
Introduction

Looking at plant health from a holistic perspective,
it is obvious that planting material must meet high sani-
tary standards, particularly with regard to viral infections.
While it is widely believed that in many seed-propaga-
ted crops this is not the case or that, at any rate, it is of
limited importance, the health status of plants subjec-
ted to vegetative propagation is critical. Historically
good health of the produced plants, in terms of viruses,
could only be assured by carefully selecting mother
plants that were virus-free plants according to accepted
diagnostic procedures and then propagating material
that was guaranteed. Indeed, beginning in the 1960s,
states or unions of states, such as the former European
Economic Community, were involved in defining legal
regulations regarding the health status of grapes
(68/93/EEC), ornamental plants (77/93/EEC), and fruit

trees (92/34/EEC); a similar approach was also under-
taken by the North American Plant Protection Orga-
nization (NAPPO). The most dangerous viruses are
addressed by these regulations which then lead to the
production of plants characterized by good health status,
and their use can be considered safe. Mother plants are
critical as they are used by nurseries to produce propa-
gation material and distribute it, perhaps worldwide:
strict regulatory measures are important to protect agri-
cultural systems and environments from the spread of
viruses. Generally the selection of germplasm, thanks
to diagnostic tools and procedures recently developed
in plant virology, leads to the identification of healthy
wild types that can be included in vegetative production
systems. However in some cases, identification of healthy
plants among selected local varieties with limited diffusion
can be difficult or impossible, making sanitation proce-
dures necessary to recover useful healthy plants.
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Abstract

To shed light on trends about elimination of viruses from plants, a bibliographic research was conducted to
identify thermotherapy, chemotherapy and tissue culture trials published from 1991 through 2010. Among woody
plants, grapevine, apple and peach are the most frequent targets of sanitation protocols because their health status
is strictly regulated. Even if thermotherapy represents the preferred method for the host, grapevine viruses can
also be eliminated with chemotherapy and tissue culture; apple viruses respond to chemotherapy as well. Although
a similar trend was reported among herbaceous plants, chemotherapy was the most frequently used technique in
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families (nine). An interpretation of thermotherapy effects considers the new metabolic “pathways” triggered by
the natural antiviral response emitted by the infected plant, with particular reference to virus-induced gene silencing.
With regard to chemotherapy, several groups of antiviral drugs belong to inosine monophosphate dehydrogenase
inhibitors, S-adenosylhomocysteine hydrolase inhibitors, neuraminidase inhibitors. Tissue culture, usually adopted
to regenerate plantlets in biotechnological breeding programs, represents the less used tool for eliminate viruses
from plants.
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Attempts to sanitize virus-infected plants or portions
of diseased plants to obtain new plants has not led to
miraculous results, even if some recent technologies
seem to offer new opportunities for facing difficulties
that occur during sanitation procedures. The culture of
meristems, combined with thermotherapy or chemo-
therapy offers encouraging results. However applica-
tion of these approaches, as well as other techniques,
has not led to a definitive clarification of the mecha-
nisms of action involved, probably due to incomplete
knowledge about the target virus and the mechanism
of resistance activated by plants. Furthermore, the im-
pact of sanitation techniques on the virus/host inter-
action still needs elucidation.

The aim of this paper is to provide a comprehensive
and systematic survey of the literature pertaining to
plant sanitation-related research issues in order to
ascertain the current “state of the art” of thermotherapy
(including cryotherapy or associated techniques such
as meristem culture), chemotherapy and tissue culture
(including techniques such as meristem tip and em-
bryogenesis) techniques. All documents used in this
study were accessed from the database of the Science
Citation Index (SCI) (ISI, Web of Science, Philadel-
phia, USA), Science Direct (SD) (Elsevier, Amster-
dam, Holland) and Google Scholar (Google Inc.,
Mountain View, USA). In this paper, we discuss trials
(techniques used to get virus elimination) published
from 1991, when the use of diagnostic assays such as
immunoenzymatic or molecular tests were widely applied,
until December 2010. The timeline and trials have been
divided into four periods of five years: 1991-1995 (28
trials), 1996-2000 (34 trials), 2001-2005 (55 trials),
and 2006-2010 (59 trials).

