Einstichproben-t-Test
Der Einstichproben-t-Test (englisch one sample t-test) ist ein Signifikanztest aus der mathematischen Statistik. Er prüft anhand des Mittelwertes einer Stichprobe, ob der Mittelwert einer Grundgesamtheit gleich einem vorgegebenen Wert ist (bzw. kleiner oder größer).
Eine entsprechende Erweiterung eines Mittelwertvergleiches für zwei (abhängige oder unabhängige) Stichproben ist der Zweistichproben-t-Test.
Testidee
BearbeitenDer Einstichproben-t-Test prüft (im einfachsten Fall) mit Hilfe des Mittelwertes einer Stichprobe, ob der Erwartungswert der Grundgesamtheit verschieden von einem vorgegebenen Wert ist.
Die untenstehende Grafik zeigt eine Grundgesamtheit (schwarze Punkte) und eine Stichprobe (rote Punkte), die zufällig aus der Grundgesamtheit gezogen wurde. Der Mittelwert der Stichprobe kann aus der Stichprobe berechnet werden, der Mittelwert der Grundgesamtheit ist jedoch unbekannt. Man vermutet, z. B. wegen historischer Ergebnisse oder theoretischer Überlegungen, dass der Mittelwert der Grundgesamtheit verschieden von einem vorgegebenen Wert ist.
Im einfachsten Fall prüft der Test
- die Nullhypothese, dass der Mittelwert der Grundgesamtheit gleich dem vorgegebenen Wert ist ( )
- gegen die Alternativhypothese, dass der Mittelwert der Grundgesamtheit ungleich dem vorgegebenen Wert ist ( ).
Wenn die Stichprobe geeignet gezogen wird, z. B. als einfache Zufallsstichprobe, wird der Mittelwert der Stichprobe mit hoher Wahrscheinlichkeit nahe bei dem Mittelwert der Grundgesamtheit liegen. D. h. der Abstand zwischen der gestrichelten roten und schwarzen Linie wird mit hoher Wahrscheinlichkeit klein sein.
- Liegt nun der vorgegebene Wert nahe dem Mittelwert der Stichprobe , d. h. die gestrichelte blaue und die gestrichelte rote Linie haben einen kleinen Abstand, dann liegt der vorgegebene Wert auch nahe dem Mittelwert der Grundgesamtheit . Wir können dann die Nullhypothese nicht ablehnen.
- Liegt jedoch der vorgegebene Wert weit entfernt von dem Mittelwert der Stichprobe , d. h. die gestrichelte blaue und die gestrichelte rote Linie haben einen großen Abstand, dann liegt der vorgegebene Wert auch weit entfernt von dem Mittelwert der Grundgesamtheit . Dann können wir die Nullhypothese ablehnen.
Die genauen mathematischen Berechnungen finden sich in den folgenden Abschnitten.
Hypothesen
BearbeitenFür den Einstichproben-t-Test können drei verschiedene Hypothesenpaare (Nullhypothese vs. Alternativhypothese ) formuliert werden:
- vs. (zweiseitiger Test),
- vs. (rechtsseitiger Test) und
- vs. (linksseitiger Test)
Für alle drei Hypothesenpaare wird die gleiche Teststatistik benutzt, lediglich die Bereiche für die Ablehnung bzw. Annahme der Nullhypothese unterscheiden sich.
Mathematische Herleitung der Teststatistik
BearbeitenFür eine normalverteilte Grundgesamtheit
BearbeitenSind unabhängige normalverteilte Zufallsvariablen mit Erwartungswert und Standardabweichung , und möchte man die Nullhypothese testen, dann liegt es nahe, ihr arithmetisches Mittel
als Teststatistik zu benutzen. Sie ist namentlich ebenfalls normalverteilt mit Erwartungswert , hat aber die Standardabweichung . Bei bekanntem könnte die Hypothese mit einem Gauß-Test getestet werden. Dazu berechnet man
- ,
welche unter der Nullhypothese standardnormalverteilt ist.
Normalerweise ist jedoch die Standardabweichung unbekannt und tritt (da man hier keine Inferenz über betreibt) hier als sogenannter Störparameter auf. In diesem Fall liegt es nahe, sie durch die empirische Standardabweichung
zu schätzen und als Teststatistik die t-Statistik
zu verwenden. Diese Statistik ist unter der Nullhypothese allerdings nicht mehr normalverteilt, sondern t-verteilt mit Freiheitsgraden. Ist der Wert der Teststatistik für eine konkrete Stichprobe so groß (oder so klein), dass dieser oder ein noch signifikanterer Wert unter der Nullhypothese hinreichend unwahrscheinlich ist, wird die Nullhypothese abgelehnt.
Für eine beliebig verteilte Grundgesamtheit
BearbeitenSind ( ) unabhängig und identisch verteilte Zufallsvariablen mit Erwartungswert und Standardabweichung , dann liegt es wie im obigen Fall nahe, ihr arithmetisches Mittel
als Teststatistik zu benutzen. Obwohl die Verteilung von unbekannt ist, gilt aufgrund des zentralen Grenzwertsatzes, dass es approximativ normalverteilt ist mit Erwartungswert und Standardabweichung .
