT3-regulated gene products involved in prolifera-
tion, survival, and angiogenesis and induced apoptosis in both cell
lines [34].

Several lines of evidence point to the CXCR4/CXCL12 signaling
pathway which plays an important role in distant site metastasis
[35]. We recently hypothesized that ursolic acid can modulate
CXCR4/CXCL12 pathway in prostate cancer cells and found that
this triterpene downregulated the CXCR4 expression irrespective
of the HER2 status in a dose- and time- dependent manner and this
down-regulation was mediated by transcriptional regulation of
mRNA expression and inhibition of NF-kB activation [30]. The
antiproliferative effects of ursolic acid have been further confirmed
by its ability to induce endoplasmic reticulum stress in human
bladder cancer (T24) cell line. Ursolic acid induced the formation of
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IRE1-TRAF2-ASK1 signaling complex to activate pro-apoptotic
ASK1-JNK signaling. Salubrinal, an ER stress inhibitor, diminished
ursolic acid-induced CHOP/Bim expression and anti-T24 cell
effects [36]. Ursolic acid suppressed cigarette smoke extract-
induced human bronchial epithelial cell injury and prevented the
development of lung cancer [37], induced colorectal cancer cell
death and modulated autophagy through the JNK pathway in
apoptosis-resistant cells [38]. Prasad et al. [39] also reported that
ursolic acid can induce apoptosis in colorectal cancer cells by
inhibiting constitutive NF-kB activation and down-regulation of
cell survival (Bcl-xL, Bcl-2, cFLIP, and survivin), proliferative (cyclin
D1), and metastatic (MMP-9, VEGF, and ICAM-1) proteins. Ursolic
acid has been shown to suppress growth and induce apoptosis in
gemcitabine-resistant human pancreatic cancer cells, (MIA PaCa-2,
PANC-1 and Capan-1) via modulation of the JNK and PI3K/Akt/NF-
kB pathways [40]. Limami et al. [41] demonstrated a novel role
involving purinergic receptors and particularly the P2Y(2) receptor
in resistance to ursolic acid-induced apoptosis in both colorectal
HT-29 and prostate DU145 cancer cells. In a human chronic
myelogenous leukemic cell line (K562), ursolic acid induced
apoptosis via the up-regulation of PTEN gene expression, inhibited
Akt kinase activity, altered the mitochondrial transmembrane
potential and reduced the release of cytochrome c, enhanced the
activity of caspases [42] as well as induced HL60 monocytic
differentiation and up-regulated C/EBP[3 expression via activation
of the ERK mitogen activated kinase pathway [43]. Ursolic acid is
known to chemosensitize tumor cells to a number of chemothera-
peutic agents [33,39]. In another study by Koh et al. [44], ursolic
acid was shown to radiosensitize DU145, CT26 and B16F10 cells
and accelerated cell death, as evident by DNA fragmentation,
changes in cellular redox status, mitochondrial dysfunction and
modulation of apoptotic marker proteins. Shin et al. [45]
demonstrated for the first time that autophagy inhibitors in
combination with ursolic acid can enhance autophagy in prostate
cancer PC3 cells in association with apoptosis, enhanced the
expression of LC3-II (an autophagosome marker in mammals), and
also caused monodansyl-cadaverine incorporation into autolyso-
somes [46].