Thermotherapy

Thermotherapy treatment consists of keeping plants,
or more frequently a part of them, at temperatures bet-
ween 35°C and 54°C, within the physiological tole-
rance limits of each plant, for an appropriate period.
In practice, the selected temperature represents the best
compromise between virus degradation and plant sur-
vival, taking into account that the threshold of thermal
sensitivity of some viruses is lower than that of plant
cells and that damage caused to plant tissues by the
thermal stress can more easily be reversed than viral
damage (Spiegel et al., 1993). The thermal cycles most
frequently reported in 1991-2010 trials were set between

35°C and 38°C. Kassanis (1949) provided an interpre-
tation of the results obtained with the treatment, basing
it on identification of the infected cell as the environ-
ment where virus particles are in a dynamic equili-
brium between newly formed particles and degraded ones.
Thermal treatment, therefore, produces a shift in this
balance towards greater viral degradation which, when
repeated over time, can lead to elimination (Kassanis,
1957; Cooper & Walker, 1978). The principal alterations
in viral particles as a result of thermal treatment above
35°C are related to the rupture of hydrogen and disul-
fide bonds of capsid protein, followed by nucleic acid
phosphodiester covalent bonds, and consequently, even
deterioration of viral infectivity which can include se-
lective inhibition of viral replicase, changes in pH and
cellular ionic strength, increase of lytic enzymes, com-
petition between viral RNA and messenger for riboso-
me bonds.

In the field of thermotherapy, cryotherapy represents
a whole new approach (Nukari et al., 2009; Wang &
Valkonen, 2009; Wang et al., 2009). The freezing of
shoot tips (i.e. in liquid nitrogen, and subsequent thawing
and regeneration to shoots) was found to result in virus-
free plants with high efficiency. Moreover cryotherapy
takes only a few days: a minor addition to the whole
procedure of virus elimination which requires several
months. Meristem culture of shoot tips was also used
to enhance thermotherapy virus elimination as the eli-
mination ratio of viruses is higher when the size of iso-
lated tissue (i.e. shoot tip) is smaller (Mori & Hosokawa,
1977).

From our literature survey, thermotherapy is the
technique most frequently applied in sanitation proto-
cols: in the time frame 1991-2010, trials relative to
thermotherapy were the most frequently published
considering each period (Fig. 1).
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Figure 1. Distribution by antiviral techniques (thermotherapy,
chemotherapy or embryogenesis) in trials published during
1991-2010.
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Thermotherapy applications

Plant thermotherapy was applied in woody and her-
baceous plants in, respectively, 60.3% and 39.7% of pu-
blished trials from 1991 to 2010 (Table 1). Among woody
plants, grapevine sanitation was largely investigated
(17.4%), as well as apple (9.1%) and peach sanitation
(7.4%). Among herbaceous plants, garlic was sanitized
from various viruses (9.1%), as well as potato (6.6%). Ther-
motherapy was successfully applied against viruses be-
longing to 13 families and an unassigned genus (Table 1).

Thermotherapy applications can cause phenotypical
modification such as double nodes and modified leaf
shape (Koruza & Jelaska, 1993). In addition, specific
effects were reported in grapevine, such as an increment
in grape quality (Mannini et al., 1996) or in phenolic con-
centration in leaves and berries (Guidoni et al., 1997).

Mechanism of action

Plant thermotherapy is described as achieving a
cellular environment which is progressively less ade-
quate for virus vitality (Pennazio, 1995). Similar inter-
pretations are also reported by Mink et al. (1998) who
discussed the effects of heat treatment on the functio-
nality of viral movement proteins able to produce a
restriction of the infected tissues. In fact, the different
ability for movement of viral particles in plant tissues
influenced the choice of elimination treatment, with
thermotherapy as the most effective against viruses
characterized by parenchymatic localization, compared
to meristem culture technique which is more suitable
for phloematic viruses that are limited to vascular tissues
and rarely found in parts of the plant where differen-
tiated tissues are absent (Grout, 1990). However, up to
now, differences in localization of phloem and paren-
chymatic viruses in the host tissue have not fully ex-
plained their different susceptibilities to thermotherapy
elimination. A study carried out by subjecting a homo-
geneous collection of germplasm differently infected
by phloematic viruses to thermotherapy, found diffe-
rent levels of susceptibility to heat stress by different
viral agents, thus suggesting other influential parame-
ters on the mechanism of elimination besides that of
the tissue localization (Panattoni & Triolo, 2010).

