Molekularfeldtheorie
Die Molekularfeldtheorie (engl. mean-field theory) ist eine Näherung, die Systeme miteinander wechselwirkender Teilchen als Systeme freier Teilchen in einem externen Feld betrachtet. Das externe Feld wird dabei als konstant angesehen und berücksichtigt somit nicht, dass jedes Teilchen durch sein Verhalten das Feld lokal verändert (d. h., Fluktuationen werden vernachlässigt).[1]
Obwohl bei dieser Näherung für viele Größen quantitativ ungenaue Werte entstehen, gibt sie zahlreiche qualitative Hinweise auf das Skalenverhalten, also auf die kritischen Exponenten bei Phasenübergängen. Die Molekularfeldtheorie hängt eng mit der Landau-Theorie der Phasenübergänge zusammen.
Formal betrachtet die Molekularfeldtheorie den Zustand mit dem größten Beitrag zur Zustandssumme, weshalb sie auch als klassische Näherung oder Molekularfeldnäherung bezeichnet wird.
Anwendungen
BearbeitenDie Molekularfeldtheorie wird häufig angewendet in der statistischen Physik oder der statistischen Thermodynamik, u. a. bei der Bestimmung der Permittivität polarisierbarer Medien,[2] im Ising-Modell (Gitter aus N Spins) und in der Van-der-Waals-Theorie (Flüssigkeiten). Dabei ergibt sich die Beziehung zwischen dem Isingmodell und der Flüssigkeitstheorie aus der Gittergas-Interpretation des Ising-Modells (spin up 'Gitterplatz ist besetzt', spin down 'Gitterplatz ist leer').
Beispiel: N-Spin-System
BearbeitenEin System aus Spins ist charakterisiert durch seinen Hamilton-Operator:
wobei
- der erste Summand den Energiebeitrag durch die Wechselwirkung der Spins mit der magnetischen Flussdichte eines äußeren Magnetfeldes
- der zweite Summand die Wechselwirkung der Spins untereinander, deren Eintrag in der Wechselwirkungsmatrix von Null verschieden ist,
- den gyromagnetischen Faktor
- das Bohrsche Magneton
beschreibt.
Im Sinn der Molekularfeldtheorie wird der Wechselwirkungsterm nun abgeschätzt, indem man die Spins ersetzt durch ihren Mittelwert über das gesamte System:
Der Erwartungswert eines einzelnen Spins ist dann in der Molekularfeldnäherung .
Damit wird der Hamilton-Operator zu:
wobei .
In einer weiteren Abschätzung wird als gleich für alle angenommen:
Der Term in der Klammer ist nun unabhängig von den einzelnen Wechselwirkungen im System und kann wie ein effektives äußeres Magnetfeld verstanden werden. Dieses kann man anstelle des Magnetfelds einsetzen in die Lösungen für das Problem freier Spins ( ).
Im Fall eines entlang der z-Achse ausgerichteten Magnetfeldes ergibt sich aus dem Erwartungswert der -Komponente der Spinssumme :
mit
- der Brillouin-Funktion zum Spin S
- der Boltzmann-Konstante
- der absoluten Temperatur
der Erwartungswert für wechselwirkende Spins zu:
Einschränkungen
BearbeitenDie Molekularfeldtheorie vernachlässigt Korrelationen der physikalischen Größen, d. h., es wird angenommen, dass . Daraus folgt, dass die Molekularfeldtheorie am kritischen Punkt eines Phasenübergangs, und in dessen Nähe, zusammenbricht.
Verallgemeinerungen
BearbeitenDer Kern der Theorie besteht darin, dass für einen komplizierteren Operator eine lineare Näherung, d. h. eine Einteilchennäherung gemacht wird. Analog kann man z. B. in der Quantentheorie eine komplizierte Vielteilchentheorie auf eine optimal angepasste Einteilchentheorie zurückführen, indem man den Hamiltonoperator beispielsweise durch die zugehörige Hartree-Fock-Näherung approximiert oder passende Quasiteilchen einführt.
Literatur
Bearbeiten- Molekularfeldtheorie des Ferromagnetismus (Universität Bayreuth), abgerufen am 24. Dezember 2009, 16:57
- Mean Field Theory für Ferromagnetismus(engl.) CAU Kiel, Hyperscript Prof. H. Föll, 24. Juni 2012
Einzelnachweise
Bearbeiten- ↑ D.J. Amit: Field Theory, the Renormalization Group, and Critical Phenomena, World Scientific, 1978, ISBN 9971-966-10-7.
- ↑ C. Itzykson, J.M. Drouffe: Statistical Field Theory, Cambridge University Press, 1989, ISBN 0-521-40805-9.