Drug-resistance is one of the principal causes for chemotherapy
failure in clinical practice, and a number of mediators including
multi-drug resistance (MDR) proteins and the anti-apoptotic
factors play an important role in this process [47]. Shan et al.
[48] recently highlighted the promising ability of ursolic acid to
revert MDR in human colon cancer cell lines (SW480 SW620),
human acute myelocytic leukemia cancer cell lines (HL60 and
HL60/ADR), human chronic myelogenous leukemia cell lines (K562
and K562/ADR), human breast cancer cell lines (MCF-7 and MCF-7/
ADR), and also in doxorubicin-resistant HepG2 cells [49]. Lung
cancer is one of the most common cancers that can affect cigarette
smokers [50]. Ursolic acid abolished the invasive and migratory
properties of human non-small cell lung cancers, A549, H3255, and
Calu-6 cell lines and induced apoptosis, at concentrations as low as
2, 4, 8, or 16 pmol/L [51,52]. In the invasive breast cancer MDA-
MB-231 cell line, ursolic acid- induced apoptosis was mediated via
Fas receptor and cleavage of caspase-8, caspase-3 and PARP,
followed by induced Bax up-regulation and Bcl-2 down-regulation
and release of cytochrome c to the cytosol from mitochondria with
concomitant decreased mitochondrial membrane potential [53].
Ursolic acid exhibited antiangiogenic potential in human liver
cancer (Hep3B, Huh7 and HA22T) cell lines by inhibiting hypoxia-
inducible factor (HIF)-1a, basic fibroblast growth factor (bFGF),
VEGF, interleukin (IL)-8, urokinase plasminogen activator (uPA),
reactive oxygen species (ROS), nitric oxide (NO) and cell invasion
and migration [54]. TRAIL [tumor necrosis factor (TNF)-related
apoptosis inducing ligand], a member of the TNF family, is one such
apoptosis-inducing cytokine that has shown promise as an

anticancer agent [55]. Prasad and coworkers [6] provided the first
mechanistic evidence that ursolic acid treatment can indeed result
in the sensitization of TRAIL-resistant cells through the ROS and
JNK-mediated up-regulation of death receptors (DR4 and DR5) and
the down-regulation of anti-apoptotic proteins. Subbaramaiah
et al. [56] investigated the effects of ursolic acid on the expression
of COX-2 in phorbol 12-myristate 13-acetate (PMA)-treated
human mammary and oral epithelial cells. Treatment with ursolic
acid suppressed PMA-mediated induction of COX-2 protein and
synthesis of prostaglandin E2. Ursolic acid also inhibited PMA-
mediated activation of protein kinase C, extracellular signal-
regulated kinase 1/2, c-Jun N-terminal kinase, and p38 mitogen-
activated protein kinases. Wang et al. [57] tested the ability of
ursolic acid and its cis- and trans-3-O-p-hydroxycinnamoyl esters
to inhibit growth in a panel of tumor cell lines and inhibit MMP
activity associated with tumor invasion and metastasis was
determined in DU145 prostate tumor cells. Ursolic acid and its
esters inhibited tumor cell growth at micromolar concentrations,
and inhibited MMP-2 and MMP-9 activity at concentrations below
those previously reported for cranberry polyphenolics.

Tian and colleagues [58] reported that ursolic acid could
significantly inhibit the proliferation of HepG2 and its drug-
resistance strain, R-HepG2 cells, but had minimal inhibitory effect
on primarily cultured normal mouse hepatocytes. They also
demonstrated that the down-regulation of COX-2 protein and
up-regulation of heat shock protein (HSP) 105 mRNA correlated to
the apoptosis of HepG2 cells treated with ursolic acid. Also, the
apoptotic effect of ursolic acid on human liver cancer HepG2,
Hep3B, Huh7 and HA22T cell lines were examined at three
different concentration of 2, 4 and 8 wM. Ursolic acid treatment
concentration-dependently decreased cell viability and increased
DNA fragmentation in HepG2 and Hep3B cell lines. However, it
reduced viability and increased DNA fragmentation in Huh7 cell
only at 4 and 8 pwmol/L. Ursolic acid treatment also concentration-
dependently diminished Na(+)-K(+)-ATPase activity and VEGF
level in four test cell lines [59]. Wang et al. [60] examined whether
ursolic acid could suppress the proliferation of human glioma cell
line U251, and if so, through what potential mechanism(s). The
results showed that 5-20 wM of ursolic acid suppressed prolifera-
tion and induced apoptosis of glioma cells in dose- and time-
dependent manners. Ursolic acid increased the activation of
caspase-3 and markedly suppressed levels of microRNA-21 (miR-
21) in a time-dependent manner. And over-expression of miR-21
in U251 cells abolished the enhancement of PDCD4 protein by
ursolic acid. These findings suggest that ursolic acid can inhibit cell
growth via causing apoptosis in U251 cells by ursolic acid-
triggered TGF-B1/miR-21/PDCD4 pathway. Interestingly, the
potential effect of 2alpha-hydroxyursolic acid, an ursolic acid
analog on cell proliferation and TNF-a-induced NF-kB activation in
MCF-7 cells has also been examined [61]. 2a-hydroxyursolic acid
significantly inhibited MCF-7 cell proliferation at doses of 20 M.
Pre-incubation with 2a-hydroxyursolic acid suppressed TNF-a-
induced NF-kB activation in a dose-dependent manner and
significantly inhibited the activation at a dose of 20 uM of 2a-
hydroxyursolic acid. Overall, this study suggested that 2a-
hydroxyursolic acid has anti-proliferative activities against MCF-
7 cells and capabilities inhibiting NF-kB activation induced by
TNF-« partially by suppressing proteasome activities.