Developments over the last 20 years in research aimed
at investigating the metabolic processes involved in
defense mechanisms of plants have suggested an inter-
pretation of the heat treatment effects according to new

metabolic “pathways” triggered by the natural antiviral
response produced by the infected plant, with particu-
lar reference to Virus-Induced Gene Silencing (VIGS)
induced by the presence of viral RNA in infected plants
(Ruitz et al., 1998). The process was first observed and
described during studies of healthy transgenic plants
where silencing is activated by plant cells as a means
of genic control against all sequences that have no
homology with those of their genome, including those
of viral origin which in this context would trigger the
same reaction (Mourrain et al., 2000; Carrington et
al., 2001; Dalmay et al., 2001; Vance & Vaucheret, 2001;
Voinnet, 2001). RNA silencing was described as such
an effective defense as to constitute an immunity me-
chanism at the genomic level. It is characterized by
adaptability, specificity and mobility also in conside-
ration of the system’s own RNA signal to the most
distant parts in terms of infection (Carrington et al.,
2001; Voinnet, 2001). Over the course of investigations
on infected plants, a correlation between VIGS and the
thermal regimes to which a plant is submitted has
emerged. Studies included treatments with tempera-
tures lower (30°C) than those set out in standard ther-
motherapy protocols (36°C), allowing more precise
investigation of possible relationships between gene
silencing and thermal increase (Szittya et al., 2003;
Qu et al., 2005). Moreover, in research conducted by
Szittya et al. (2003), Nicotiana benthamiana plants
infected with Cymbidium ringspot virus were exposed
to different thermal regimes between 15°C and 27°C.
For each heat treatment concentrations of short inter-
fering RNA were determined (elevated at 27°C and
undetectable at 15°C), while an increasing gradient,
starting from 21°C, was observed in reference to the
treatments. In relation to the different spread of viral
particles observed in the temperature range tested, the
authors identified a hyper activity of the system of tem-
perature-dependent gene silencing, as a mechanism of
antiviral protection of the plant. VIGS was defined by
these authors as a defense system that operates ineffec-
tively at low temperature, therefore increasing the
plant’s susceptibility to virus infections that do not en-
counter blocking gene systems. In contrast, increased
heat stress induces an increase in the host defense
system’s capacity by creating a barrier to infection.
Chellapan et al. (2005) continued investigations to
better def ine the mechanisms that determine the
influence of temperature on the antiviral silencing, also
for Geminivirus (ssDNA), by applying heat treatment
(25-30°C) to cassava (Manihot esculenta) and tobacco
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Table 1. Plants subjected to thermotherapy experiences during 1991-2010

Plant thermotherapy
% of

Family/genus2 References
trials1

Woody plants

Grapevine

Apple

Peach

Pear

Apricot

Plum

Raspberry

Others*

Herbaceous plants

Garlic

Potato

Artichoke

Chrysanthemum

Sugarcane

Sweet potato

Others**

60.3

17.4

9.1

7.4

6.7

3.3

3.3

3.3

9.8

39.7

9.1

6.6

2.5

2.5 

2.5

2.5

14.0

Bromoviridae; Closteroviridae;
Comoviridae; Flexiviridae;
Secoviridae; Tymoviridae

Betaflexiviridae; Bromviridae;
Flexiviridae; Potyviridae

Bromoviridae

Flexiviridae; Tombusviridae

Potyviridae

Bromoviridae

Idaeoviruses

Alphaflexiviridae;
Bromoviridae; Caulimoviridae;
Closteroviridae; Comoviridae;
Flexiviridae

Flexiviridae; Potyviridae

Alphaflexiviridae; Flexiviridae;
Potyviridae

Comoviridae; Potyviridae

Bromoviridae; Flexiviridae

Potyviridae

Geminiviridae; Potyviridae

Alphaflexiviridae;
Bromoviridae; Bunyaviridae;
Flexiviridae; Geminiviridae;
Idaeoviruse; Potyviridae;
Secoviridae

Hatzinikolakis & Roubelakis-Agelakis, 1993; Kuniyuki et
al., 1994; Spiegel et al., 1995; Guidoni et al., 1997;
Leonhardt et al., 1998; Gribaudo et al., 1999; Buciumeanu
& Visoiu, 2000; Milkus et al., 2000; Valero et al., 2003;
Bertamini et al., 2004; Gribaudo et al., 2006; Komar et al.,
2007; Panattoni et al., 2007a; Salami et al., 2009; Skiada et
al., 2009a; Panattoni & Triolo, 2010

Yamaga & Munakata, 1991; Knapp et al., 1995; Bhardwaj
et al., 1998; Chen & Li, 2001; Wang et al., 2006; Cieslinska,
2002; Manganaris et al., 2003b; Freitas et al., 2004;
Paunovic & Jevremovic, 2006; Sedlak et al., 2007; Talacko
et al., 2007; Paprstein et al., 2008; Wang LP et al., 2010