Weil normalerweise die Standardabweichung unbekannt ist, liegt es auch in diesem Fall nahe, sie durch die empirische Standardabweichung
zu schätzen und wieder als Teststatistik die t-Statistik
zu verwenden. Diese Statistik ist unter der Nullhypothese allerdings nur annähernd t-verteilt mit Freiheitsgraden. Ist der Wert der Teststatistik für eine konkrete Stichprobe so groß (oder so klein), dass dieser oder ein noch extremerer Wert unter der Nullhypothese hinreichend unwahrscheinlich ist, wird die Nullhypothese abgelehnt.
Beispiel
BearbeitenZweiseitiger Test
BearbeitenEs soll getestet werden, ob die durchschnittliche Laufzeit von Notebook-Akkus möglicherweise von den vom Hersteller angegebenen 3,5 Stunden abweicht. Dazu werden bei 10 Akkus dieser Marke unter kontrollierten gleichen Bedingungen die Laufzeiten gemessen. Da wir nur wenige Beobachtungen haben, kann der zentrale Grenzwertsatz nicht angewendet werden; siehe Abschnitt Mathematische Herleitung der Teststatistik für eine beliebig verteilte Grundgesamtheit. Wir müssen daher davon ausgehen, dass die Laufzeit der Notebook-Akkus in der Grundgesamtheit normalverteilt ist.
Folgende Hypothesen sollen geprüft werden:
Allgemein | Beispiel |
---|---|
vs. | Stunden vs. Stunden |
Bei der Durchführung des Tests ergebe sich beispielsweise der Stichprobenmittelwert Stunden und die Stichprobenstandardabweichung Stunden. Daraus lässt sich nun der Prüfwert folgendermaßen berechnen:
Allgemein | Beispiel |
---|---|
mit | Stunden |
und | Stunden |
Die Nullhypothese wird zum Signifikanzniveau abgelehnt, falls . Darin entspricht dem -Quantil der t-Verteilung mit Freiheitsgraden.
Für das Beispiel heißt das, dass die Nullhypothese abgelehnt wird bei einem Signifikanzniveau , wenn t kleiner ist als das 2,5 %-Quantil oder größer als das 97,5 %-Quantil der t-Verteilung mit Freiheitsgraden. Man findet mit Hilfe einer t-Tabelle oder eines Computerprogramms den Wert . Aufgrund der Symmetrie der t-Verteilung ist . Wegen kann die Nullhypothese, dass der Erwartungswert der Laufzeit gleich 3,5 Stunden ist, zum Signifikanzniveau abgelehnt werden. Die Akkus laufen im Mittel nicht 3,5 Stunden, also mehr oder weniger.
Einseitiger Test
BearbeitenIn der Praxis hätte man einen einseitigen Test durchgeführt, denn nur wenn die Akkus mehr als 3,5 Stunden laufen, dann ist man als Kunde zufrieden. Die Hypothesen zum Prüfen, ob die Akkus mindestens 3,5 Stunden durchhalten, lauten dann
Allgemein | Beispiel |
---|---|
vs. | Stunden vs. Stunden |
Der Prüfwert ergibt sich wieder zu und kann auch zum Testen der einseitigen Hypothese zum Signifikanzniveau verwendet werden. Die Nullhypothese wird nun abgelehnt, wenn ist.
Für ergibt sich . Und da gilt, können wir diese Nullhypothese ebenfalls ablehnen, d. h., wir konnten zeigen, dass die durchschnittliche Akkulaufzeit kleiner als 3,5 Stunden ist.
Alternative Tests
Bearbeiten- Im Fall,
- wenn der zentrale Grenzwertsatz für die Stichprobenvariablen nicht erfüllt ist oder
- wenn der zentrale Grenzwertsatz für die Stichprobenvariablen erfüllt ist und der Stichprobenumfang kleiner gleich 30 ist
- kann als Alternative der nichtparametrische Einstichproben-Median-Test eingesetzt werden. Dieser testet allerdings, ob der Median der Grundgesamtheit einem vorgegebenen Wert entspricht.
- Ist die Standardabweichung bekannt, dann sollte der Einstichproben-Gauß-Test verwendet werden.
- Permutationstest, falls keine t-Verteilung vorliegt.
Kompaktdarstellung
BearbeitenEinstichproben-t-Test | |||
---|---|---|---|
Voraussetzungen |
| ||
Hypothesen | (rechtsseitig) |
(zweiseitig) |
(linksseitig) |
Teststatistik | |||
Prüfwert | mit und | ||
Ablehnungsbereich |
Literatur
Bearbeiten- Jürgen Bortz, Christof Schuster: Statistik für Human- und Sozialwissenschaftler. 7. Auflage. Springer, Berlin 2010, ISBN 978-3-642-12769-4.
- Jürgen Bortz, Gustav A. Lienert, Klaus Boehnke: Verteilungsfreie Methoden in der Biostatistik. 3. Auflage. Springer Berlin Heidelberg, 2008, ISBN 978-3-540-74706-2.
- Christel Weiß: Basiswissen Medizinische Statistik. 5. Auflage. Springer, Berlin 2010, ISBN 978-3-642-11336-9.