A series of novel ursolic acid derivatives was synthesized
containing an acyl piperazine moiety. These compounds exhibited
more potent inhibitory activities against MGC-803 (gastric cancer
cell) and Bcap-37 (breast cancer cell) compared with ursolic acid
[62]. Likewise in another study by Ma et al. [63] ursolic acid, as well
as 2a-hydroxyursolic acid, (with a 3-hydroxyl group at C-3 and a
carboxyl group at C-17), were found to show cytotoxicity against
all the four tumor cell lines tested (HL-60, BGC, Bel-7402 and
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HeLa). On the other hand, a series of furoxan-based novel nitric
oxide-donating ursolic acid derivatives were synthesized and
evaluated for their cytotoxicity using the HepG2 cell line. These
compounds showed more significant cytotoxic activities than
control, 5-fluorouracil and ursolic acid [64]. Tanaka et al. [65]
demonstrated that derivatization of ursolic acid by oxidation with
dioxoruthenium (VI) tetraphenylporphyrins produced compounds
that exhibited potent cytotoxic activities against C6 rat glioma and
A431 human skin carcinoma cell lines at 10-100 .M compared to
parent ursolic acid.

Recently, two distinct pathways were reported to produce
novel ursolic acid derivatives by metabolism in various Nocardia
species. Strains (NRRL 5646, 44822 and 44000) of Nocardia species
generated different ursolic acid derivatives namely: ursolic acid
methyl ester, ursonic acid, ursonic acid methyl ester, 3-oxoursa-1,
12-dien-28-oic acid and 3-oxoursa-1, 12-dien-28-oic acid methyl
ester. These synthetic pathways can presumably be used as
strategic routes for the biotechnological production of triterpenoid
derivatives [66]. Acetylation of ursolic acid at C-3 alcohol together
with coupling an amino acid methyl ester or amino alcohol acetate
at C-28 results in derivatives having stronger anti-proliferative
ability. Six compounds showed significant antitumor activity
against the HeLa, SKOV3 and BGC-823 cell lines by causing cell
cycle arrest at the S phase [67]. In another recent study, ursolic acid
derivatives with distinct electrical property were synthesized.
These compounds were divided into two groups according to their
charge at physiological conditions: (1) Group I, negatively charged
and (2) Group I, positively charged. These compounds induced cell
cycle arrest and apoptosis in a variety of tumor cells including
HepG2, AGS, HT-29 and PC-3 cells in the following order of
potency: Group I < ursolic acid < Group II. The ursolic acid
derivatives in Group II exhibited potent cytotoxicity, with
enhancement of the lipophilicity further strengthening cytotoxic-
ity [68]. The same group of researchers also synthesized another