Stein et al., 1991; Gella & Errea, 1998; Zilkah et al., 2001

Gella & Errea, 1998; Refatti et al., 1999; Saponari et al.,
1999; Postman & Sugar, 2002; Zilka et al., 2002; Tan et al.,
2010

Manganaris et al., 2003a; Laimer et al., 2006; Koubouris et
al., 2007; Polak & Hauptmanova, 2009

Dziedzic, 2008

Karesova et al., 2002

Cheema et al., 1999; Helliot et al., 2002, 2004; Arif et al.,
2005; Saponari et al., 2007; Kenganal et al., 2008; Previati
et al., 2008; Sharma et al., 2008

Le et al., 1991; Bruna, 1997; Ghosh et al., 1997; Robert et
al., 1998; Senula et al., 2000; Fajardo et al., 2002;
Bertaccini et al., 2004; Conci et al., 2005; Patena et al,
2005; Ramírez-Malagón et al., 2006

Faccioli & Colombarini, 1991, 1996; El-Amin et al., 1994;
Pozzer et al., 1994; Horackova et al., 1999; Kryszczuk,
1999; Nascimento et al., 2003; López-Delgado et al., 2004

Barba, 2001; Navacchi et al., 2005; Pace et al., 2008

Ram et al., 2005, 2009

Victoria et al., 1999; Balamuralikrishnan et al., 2003;
Ramgareeb et al., 2010

Green et al., 1992; Jeeva et al., 2004

Chen & Sherwood, 1991; Dunbar et al., 1993; Ahiabu et al.,
1997; Petrzik & Svoboda, 1997; Postman, 1997; Malaurie
et al., 1998; Shiboleth et al., 2001; Li et al., 2002; Mangal
et al., 2002; Uchanski et al., 2002; Cieslinska, 2003; Fraga
et al., 2004; Verma et al., 2005; Zhang et al., 2006;
Tomassoli et al., 2008; Nesi et al., 2009; Nukari et al.,
2009; Ling, 2010; Wasswa et al., 2010

1 Percentage of trials out of total. 2 Family/genus of virus eliminated by thermotherapy. * Banana, cherry, citrus, fragaria, man-
darin, olive, rose. ** Begonia, blueberry, caper, carnation, cassava, hop, horseradish, lilly, peanut, phlox, strawberry, taro, tomato,
ulluco, yam.



(Nicotiana benthamiana) plants infected by Cassava
mosaic disease. They achieved similar results and con-
firmed the close relationship between temperature and
VIGS. For their part, Qu et al. (2005) considered plants
of N. benthamiana infected by Potato virus X exposed
to different thermal regimes (up to 33°C) with particu-
lar attention to the involvement of RNA-dependent RNA
polymerase (RdRp), which is sensitive to temperature
changes and thus induces the silencing complex, thereby
highlighting its role. Wang et al. (2008) conducted com-
bined thermotherapy (38°C) and cryotherapy treatments
associated with the removal of meristem tips on raspberry
plants infected by Raspberry dwarf virus. From their
results, the authors noted the close relationship between
temperature and RNA silencing which seems to act as
a means to increase the degradation of virus RNA.

Chemotherapy

The development of research in the field of chemo-
therapy has not been as lively as the work conducted
on thermotherapy, but valuable contributions have been
provided by the most extensive investigations of anti-
viral chemotherapy performed in clinical medicine. In
this regard, the discovery of ribavirin (Sidwell et al.,
1972; Huffman et al., 1973) represented a defining
moment in the research, marking a different route of
investigation in the study of new chemical synthesis
analogues of nucleoside or precursors of RNA bases.
In fact, knowledge of the complex interactions that de-
velop between virus and host cell provides a guide for
selecting the potentially most suitable treatment. To
date, more than 40 antiviral molecules, synthesized in
this way, are available on the market for clinical appli-
cation. Keeping in mind the relevant differences between
animal and plant hosts, the potential similarities bet-
ween metabolic pathways present in both have been
the starting point for experimentation on phytoviruses,
making possible to highlight the effectiveness of these
antiviral drugs in the botanical field. However, in plant
virology, the fact that less resources are available and
that there has been a delay in knowledge of the molecu-
lar characteristics of many phytoviruses, means that
fewer results than in medicine are available.

