Vecten-Punkt

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Erster Vecten-Punkt V1 mit Kiepert-Dreieck (rot)

Die beiden Vecten-Punkte gehören zu den besonderen Punkten eines Dreiecks. Sie gehen zurück auf den französischen Mathematiker Vecten (1811/1812) zurück.[1]

Erster Vecten-Punkt

[Bearbeiten | Quelltext bearbeiten]

Über den Seiten eines Dreieck ABC werden nach außen drei Quadrate gezeichnet. Jeder der drei Quadratmittelpunkte, die das Kiepert-Dreieck bilden, wird mit der gegenüberliegenden Ecke des ursprünglichen Dreiecks verbunden. Die Verbindungsgeraden schneiden sich in einem Punkt, der als erster Vecten-Punkt bezeichnet wird und die Kimberling-Nummer X(485) trägt.

Zweiter Vecten-Punkt

[Bearbeiten | Quelltext bearbeiten]
Zweiter Vecten-Punkt V2

Zeichnet man die Quadrate nach innen statt nach außen, so erhält man den zweiten Vecten-Punkt mit Kimberling-Nummer X(486).

  • Die beiden Vecten-Punkte liegen auf der Kiepert-Hyperbel.
  • Die Vecten-Punkte liegen mit dem Mittelpunkt des Feuerbach-Kreises (Neun-Punkte-Kreises) auf einer Geraden.
Vecten-Punkte ( und )
Trilineare Koordinaten
Baryzentrische Koordinaten
Das Pluszeichen gilt für den ersten Vecten-Punkt, das Minuszeichen für den zweiten.
  • Sotirios E. Louridas, Michael Th. Rassias: Problem-Solving and Selected Topics in Euclidean Geometry: In the Spirit of the Mathematical Olympiads. Springer, 2014, ISBN 978-1-4614-7273-5, S. 62–63
  • Claudi Alsina, Roger B. Nelsen: Perlen der Mathematik: 20 geometrische Figuren als Ausgangspunkte für mathematische Erkundungsreisen. Springer, 2015, ISBN 978-3-662-45461-9, S. 4–7, 93

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Über Vecten ist wenig überliefert. Bekannt ist, dass er von 1810 bis 1816 als „professeur de mathématiques spéciales“ am Lycée de Nîmes tätig war und 22 Beiträge in der von dem Mathematiker Joseph Gergonne herausgegebenen Zeitschrift Annales veröffentlichte. Siehe dazu: Claudi Alsina, Roger B. Nelsen: Perlen der Mathematik: 20 geometrische Figuren als Ausgangspunkte für mathematische Erkundungsreisen. Springer, 2015, ISBN 978-3-662-45461-9, S. 4