IL6

ursolic acid derivative, 3[-acetoxy-urs-12-en-28-oyl-1-mono-
glyceride that was found to trigger the death of BGC-823 cells
by inducing apoptosis via the mitochondria pathway [69]. Ursolic
acid derivative, N-[3[3-acetoxy-urs-12-en-28-oyl]-2-aminodietha-
nol, was tested with increasing concentrations of test compound
for 24 h. Dose-dependent induction of apoptosis was observed in
various tumor cell lines including, HepG2, BGC-823, SH-SY5Y,
HeLa, and HELF [70]. A series of new heterocyclic derivatives of
ursolic acid showed potent antiproliferative activity and induction
of p53, p21wafl and NOXA against pancreatic cancer cell lines
AsPC-1 [71]. Interestingly, ursolic acid-loaded nanoparticles (UA-
NPs) were recently prepared by Zhang et al. [72] using a nano-
precipitation method employing amphilic methoxy poly (ethylene
glycol)-polycaprolactone (mPEG-PCL) block copolymers as drug
carriers. Ursolic acid was effectively transported into gastric cancer
SGC7901 cells by nanoparticles and localized around the nuclei in
the cytoplasm. The in vitro cytotoxicity and apoptosis test
indicated that UA-NPs significantly elicited more cell death at
almost equivalent dose and corresponding incubation time.
Moreover, UA-NPs led to more cell apoptosis through stronger
inhibition of COX-2 and activation of caspase-3. Kalani et al. [73]
developed a QSAR models for predicting the activities of ursolic
acid analogs against human lung (A-549) and CNS (SF-295) cancer
cell lines by a forward stepwise multiple linear regression method
using a leave-one-out approach. Similarly, the QSAR model for
cytotoxic activity against the human CNS cancer cell line (SF-295)
also showed a high correlation (r(2) = 0.99 and rCV(2) = 0.96), and
indicated that dipole vector and solvent-accessible surface area
were strongly correlated with activity. Overall, these findings
indicate that ursolic acid exerts its anti-inflammatory, antiproli-
ferative, and proapoptotic effects in various tumor cells through
the modulation of a number of oncogenic signaling cascades. Its
effects on NF-kB, STAT3, and TRAIL signaling pathways are
summarized in Fig. 2.

Death Ligand-Death Receptor
TRAIL

DR4
e
SE& )

STAT3

NFxB

Caspase-8

Cytochrome c ‘
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Caspase-9=% Caspase-2
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Fig. 2. Key inflammation associated signaling pathways inhibited by ursolic acid. These include nuclear factor-kB (NF-kB), signal transducer and activator of transcription
(STAT3), and tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) signal transduction pathways that have been shown to be modulated by ursolic acid both

in vitro and in vivo.



1584 M.K. Shanmugam et al./ Biochemical Pharmacology 85 (2013) 1579-1587

Table 2
In vivo chemopreventive and anticancer effects of ursolic acid.

Effects

References

Prostate carcinoma (animal model: male Balb/c nude mice) - intraperitoneal injection
Suppressed subcutaneously implanted neoplasia in male Balb/c nude mice at dose of 200 mg/kg b.w. [34]
Reduced the expression of VEGF and increased the expression of caspase-3 in tumor tissues

Transgenic adenocarcinoma of mouse prostate (animal model: TRAMP) - dietary dose (1%, w/w)
Ursolic acid in TRAMP mice delayed formation of prostate intraepithelial neoplasia, inhibited progression [74]
of PIN to adenocarcinoma and demonstrated markedly reduced tumor growth without any significant

effects on total body weight and prolonged overall survival

Down-regulated the expression of COX-2, cyclin D1 and up-regulated the expression of caspase-3 [74]
Reduced CXCR4 expression in tumor tissues of 36 weeks old TRAMP mice [30]
Hepatocellular carcinoma (animal model: Kunming mice) - intraperitoneal injection

Inhibited tumor growth in subcutaneously implanted tumor in a dose-dependent manner [70]
Hepatocellular carcinoma (animal model: Wistar rat) - oral feeding

Inhibited diethylnitrosamine-induced and phenobarbital-promoted liver cancer [78]
Reduced oxidative stress and free radicals in liver of Wistar rats [78]
Colorectal carcinoma (animal model: male nude mice) - intraperitoneal administration

Inhibited colonic adenocarcinomas in an orthotopic mouse model and this effect was enhanced in the presence of capecitabine [39]
Inhibited proliferation marker Ki-67 and microvessel density CD-31with concomitant suppression of NF-kB, STAT3 and [3-catenin [39]
Induced death receptors, DR4 and DR5, down-regulated cell survival proteins [6]
Colonic aberrant crypt foci (animal model: Sprague-Dawley rat) - dietary dose (0.11%, w/w)