Chemotherapy applications

Herbaceous plants were more frequently investigated
than woody plants, with 66.0% and 34.0% respectively

of published trials in 1991-2010 (Table 2). Potato
(18.9%), orchid and tobacco (9.4%) were subjected to
many treatments, while grapevine sanitation represented
the main treated host among woody plants (11.3%) as
well as apple and plum (7.5%).

Chemotherapy, mainly with well-known pro-drugs
such as ribavirin, was successfully performed against
viruses belonging to 9 families and an unassigned genus
(Table 2).

Synthetic nucleoside such as tiazofurin, selenazofurin
(2-pD-ribofuranosylselenazole-4-carboxamide) and
benzamide riboside (3-(l-deoxy-pD-ribofuranosyl)
benzamide, and non-nucleosides such as micophenolic
acid [6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-l,3-
dihydroisobenzofuran-5-yl)-4-methyl-hex-4-enoic acid]
were tested against Cucumber mosaic cucumovi-
rus (CMV) and Grapevine leafroll-associated virus 3
(GLRaV-3) (Panattoni et al., 2005, 2007a). Interesting
results were obtained using dihydroxypropyladenine
[(RS)-9-(2,3-dihydroxypropyl) adenine] in combina-
tion with ribavirin and resulted in the elimination of
Grapevine vitivirus A (Panattoni et al., 2007b). Sur-
prising positive results were achieved by supplying
oseltamivir to in vitro Nicotiana tabacum explants in-
fected by CMV and V. vinifera explants infected by
GLRaV-3; high rates of sanitation in both combinations
were noted (D’Anna et al., 2006; Panattoni et al., 2006;
Guta et al., 2010). Moreover, replication of Tobacco
mosaic virus (TMV) was inhibited by bitriazolyl com-
pounds (Xia et al., 2006), tylophorine B (Xi et al.,
2006), phenanthrene-based tylophorine derivatives
(Wang et al., 2010a), derivatives of thiadiazole-
acetamide (Zhao et al., 2006), cyanoacrylate deriva-
tives (Chen et al., 2008), and racemic phenanthroindo-
lizidine alkaloids or pure alkaloids (Wang et al., 2010b):
no sanitized plants were reported for these novel com-
pounds.

Mechanism of action

In contrast to thermotherapy, chemotherapy in plants
was poorly investigated considering the mechanism of
action involved. The inhibition of replication of TMV
was reported using nucleobase or nucleoside analogues
(Schulze & Kluge, 1994), bitriazolyl compounds (Xia
et al., 2006), tylophorine B (Xi et al., 2006), and de-
rivatives of thiadiazoleacetamide (Zhao et al., 2006).

Several groups of antiviral drugs, that have shown
signif icant therapeutic potential against plant viru-
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ses, belong to inosine monophosphate dehydrogenase
(IMPDH) inhibitors, S-adenosylhomocysteine hydro-
lase (SAH) inhibitors, neuraminidase (NA) inhibitors.
IMPDH inhibitors represent a class of molecules deri-
ved from the structure of ribavirin and they are charac-
terized by a pronounced antiviral activity, as shown by
the large number of molecules tested. Ribavirin is a
synthetic nucleoside analogue of guanosine, syntheti-
zed by Sidwell et al. (1972) during testing in clinical
medicine against the Respiratory syncytial virus. It
subsequently proved to be effective also against other
viruses such as Influenza viruses type A and B and Lassa
virus, the agent of the fever of the same name (Stein
et al., 1987). The initial hypothesized mechanism of

action lay in its potential to inhibit inosine monopho-
sphate dehydrogenase but, in light of recent acquisi-
tions, its mechanism appears to be more complex and
articulated in several ways, and it has not yet been fully
described (Jayaram et al., 1999). IMPDH inhibitors
are directly involved in the process of transcription of
triphosphate ribonucleotides and thus lead to inhibition
of viral nucleic acid replication. In fact, the principal
target of antiviral activity of these molecules is the inosine
monophosphate dehydrogenase, an enzyme that cata-
lyzes the conversion of inosine 5’-monophosphate (IMP)
in xantosine 5’-monophosphate and is able to alter the
pathway for the production of guanosine mono- di-and
triphosphate. The presence of its inhibitor acts on this
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Table 2. Plants subjected to chemotherapy experiences during 1991-2010