Reduced development of azoxymethane (AOM)-induced colonic aberrant crypt foci [75]
Leukemia (animal model: NOD/SCID mice) - intraperitoneal injection

Induced apoptosis in human leukemia cells in a dose- and time-dependent manner [76]
Down-regulatesed PKB/JNK pathway, caused caspase activation and apoptosis [76]
Breast carcinoma (animal model: overiectomized female C57BL/6 mice) - dietary dose

Inhibited syngenic MMTV-Wnt-1 mammary tumors injected in mammary fat pad [77]
Inhibited AKT/mTOR signaling pathway and induced apoptosis in tumors [76]
Skin carcinoma (animal model: mice)

Inhibited skin cancer growth by decreasing epidermal thickness [80]
Gastric cancer (animal model: male nude mice)

Inhibited the growth of gastric cancer BGC-803 xenograft and induced apoptosis in tumors [57]

Abbreviations: Bcl2, B-cell lymphoma 2; COX-2, cyclooxygenase-2; DR, death receptor; EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor
receptor 2; IFN-v, interferon-gamma; IkB, inhibitory subunit of NF-kB; IKK, IkB kinase; IL, interleukin; iNOS, inducible nitric oxide synthase; IAPs, inhibitor of apoptosis; LOX,
lipoxygenase; MMP, matrix metalloproteinase; MAPK, mitogen-activated protein kinase; NF-«kB, nuclear factor-«kB; PARP, poly ADP ribose polymerase; ROS, Reactive oxygen
species; RNS, Reactive nitrogen species; STAT3, signal transducer and activator of transcription 3; SH-PTP1, protein tyrosine phosphatase-SHP1; TRAMP, transgenic
adenocarcinoma of prostate; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand; TNF-c, tumor necrosis factor; TGF-[3, transforming growth factor beta; TIMP-3,
Tissue inhibitor of metalloproteinase 3; VCAM-1, vascular cell adhesion molecule 1; VEGF, vascular endothelial growth factor.

3.2. In vivo chemopreventive and anticancer activities of ursolic acid

In vivo, ursolic acid has been reported to inhibit tumor growth
in various animal models of cancer (Table 2). Treatment with
ursolic acid (200 mg/kg b.w.) for 6 weeks inhibited the growth of
DU145 cells in nude mice without any significant effect on body
weight [7,34] and produced chemopreventive effects in the
transgenic adenocarcinoma of mouse prostate (TRAMP) mouse
model [74]. Recently, the effect of diet enriched with 1% w/w
ursolic acid was investigated by our group. We found that TRAMP
mice fed with ursolic acid in the diet for 8 weeks (weeks 4-12)
exhibited delayed formation of prostate intraepithelial neoplasia
(PIN) and also inhibition of progression of PIN to adenocarcinoma
in the mice fed with ursolic acid diet for 6 weeks (weeks 12-18)
was observed. In addition, TRAMP mice fed with this triterpene in
the diet for 12 weeks (weeks 24-36) demonstrated markedly
reduced tumor growth without showing significant effects on total
body weight and prolonged overall survival. It was observed that
ursolic acid down-regulated activation of various pro-inflamma-
tory mediators including, NF-kB, STAT3, AKT and IKKa/(
phosphorylation in the dorsolateral prostate (DLP) tissues that
correlated with the decreased serum levels of TNF-a and IL-6 [74].
In vivo studies using H22 xenografts in Kunming mice were
conducted by Shao et al. [70] with a novel ursolic acid derivative
(compound 14) at doses of 50, 100 and 150 mg/kg body weight.

The results revealed that the medium dosage group (100 mg/kg)
showed significant anticancer activity (45.6 & 4.3%) compared to
the control group.

Anti-tumorigenic activity of ursolic acid has also been reported
in an orthotopic colorectal nude mouse model. Ursolic acid
significantly inhibited tumor volume, ascites formation, as well as
distant organ metastasis, and this effect was enhanced with
capecitabine [39]. Immuno-histochemistry analysis of tumor
tissue indicated that ursolic acid down-regulated biomarkers of
proliferation (Ki-67) and microvessel density (CD31). This effect
was accompanied by suppression of NF-kB, STAT3, and [3-catenin.
In addition, ursolic acid suppressed EGF receptor (EGFR) and
induced p53 and p21 expression [39]. Ursolic acid (0.11% in diet)
reduced the incidence of aberrant crypt foci, one of the earliest
precursors of colorectal adenoma development, in particular the
tumor initiation phase [75]. Ursolic acid also displayed significant
antitumor activity in a leukemic nude mice model. U937 cells
(2 x 10° per mouse) were suspended in sterile PBS and injected s.c.
into the right flank of NOD/SCID mice. Three days after tumor
inoculation, the treatment group received ursolic acid (50 mg/kg,
i.p. for 20 days). The control group received an equal volume of
solvent control and it was observed that ursolic acid significantly
inhibited leukemia growth in vivo [76]. Ursolic acid was also found
to induce the expression of death receptors, down-regulate cell
survival proteins, and activate JNK in orthotopically implanted



M.K. Shanmugam et al./ Biochemical Pharmacology 85 (2013) 1579-1587 1585

human colorectal cancer in a nude mouse model [6]. Likewise, in a
transgenic breast cancer model, ovariectomized C57BL/6 mice
were randomized to receive control diet (AIN-93G) or diet
supplemented with ursolic acid at 1 of 3 doses (wt/wt): 0.05%,
0.10%, or 0.25% (~54, 106, or 266 mg/kg body weight/day,
respectively). After 3 weeks, syngeneic MMTV-Wnt-1 mammary
tumor cells were injected in the mammary fat pad, and mice
continued on their respective diets for 5 more weeks. Ursolic acid
in diet was found to produce significant antitumor activity by
modulating Akt/mTOR signaling pathway and by inducing
substantial apoptosis [77]. Oral administration of ursolic acid
(20 mg/kg) for 6 weeks in diethylnitrosamine (DENA)-induced and
phenobarbital-promoted hepatocarcinogenesis in male Wistar rats
reduced the oxidative stress-mediated changes in the liver of rats,
thereby suggesting that ursolic acid can act as an excellent
chemopreventive agent in overcoming free radical- mediated
inflammatory diseases like cancer [78].

Ursolic acid was tested for its inhibitory effect on tumor
promotion by tetradecanoyl-phorbol-13-acetate (TPA) in vivo by
Tokuda et al. [79]. They found that ursolic acid can effectively
inhibit the tumor promotion in mouse skin and the activities were
comparable to that of a known inhibitor of tumor promotion,
retinoic acid (RA). Interestingly, ursolic acid was more effective on
a single application before initial TPA-treatment than on a
continuous application before each TPA-treatment, while RA were
ineffective in the same treatment. These data suggest that the role
of ursolic acid for inhibitory action on tumor promotion differs
slightly from those of RA. Kowalczyk et al. [80] investigated the
potential cancer preventive effects of ursolic acid in murine skin
carcinogenesis and found that it caused marked decreases of
epidermal thickness and (except RES) reduced percentages of mice
with mutation in codon 61 of Ha-ras oncogene. Wang et al. [57]
explored the effect of ursolic acid on the growth of gastric cancer
cell line BGC-803 and hepatoma H22 xenografts and found that the
apoptotic rate was significantly increased in tumor cells treated
with this triterpenoid. The expression of caspase-3 and -8 was
elevated in tumor cells from xenograft treated with ursolic acid. In
addition, it was also observed in another study that ursolic acid
indeed could inhibit the growth of H22 hepatoma in vivo [58].
Interestingly, Lee et al. [81] observed only a moderate retardation
of growth in two tumor models in vivo upon ursolic acid
administration. Singletary and coworkers [82] found that ursolic
acid did not significantly affect in 7, 12-dimethyl-benz[a]anthra-
cene-induced mammary tumorigenesis in female rats. Overall, a
vast majority of these studies indicate that ursolic acid can inhibit
tumor initiation, progression, and metastasis in a wide variety of
preclinical cancer models.