Plant chemotherapy
% of

Family/genus2 References
trials1

Woody plants
Grapevine

Apple

Plum

Bamboo

Black currant

Citrus

Fragaria

Herbaceous plants
Potato

Orchid

Tobacco

Lilly

Chrysanthemum

Garlic

Tomato

Others*

34.0
11.3

7.5

7.5

1.9

1.9

1.9

1.9

66.0
18.9

9.4

9.4

5.7

3.8

3.8

3.8

11.2

Closteroviridae; Comoviridae;
Flexiviridae

Flexiviridae

Betaflexiviridae;
Bromoviridae; Potyviridae

Flexiviridae

Secoviridae 

Secoviridae

Flexiviridae; Geminiviridae;
Potyviridae

Flexiviridae

Tobamovirus

Bromoviridae; Potyviridae

Bromoviridae; Flexiviridae

Potyviridae

Tobamovirus

Alphaflexiviridae;
Bromoviridae; Comoviridae;
Flexiviridae; Tobamovirus

Weiland et al., 2004; Panattoni et al., 2006, 2007a,b;
Skiada et al., 2009b

Yamaga & Munakata, 1991; James et al., 1997;
Cieslinska, & Zawadzka, 1999; Cieslinska, 2002;
O’Herlihy et al., 2003

Janeckova, 1993; Gabova, 1995; Chen & Li, 2001;
Paunovic et al., 2007

Chen & Lu, 2000

Kolbanova et al., 2004

Iwanami & Ieki, 1994

Cieslinska, 2003

Conrad, 1991; Faccioli & Colombarini, 1991; Green
et al., 1992; Park et al., 1994; Kim et al., 1996;
Truskinov & Rogozina, 1997; Faccioli & Zoffoli,
1998; Horackova, 1998; Nascimento et al., 2003;
Fang et al., 2005

Loi et al., 1991

Schulze & Kluge, 1994

Kim et al., 1994; Xu & Niimi, 1999; Xu et al., 2000

Ram et al., 2005, 2009

Bertaccini et al., 2004; Ramírez-Malagón et al., 2006

Xu et al., 2004

Chen & Sherwood, 1991; Lim et al., 1993; Toussaint
et al., 1993; Fletcher et al., 1998; Freitas & Rezende,
1998; Yap et al., 1999; Fletcher & Fletcher, 2001;
Ling et al., 2003; Jiang et al., 2005; Navacchi et al.,
2005; Verma et al., 2005; Singh et al., 2007; Ling, 2010

1 Percentage of trials out of total. 2 Family/genus of virus eliminated by thermotherapy. * Artichoke, begonia, gladiolus, onion, 
peanut, sweet potato, ulluco, cymbidium.



path by reducing the intracellular pool of guanosine
and thus also preventing the synthesis of viral RNA
(Franchetti et al., 1996). In addition, guanosine trip-
hosphate is responsible for converting IMP to succinyl-
adenine monophosphate catalyzed by adenosylsucci-
nate that leads to the production of adenosine triphos-
phate and then its reduction leads to reduction of the ATP
potentially needed for viral synthesis (Streeter et al.,
1973). Moreover, ribavirin’s antiviral effect is by forcing
RNA viruses into error catastrophe (Crotty et al., 2001).

The effectiveness of antiviral molecules belonging
to SAH hydrolase inhibitors has been known for some
time and centers on the mechanism of action of SAH
hydrolase, another key enzyme for viral replication.
S-adenosylmethionine (SAM) is used in transmethy-
lation reactions, in which this molecule donates methyl
groups to a wide range of acceptors including nucleic
acids, viral proteins and phospholipids, and is then
converted to S-adenosylhomocysteine. Methylation is
regulated negatively by both an increase in SAH and
a reduction of SAM or SAM/SAH ratio. The removal
of SAH plays an essential role and it is mediated by
SAH hydrolase able to convert this molecule into ho-
mocysteine and adenosine. The accumulation of SAH
thus makes their conversion and consequent blocking
of the maturation of viral RNA impossible, in particu-
lar without terminating formation of the “cap” (De
Clercq, 2005).

The mechanism of action of NA inhibitors is based
on the inhibition of neuraminidases and these inhibi-
tors have provided very interesting results with regard
to some Orthomyxoviridae with ssRNA-genome and
innovative ones for phytoviruses. NA inhibitors are
molecules that act by binding to the active site of viral
neuraminidase, preventing the release and spread of
newly-generated virion progeny from infected cells to
healthy ones (Gubareva, 2004). Neuraminidase is a
glycoprotein found in the membrane lining of flu virus.
Cutting the terminal residues of sialic acid found on
the surface of infected cells, it can activate multiple
effects that promote the release of new virus particles
and also prevent the formation of viral aggregates after
release from the host cell, preventing virus inacti-
vation, virus spread in the respiratory tract and indu-
cing apoptosis (McClellan & Perry, 2001). In light of
the importance of this enzyme in viral replication and
pathogenesis, medical research has focused on the
development of selective inhibitors, in particular sialic
acid analogues, for the prophylaxis and treatment of
flu. Currently, two NA inhibitors are commercially

available: zanamivir (Relenza®, GlaxoSmithKline) and
oseltamivir (Tamiflu®, Gile-ad/Roche) (McClellan &
Perry, 2001). Unfortunately, plant viruses sensitive to
Oseltamivir are not involved with replication steps re-
lated to neuraminidase protein, and the mechanism of
action of these inhibitors in plants are yet unknown.

Tissue culture

Plant tissue culture is a technique based in the iso-
lation of small parts of plants (tips, meristems and so-
matic embryos) and growing them on artificial media
in adequate conditions so the parts of plants can grow
and develop into complete plants (Hollings, 1965).
Moreover, this technique can be used to produce virus-
free plants. The size of tissue like shoot tip (5.0-
10.0 mm) or meristem portion (0.2-0.7 mm) is the
critical point for the achievement of virus eradication,
considering than smaller portion of tissue can be
characterized by a lower virus concentration. The size
of the meristematic dome determines the ability of
explant to survive on a specific nutrient medium and
the time required to establish a new plant. Starting from
a small meristem several months are needed to obtain
the new plantlets, while 1-2 months can be enough if
the starting material is a shoot-tip culture (Faccioli,
2001). Moreover, considering that this technique is
time-consuming, it is common to use different media
supplemented with several hormones. Anyway, these
media could represent a critical step for the stability
of genetic and performance prof ile of the progeny
(Jayasinghe & Salazar, 1997).

Somatic embryogenesis, usually adopted to regene-
rate plantlets in biotechnological breeding programs,
has been used to eliminate viruses from plants. Ex-
plants such as anthers, ovaries or leaves, were culti-
vated on a callus induction medium, and the kind of
infected tissue used interfered with elimination rates
(Popescu et al., 2010). The calli were transferred to an
embryo differentiation medium, producing embryo-
derived plantlets able to be micropropagated by cultu-
ral apical cuttings.

The presence of virus particles in callus and the re-
generation of healthy embryos or plantlets is related
to the virus distribution and mechanisms of virus mo-
vement in the tissues, and most probably to the charac-
teristics of the callus and its evolution after several months
of culture. Moreover, Popescu et al. (2003) showed
how sanitation rates, and genetic variations, could be
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also related to the length of time required for callus
induction. For example, very short time of subcultures
could not allow virus particles spreading from infected
to healthy tissue.

Considering the complex of 1991-2010 research,
55.2% of trials dealing with tissue culture were publi-
shed between 2006 and 2010 (Fig. 1).

Tissue culture applications

Tissue culture research was almost equally focused
on woody or herbaceous plants (48.3 and 51.7%, res-
pectively) (Table 3). Among woody plants, grapevine
sanitation was largely investigated (34.5%). Sanitation
of herbaceous plant was mainly referred to sugarcane
(13.8%), garlic (10.3%) and potato (6.9%). Tissue cul-
ture was performed against viruses belonging to 9 fa-
milies (Table 3).

Mechanism of action

The recovery of pathogen-free clones from source
infected plants through the use of tissue culture tech-
niques is based on the premise that pathogen concen-
tration is not uniform throughout the infected plant
such as shoot tips. In particular, the meristematic tissue

from roots and terminal sprouts could be pathogen-
free. Due to the fact that the most differentiated vascu-
lar tissue is far away from the meristems, the vascular
elements of the primordium leaves are incipient and
are not yet in contact with the principal part of the stem’s
vascular system. For this reason, virus particles present
in the mature vascular system can only reach the top
of the meristem zone by moving slowly from cell to cell.
Instead viruses that infect non-vascular tissues are disse-
minated from cell to cell through plasmodesmata that re-
present a slow process which makes it relatively difficult
for viruses to infect that apical zones (Faccioli, 2001).

The mechanism whereby regenerated somatic embryos
are freed of some viruses is not clear. It was reported
that phloem-limited viruses are able to invade initially
the callus derived from anther and ovary cultures
(Gambino et al., 2006), but translocation of these viru-
ses from infected tissue to somatic embryos was not
observed (Goussard et al., 1991; Gambino et al., 2006)
or, in some cases, translocation depends on the geno-
type and the length of time necessary for regeneration
of tissues (Popescu et al., 2003).