4. Pharmacokinetics of ursolic acid

A rapid, sensitive, and accurate liquid chromatography-mass
spectrometry (LC-MS) method for the determination of ursolic
acid in rat plasma was developed and validated by Liao et al. [83].
In this method, rat plasma was acidified with acetic acid and then
extracted with a mixture of hexane-dichloromethane-2-propanol
(20:10:1, v/v/v). This LC-MS method has been successfully used for
the pharmacokinetic studies after oral administration of Lu-Ying
extract containing 80.32 mg/kg ursolic acid to the rats. Further-
more, ursolic acid as an internal standard was established for
determination of glycyrrhetic acid and gambogic acid in human
plasma, using sensitive liquid chromatography-electrospray
ionization-mass spectrometry (LC-ESI-MS) [84,85]. Freeze-dried
powder of ursolic acid phospholipid liposomes at low, middle and
high doses was used to study for body distribution in mice after i.v.
administration. It was found that ursolic acid concentration in the
livers of mice was highest in the tested organs at 4 h [86]. Recently

an ultra-performance liquid chromatography/tandem mass spec-
trometry (UPLC/MS/MS) method with high selectivity, sensitivity
and throughput was established and validated for quantitation of
total ursolic acid in human plasma. This assay exhibited good
linearity over the range of 10-5000 ng/mL for ursolic acid in
human plasma with a lower limit of quantitation of 10 ng/mL [87].
In another study, Chen et al. [88] developed a method using liquid
chromatography and mass spectrometry to determine the
concentration of ursolic acid in rat plasma. The concentrations
of ursolic acid in rat lung, spleen, liver, heart, and cerebellum tissue
were measured. This method was validated in the concentration
range 2.5-1470 ng/mL for plasma samples and 20-11760 ng/g for
tissue homogenates. Recoveries in plasma and tissues ranged from
83.2% to 106.2% [88]. Ursolic acid was detected in all serum
samples 24 h after the last injection. Finally in our recent report,
ursolic acid was detected in serum obtained from TRAMP mice fed
with ursolic acid (1%, w/w)—enriched diet in nanogram quantity
indicating that it is well absorbed in the gastrointestinal tract [74].

5. Human clinical trials with ursolic acid

Liposomal ursolic acid was used to determine the maximum
tolerated dose (MTD), dose-limiting toxicity (DLT), and pharma-
cokinetics of ursolic acid, as a new drug, in healthy adult volunteers
and in patients with advanced solid tumors. 63 subjects (4
patients, 35 healthy volunteers, and 24 adults) received a single-
dose of ursolic acid liposomes (11, 22, 37, 56, 74, 98, and 130 mg/
m?) administered as a 4-h intravenous infusion. The clinical data
reported for the first time that liposomal ursolic acid had
manageable toxicities with MTD of 98 mg/m?. The DLT were
primarily hepatotoxicity and diarrhea. Meanwhile, ursolic acid
liposomeal formulation had a linear pharmacokinetic profile [89].
Both et al. [90] demonstrated that ursolic acid incorporated into
liposomes increased the ceramide content of the skin of human
subjects, with increases in hydroxyl-ceramides occurring after
only 3 days of treatment. In an another study, Yarosh et al. [91]
showed that in clinical tests, ursolic acid incorporated into
liposomes increased the ceramide content in human skin over
an 11-day period. These studies suggest that ursolic acid has
tremendous potential to be developed into a potent anti-
inflammatory/anticancer drug.

6. Conclusions and perspectives

This review summarizes the reported chemopreventive and
therapeutic potential of ursolic acid in various cancer models.
Evidence from both in vitro and in vivo studies suggests that ursolic
acid can indeed suppress multiple molecular targets that play a
pivotal role in both chronic inflammation and cancer. However, in
future more detailed investigations are needed to completely
understand its exact mechanism of action against different
cancers. More, importantly, ursolic acid has been found to be
bioavailable following oral administration in mice while human
pharmacokinetic and pharmacodynamics profiles with the lipo-
somal ursolic acid are also available. Various evidences as
discussed above, related to the capability of ursolic acid to
suppress various key steps of tumor initiation, progression and
promotion, clearly vindicate its traditional use over the past
hundreds of years in the treatment of inflammatory diseases,
including cancers. Additional clinical trials are required to fully
exploit its reported efficacy for the prevention and treatment of
various malignancies.
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