Comparison of techniques

Thermotherapy, even in association with other tech-
niques such as tissue culture, represents the most fre-
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Table 3. Plants subjected to tissue culture experiences during 1991-2010

Plant tissue culture
% of

Family/genus2 References
trials1

Woody plants
Grapevine

Others*

Herbaceous plants
Sugarcane

Garlic

Potato

Others**

48.3
34.5

13.8

51.7
13.8

10.3

6.9

20.7

Closteroviridae; Comoviridae;
Flexiviridae; Tymoviridae

Bromoviridae;
Caulimoviridae;
Ophioviridae; Potyviridae

Luteoviridae; Potyviridae

Potyviridae

Potyviridae

Bromoviridae;
Caulimoviridae;
Flexiviridae; Potyviridae

Goussard & Wiid, 1992; Popescu et al., 2003, 2010;
Gambino et al., 2006, 2010; Gribaudo et al., 2006;
Borroto-Fernández et al., 2009; Youssef et al., 2009

Ramos & Zamora, 1999; D’Onghia et al., 2001;
Golino et al., 2007; Quainoo et al., 2008

Fitch et al., 2001; Parmessur et al., 2002; Ramgareeb
et al., 2010

Ebi et al., 2000; Ayabe & Sumi, 2001; Ramírez-
Malagón et al., 2006

Truskinov & Rogozina, 1997; Mahmoud et al., 2009

Wangai & Bock, 1996; Morris et al., 1997; Mangal et
al., 2002; S̆edivá et al., 2006; Kumar et al., 2009;
Kabir et al., 2010

1 Percentage of trials out of total. 2 Family/genus of virus eliminated by thermotherapy. * Banana, citrus, cocoa, rose. ** Carna-
tion, chincherinchee, chrysanthemum, dahlia, peanut, pumpkin.



quently used technique for sanitation over the last 20
years, while applications of methods such as chemo-
therapy and tissue culture represent the main topic in
plant sanitation research.

Among woody plants, grapevine, apple and peach
are the most frequent targets of sanitation protocols
because their sanitary status is strictly regulated by
legal provisions (Mink et al., 1998). Even if thermothe-
rapy represents the preferred method for each host,
grapevine viruses can be eliminated even with chemo-
therapy and tissue culture, whereas apple viruses can
be removed by chemotherapy as well (Table 4). Among
herbaceous plants, chemotherapy was the technique
most frequently used in potato, while tissue culture
was the preferred one for sugarcane (Table 4).

Discussion

The high level of specialization attained by many
viruses due to their replication and pathogenetic me-
chanisms towards the host make them an extremely va-
riable and complex target. This complexity is the back-
ground upon which a strategy can be optimized, as
reported in clinical research (De Clercq, 2002, 2005).
Therefore, the outcome of therapeutic action is strongly
influenced by the ontological properties of the virus
to be eliminated as well as the characteristics expressed
by the plant as well as the trans-membrane transport
of drugs (Luvisi et al., 2012a; Rinaldelli et al., 2012).
The application of chemotherapy or thermotherapy
should aim at stopping the synthesis of new virions,
but elimination can be achieved only if viral particles
formed prior to treatment are completely eliminated,
as suggested in research dated before 1991 (Kassanis,

1957; Cooper & Walker, 1978). For example, in many
cases the chemotherapy target is an enzyme that can
be efficiently blocked for the synthesis of new virus
particles, but it is generally ineffective against already
formed virus particles, which can only naturally degra-
de according to specific virus properties and host cha-
racteristics. Conversely, thermotherapy treatment is
potentially effective in degrading viral particles present
in cells, but its performance is poor with regard to the
synthesis of new ones. In any case, this topic was rarely
reported in virus elimination research on plants.

In conclusion, it is not sufficient just to choose drug
or thermal exposure. Other parameters have to be taken
into account as well, for example the structural and
biological characteristics of a virus can strongly inter-
fere with the results of treatment and are important for
the f inal outcome of elimination. Limited or partial
knowledge of some of these parameters can lead to
incomplete elimination of the pathogen, even if the
applied treatment is actually capable of blocking the
activity of viral replication (Luvisi et al., 2012b). Fur-
thermore, the complex interaction between host and
virus has been underlined by recent evidence, such as
gene silencing and silencing-suppressor proteins, leading
to new tools and improved antiviral therapies.
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