default search action
Yoshua Bengio
Person information
- affiliation: University of Montréal, Department of Computer Science and Operations Research, QC, Canada
- award (2018): Turing Award
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j127]Alistair Knott, Dino Pedreschi, Toshiya Jitsuzumi, Susan Leavy, David M. Eyers, Tapabrata Chakraborti, Andrew Trotman, Sundar Sundareswaran, Ricardo Baeza-Yates, Przemyslaw Biecek, Adrian Weller, Paul D. Teal, Subhadip Basu, Mehmet Haklidir, Virginia Morini, Stuart Russell, Yoshua Bengio:
AI content detection in the emerging information ecosystem: new obligations for media and tech companies. Ethics Inf. Technol. 26(4): 63 (2024) - [j126]Alistair Knott, Dino Pedreschi, Toshiya Jitsuzumi, Susan Leavy, David M. Eyers, Tapabrata Chakraborti, Andrew Trotman, Sundar Sundareswaran, Ricardo Baeza-Yates, Przemyslaw Biecek, Adrian Weller, Paul D. Teal, Subhadip Basu, Mehmet Haklidir, Virginia Morini, Stuart Russell, Yoshua Bengio:
Correction: AI content detection in the emerging information ecosystem: new obligations for media and tech companies. Ethics Inf. Technol. 26(4): 71 (2024) - [j125]Alexandre Duval, Victor Schmidt, Santiago Miret, Yoshua Bengio, Alex Hernández-García, David Rolnick:
PhAST: Physics-Aware, Scalable, and Task-Specific GNNs for Accelerated Catalyst Design. J. Mach. Learn. Res. 25: 106:1-106:26 (2024) - [j124]Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Guy Wolf, Yoshua Bengio:
Improving and generalizing flow-based generative models with minibatch optimal transport. Trans. Mach. Learn. Res. 2024 (2024) - [j123]Alex Hernández-García, Nikita Saxena, Moksh Jain, Cheng-Hao Liu, Yoshua Bengio:
Multi-Fidelity Active Learning with GFlowNets. Trans. Mach. Learn. Res. 2024 (2024) - [j122]Dinghuai Zhang, Ling Pan, Ricky T. Q. Chen, Aaron C. Courville, Yoshua Bengio:
Distributional GFlowNets with Quantile Flows. Trans. Mach. Learn. Res. 2024 (2024) - [c456]Xu Tan, Tao Qin, Jiang Bian, Tie-Yan Liu, Yoshua Bengio:
Regeneration Learning: A Learning Paradigm for Data Generation. AAAI 2024: 22614-22622 - [c455]Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume Huguet, Guy Wolf, Yoshua Bengio:
Simulation-Free Schrödinger Bridges via Score and Flow Matching. AISTATS 2024: 1279-1287 - [c454]Harry Zhao, Safa Alver, Harm van Seijen, Romain Laroche, Doina Precup, Yoshua Bengio:
Consciousness-Inspired Spatio-Temporal Abstractions for Better Generalization in Reinforcement Learning. ICLR 2024 - [c453]Aniket Rajiv Didolkar, Anirudh Goyal, Yoshua Bengio:
Cycle Consistency Driven Object Discovery. ICLR 2024 - [c452]Jean-Pierre R. Falet, Hae Beom Lee, Nikolay Malkin, Chen Sun, Dragos Secrieru, Dinghuai Zhang, Guillaume Lajoie, Yoshua Bengio:
Delta-AI: Local objectives for amortized inference in sparse graphical models. ICLR 2024 - [c451]Leo Feng, Frederick Tung, Hossein Hajimirsadeghi, Yoshua Bengio, Mohamed Osama Ahmed:
Tree Cross Attention. ICLR 2024 - [c450]Edward J. Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio, Nikolay Malkin:
Amortizing intractable inference in large language models. ICLR 2024 - [c449]Marco Jiralerspong, Bilun Sun, Danilo Vucetic, Tianyu Zhang, Yoshua Bengio, Gauthier Gidel, Nikolay Malkin:
Expected flow networks in stochastic environments and two-player zero-sum games. ICLR 2024 - [c448]Minsu Kim, Taeyoung Yun, Emmanuel Bengio, Dinghuai Zhang, Yoshua Bengio, Sungsoo Ahn, Jinkyoo Park:
Local Search GFlowNets. ICLR 2024 - [c447]Amin Mansouri, Jason S. Hartford, Yan Zhang, Yoshua Bengio:
Object centric architectures enable efficient causal representation learning. ICLR 2024 - [c446]Ling Pan, Moksh Jain, Kanika Madan, Yoshua Bengio:
Pre-Training and Fine-Tuning Generative Flow Networks. ICLR 2024 - [c445]Dinghuai Zhang, Ricky T. Q. Chen, Cheng-Hao Liu, Aaron C. Courville, Yoshua Bengio:
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization. ICLR 2024 - [c444]Ming-Yang Zhou, Zichao Yan, Elliot Layne, Nikolay Malkin, Dinghuai Zhang, Moksh Jain, Mathieu Blanchette, Yoshua Bengio:
PhyloGFN: Phylogenetic inference with generative flow networks. ICLR 2024 - [c443]Tara Akhound-Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, Sarthak Mittal, Pablo Lemos, Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, Alexander Tong:
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities. ICML 2024 - [c442]Leo Feng, Frederick Tung, Hossein Hajimirsadeghi, Yoshua Bengio, Mohamed Osama Ahmed:
Memory Efficient Neural Processes via Constant Memory Attention Block. ICML 2024 - [c441]Minsu Kim, Joohwan Ko, Taeyoung Yun, Dinghuai Zhang, Ling Pan, Woochang Kim, Jinkyoo Park, Emmanuel Bengio, Yoshua Bengio:
Learning to Scale Logits for Temperature-Conditional GFlowNets. ICML 2024 - [c440]Pablo Lemos, Nikolay Malkin, Will Handley, Yoshua Bengio, Yashar Hezaveh, Laurence Perreault Levasseur:
Improving Gradient-Guided Nested Sampling for Posterior Inference. ICML 2024 - [c439]Milos Nikolic, Ghouthi Boukli Hacene, Ciaran Bannon, Alberto Delmas Lascorz, Matthieu Courbariaux, Omar Mohamed Awad, Isak Edo Vivancos, Yoshua Bengio, Vincent Gripon, Andreas Moshovos:
BitPruning: Learning Bitlengths for Aggressive and Accurate Quantization. ISCAS 2024: 1-5 - [i527]Thomas Jiralerspong, Xiaoyin Chen, Yash More, Vedant Shah, Yoshua Bengio:
Efficient Causal Graph Discovery Using Large Language Models. CoRR abs/2402.01207 (2024) - [i526]Marcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-Brooks, Alexandre Adam, Yoshua Bengio, Nikolay Malkin:
On diffusion models for amortized inference: Benchmarking and improving stochastic control and sampling. CoRR abs/2402.05098 (2024) - [i525]Tara Akhound-Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, Sarthak Mittal, Pablo Lemos, Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, Alexander Tong:
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities. CoRR abs/2402.06121 (2024) - [i524]Girish Sastry, Lennart Heim, Haydn Belfield, Markus Anderljung, Miles Brundage, Julian Hazell, Cullen O'Keefe, Gillian K. Hadfield, Richard Ngo, Konstantin Pilz, George Gor, Emma Bluemke, Sarah Shoker, Janet Egan, Robert F. Trager, Shahar Avin, Adrian Weller, Yoshua Bengio, Diane Coyle:
Computing Power and the Governance of Artificial Intelligence. CoRR abs/2402.08797 (2024) - [i523]Tristan Deleu, Padideh Nouri, Nikolay Malkin, Doina Precup, Yoshua Bengio:
Discrete Probabilistic Inference as Control in Multi-path Environments. CoRR abs/2402.10309 (2024) - [i522]Yoshua Bengio, Nikolay Malkin:
Machine learning and information theory concepts towards an AI Mathematician. CoRR abs/2403.04571 (2024) - [i521]Minsu Kim, Sanghyeok Choi, Jiwoo Son, Hyeonah Kim, Jinkyoo Park, Yoshua Bengio:
Ant Colony Sampling with GFlowNets for Combinatorial Optimization. CoRR abs/2403.07041 (2024) - [i520]Nasim Rahaman, Martin Weiss, Manuel Wüthrich, Yoshua Bengio, Li Erran Li, Chris Pal, Bernhard Schölkopf:
Language Models Can Reduce Asymmetry in Information Markets. CoRR abs/2403.14443 (2024) - [i519]Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase, Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, Benjamin L. Edelman, Zhaowei Zhang, Mario Günther, Anton Korinek, José Hernández-Orallo, Lewis Hammond, Eric J. Bigelow, Alexander Pan, Lauro Langosco, Tomasz Korbak, Heidi Zhang, Ruiqi Zhong, Seán Ó hÉigeartaigh, Gabriel Recchia, Giulio Corsi, Alan Chan, Markus Anderljung, Lilian Edwards, Yoshua Bengio, Danqi Chen, Samuel Albanie, Tegan Maharaj, Jakob N. Foerster, Florian Tramèr, He He, Atoosa Kasirzadeh, Yejin Choi, David Krueger:
Foundational Challenges in Assuring Alignment and Safety of Large Language Models. CoRR abs/2404.09932 (2024) - [i518]Michal Koziarski, Mohammed Abukalam, Vedant Shah, Louis Vaillancourt, Doris Alexandra Schuetz, Moksh Jain, Almer van der Sloot, Mathieu Bourgey, Anne Marinier, Yoshua Bengio:
Towards DNA-Encoded Library Generation with GFlowNets. CoRR abs/2404.10094 (2024) - [i517]Maksym Korablyov, Cheng-Hao Liu, Moksh Jain, Almer M. van der Sloot, Eric Jolicoeur, Edward Ruediger, Andrei Cristian Nica, Emmanuel Bengio, Kostiantyn Lapchevskyi, Daniel St-Cyr, Doris Alexandra Schuetz, Victor Ion Butoi, Jarrid Rector-Brooks, Simon Blackburn, Leo Feng, Hadi Nekoei, Sai Krishna Gottipati, Priyesh Vijayan, Prateek Gupta, Ladislav Rampásek, Sasikanth Avancha, Pierre-Luc Bacon, William L. Hamilton, Brooks Paige, Sanchit Misra, Stanislaw Kamil Jastrzebski, Bharat Kaul, Doina Precup, José Miguel Hernández-Lobato, Marwin H. S. Segler, Michael M. Bronstein, Anne Marinier, Mike Tyers, Yoshua Bengio:
Generative Active Learning for the Search of Small-molecule Protein Binders. CoRR abs/2405.01616 (2024) - [i516]David Dalrymple, Joar Skalse, Yoshua Bengio, Stuart Russell, Max Tegmark, Sanjit Seshia, Steve Omohundro, Christian Szegedy, Ben Goldhaber, Nora Ammann, Alessandro Abate, Joe Halpern, Clark W. Barrett, Ding Zhao, Tan Zhi-Xuan, Jeannette Wing, Joshua B. Tenenbaum:
Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems. CoRR abs/2405.06624 (2024) - [i515]Aniket Didolkar, Anirudh Goyal, Nan Rosemary Ke, Siyuan Guo, Michal Valko, Timothy P. Lillicrap, Danilo J. Rezende, Yoshua Bengio, Michael Mozer, Sanjeev Arora:
Metacognitive Capabilities of LLMs: An Exploration in Mathematical Problem Solving. CoRR abs/2405.12205 (2024) - [i514]Antoine Bellemare Pépin, François Lespinasse, Philipp Thölke, Yann Harel, Kory Mathewson, Jay A. Olson, Yoshua Bengio, Karim Jerbi:
Divergent Creativity in Humans and Large Language Models. CoRR abs/2405.13012 (2024) - [i513]Leo Feng, Frederick Tung, Hossein Hajimirsadeghi, Mohamed Osama Ahmed, Yoshua Bengio, Greg Mori:
Attention as an RNN. CoRR abs/2405.13956 (2024) - [i512]Seanie Lee, Minsu Kim, Lynn Cherif, David Dobre, Juho Lee, Sung Ju Hwang, Kenji Kawaguchi, Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, Moksh Jain:
Learning diverse attacks on large language models for robust red-teaming and safety tuning. CoRR abs/2405.18540 (2024) - [i511]Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan, Luke Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, Alexandre Adam, Jarrid Rector-Brooks, Yoshua Bengio, Glen Berseth, Nikolay Malkin:
Amortizing intractable inference in diffusion models for vision, language, and control. CoRR abs/2405.20971 (2024) - [i510]George Ma, Emmanuel Bengio, Yoshua Bengio, Dinghuai Zhang:
Baking Symmetry into GFlowNets. CoRR abs/2406.05426 (2024) - [i509]Tianyu Zhang, Suyuchen Wang, Lu Li, Ge Zhang, Perouz Taslakian, Sai Rajeswar, Jie Fu, Bang Liu, Yoshua Bengio:
VCR: Visual Caption Restoration. CoRR abs/2406.06462 (2024) - [i508]Lu Li, Tianyu Zhang, Zhiqi Bu, Suyuchen Wang, Huan He, Jie Fu, Yonghui Wu, Jiang Bian, Yong Chen, Yoshua Bengio:
MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation. CoRR abs/2406.07529 (2024) - [i507]Michal Koziarski, Andrei Rekesh, Dmytro Shevchuk, Almer van der Sloot, Piotr Gainski, Yoshua Bengio, Cheng-Hao Liu, Mike Tyers, Robert A. Batey:
RGFN: Synthesizable Molecular Generation Using GFlowNets. CoRR abs/2406.08506 (2024) - [i506]Anas Krichel, Nikolay Malkin, Salem Lahlou, Yoshua Bengio:
On Generalization for Generative Flow Networks. CoRR abs/2407.03105 (2024) - [i505]Anka Reuel, Ben Bucknall, Stephen Casper, Tim Fist, Lisa Soder, Onni Aarne, Lewis Hammond, Lujain Ibrahim, Alan Chan, Peter Wills, Markus Anderljung, Ben Garfinkel, Lennart Heim, Andrew Trask, Gabriel Mukobi, Rylan Schaeffer, Mauricio Baker, Sara Hooker, Irene Solaiman, Alexandra Sasha Luccioni, Nitarshan Rajkumar, Nicolas Moës, Jeffrey Ladish, Neel Guha, Jessica Newman, Yoshua Bengio, Tobin South, Alex Pentland, Sanmi Koyejo, Mykel J. Kochenderfer, Robert Trager:
Open Problems in Technical AI Governance. CoRR abs/2407.14981 (2024) - [i504]Vedant Shah, Dingli Yu, Kaifeng Lyu, Simon Park, Nan Rosemary Ke, Michael Mozer, Yoshua Bengio, Sanjeev Arora, Anirudh Goyal:
AI-Assisted Generation of Difficult Math Questions. CoRR abs/2407.21009 (2024) - [i503]Stephen Zhewen Lu, Ziqing Lu, Ehsan Hajiramezanali, Tommaso Biancalani, Yoshua Bengio, Gabriele Scalia, Michal Koziarski:
Cell Morphology-Guided Small Molecule Generation with GFlowNets. CoRR abs/2408.05196 (2024) - [i502]Yoshua Bengio, Michael K. Cohen, Nikolay Malkin, Matt MacDermott, Damiano Fornasiere, Pietro Greiner, Younesse Kaddar:
Can a Bayesian Oracle Prevent Harm from an Agent? CoRR abs/2408.05284 (2024) - [i501]Aniket Didolkar, Andrii Zadaianchuk, Anirudh Goyal, Michael C. Mozer, Yoshua Bengio, Georg Martius, Maximilian Seitzer:
Zero-Shot Object-Centric Representation Learning. CoRR abs/2408.09162 (2024) - [i500]Lazar Atanackovic, Xi Zhang, Brandon Amos, Mathieu Blanchette, Leo J. Lee, Yoshua Bengio, Alexander Tong, Kirill Neklyudov:
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold. CoRR abs/2408.14608 (2024) - [i499]Leo Feng, Frederick Tung, Mohamed Osama Ahmed, Yoshua Bengio, Hossein Hajimirsadeghi:
Were RNNs All We Needed? CoRR abs/2410.01201 (2024) - [i498]Minsu Kim, Sanghyeok Choi, Taeyoung Yun, Emmanuel Bengio, Leo Feng, Jarrid Rector-Brooks, Sungsoo Ahn, Jinkyoo Park, Nikolay Malkin, Yoshua Bengio:
Adaptive teachers for amortized samplers. CoRR abs/2410.01432 (2024) - [i497]Jin Hwa Lee, Thomas Jiralerspong, Lei Yu, Yoshua Bengio, Emily Cheng:
Geometric Signatures of Compositionality Across a Language Model's Lifetime. CoRR abs/2410.01444 (2024) - [i496]Seanie Lee, Haebin Seong, Dong Bok Lee, Minki Kang, Xiaoyin Chen, Dominik Wagner, Yoshua Bengio, Juho Lee, Sung Ju Hwang:
HarmAug: Effective Data Augmentation for Knowledge Distillation of Safety Guard Models. CoRR abs/2410.01524 (2024) - 2023
- [j121]David Rolnick, Priya L. Donti, Lynn H. Kaack, Kelly Kochanski, Alexandre Lacoste, Kris Sankaran, Andrew Slavin Ross, Nikola Milojevic-Dupont, Natasha Jaques, Anna Waldman-Brown, Alexandra Sasha Luccioni, Tegan Maharaj, Evan D. Sherwin, S. Karthik Mukkavilli, Konrad P. Kording, Carla P. Gomes, Andrew Y. Ng, Demis Hassabis, John C. Platt, Felix Creutzig, Jennifer T. Chayes, Yoshua Bengio:
Tackling Climate Change with Machine Learning. ACM Comput. Surv. 55(2): 42:1-42:96 (2023) - [j120]Alistair Knott, Dino Pedreschi, Raja Chatila, Tapabrata Chakraborti, Susan Leavy, Ricardo Baeza-Yates, David M. Eyers, Andrew Trotman, Paul D. Teal, Przemyslaw Biecek, Stuart Russell, Yoshua Bengio:
Generative AI models should include detection mechanisms as a condition for public release. Ethics Inf. Technol. 25(4): 55 (2023) - [j119]Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, Xavier Bresson:
Benchmarking Graph Neural Networks. J. Mach. Learn. Res. 24: 43:1-43:48 (2023) - [j118]Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J. Hu, Mo Tiwari, Emmanuel Bengio:
GFlowNet Foundations. J. Mach. Learn. Res. 24: 210:1-210:55 (2023) - [j117]Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak, Shengchao Liu, Peter Van Katwyk, Andreea Deac, Anima Anandkumar, Karianne Bergen, Carla P. Gomes, Shirley Ho, Pushmeet Kohli, Joan Lasenby, Jure Leskovec, Tie-Yan Liu, Arjun Manrai, Debora S. Marks, Bharath Ramsundar, Le Song, Jimeng Sun, Jian Tang, Petar Velickovic, Max Welling, Linfeng Zhang, Connor W. Coley, Yoshua Bengio, Marinka Zitnik:
Scientific discovery in the age of artificial intelligence. Nat. 620(7972): 47-60 (2023) - [j116]Nan Rosemary Ke, Olexa Bilaniuk, Anirudh Goyal, Stefan Bauer, Hugo Larochelle, Bernhard Schölkopf, Michael Curtis Mozer, Christopher Pal, Yoshua Bengio:
Neural Causal Structure Discovery from Interventions. Trans. Mach. Learn. Res. 2023 (2023) - [j115]Salem Lahlou, Moksh Jain, Hadi Nekoei, Victor Butoi, Paul Bertin, Jarrid Rector-Brooks, Maksym Korablyov, Yoshua Bengio:
DEUP: Direct Epistemic Uncertainty Prediction. Trans. Mach. Learn. Res. 2023 (2023) - [c438]Ramnath Kumar, Tristan Deleu, Yoshua Bengio:
The Effect of Diversity in Meta-Learning. AAAI 2023: 8396-8404 - [c437]Dianbo Liu, Alex Lamb, Xu Ji, Pascal Tikeng Notsawo Jr., Michael Mozer, Yoshua Bengio, Kenji Kawaguchi:
Adaptive Discrete Communication Bottlenecks with Dynamic Vector Quantization for Heterogeneous Representational Coarseness. AAAI 2023: 8825-8833 - [c436]Edoardo Maria Ponti, Alessandro Sordoni, Yoshua Bengio, Siva Reddy:
Combining Parameter-efficient Modules for Task-level Generalisation. EACL 2023: 687-702 - [c435]Leo Feng, Hossein Hajimirsadeghi, Yoshua Bengio, Mohamed Osama Ahmed:
Latent Bottlenecked Attentive Neural Processes. ICLR 2023 - [c434]Dianbo Liu, Vedant Shah, Oussama Boussif, Cristian Meo, Anirudh Goyal, Tianmin Shu, Michael Curtis Mozer, Nicolas Heess, Yoshua Bengio:
Stateful Active Facilitator: Coordination and Environmental Heterogeneity in Cooperative Multi-Agent Reinforcement Learning. ICLR 2023 - [c433]Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward J. Hu, Katie Everett, Dinghuai Zhang, Yoshua Bengio:
GFlowNets and variational inference. ICLR 2023 - [c432]Ling Pan, Dinghuai Zhang, Aaron C. Courville, Longbo Huang, Yoshua Bengio:
Generative Augmented Flow Networks. ICLR 2023 - [c431]Jiaye Teng, Chuan Wen, Dinghuai Zhang, Yoshua Bengio, Yang Gao, Yang Yuan:
Predictive Inference with Feature Conformal Prediction. ICLR 2023 - [c430]Dinghuai Zhang, Aaron C. Courville, Yoshua Bengio, Qinqing Zheng, Amy Zhang, Ricky T. Q. Chen:
Latent State Marginalization as a Low-cost Approach for Improving Exploration. ICLR 2023 - [c429]Ruixiang Zhang, Tong Che, Boris Ivanovic, Renhao Wang, Marco Pavone, Yoshua Bengio, Liam Paull:
Robust and Controllable Object-Centric Learning through Energy-based Models. ICLR 2023 - [c428]Kartik Ahuja, Divyat Mahajan, Yixin Wang, Yoshua Bengio:
Interventional Causal Representation Learning. ICML 2023: 372-407 - [c427]Alexandre Duval, Victor Schmidt, Alex Hernández-García, Santiago Miret, Fragkiskos D. Malliaros, Yoshua Bengio, David Rolnick:
FAENet: Frame Averaging Equivariant GNN for Materials Modeling. ICML 2023: 9013-9033 - [c426]Edward J. Hu, Nikolay Malkin, Moksh Jain, Katie E. Everett, Alexandros Graikos, Yoshua Bengio:
GFlowNet-EM for Learning Compositional Latent Variable Models. ICML 2023: 13528-13549 - [c425]Moksh Jain, Sharath Chandra Raparthy, Alex Hernández-García, Jarrid Rector-Brooks, Yoshua Bengio, Santiago Miret, Emmanuel Bengio:
Multi-Objective GFlowNets. ICML 2023: 14631-14653 - [c424]Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, Siamak Ravanbakhsh:
Equivariance with Learned Canonicalization Functions. ICML 2023: 15546-15566 - [c423]Sébastien Lachapelle, Tristan Deleu, Divyat Mahajan, Ioannis Mitliagkas, Yoshua Bengio, Simon Lacoste-Julien, Quentin Bertrand:
Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning. ICML 2023: 18171-18206 - [c422]Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex Hernández-García, Léna Néhale Ezzine, Yoshua Bengio, Nikolay Malkin:
A theory of continuous generative flow networks. ICML 2023: 18269-18300 - [c421]Dianbo Liu, Moksh Jain, Bonaventure F. P. Dossou, Qianli Shen, Salem Lahlou, Anirudh Goyal, Nikolay Malkin, Chris Chinenye Emezue, Dinghuai Zhang, Nadhir Hassen, Xu Ji, Kenji Kawaguchi, Yoshua Bengio:
GFlowOut: Dropout with Generative Flow Networks. ICML 2023: 21715-21729 - [c420]Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, Andrei Cristian Nica, Tom Bosc, Yoshua Bengio, Nikolay Malkin:
Learning GFlowNets From Partial Episodes For Improved Convergence And Stability. ICML 2023: 23467-23483 - [c419]Ling Pan, Nikolay Malkin, Dinghuai Zhang, Yoshua Bengio:
Better Training of GFlowNets with Local Credit and Incomplete Trajectories. ICML 2023: 26878-26890 - [c418]Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua Bengio, Stefano Ermon, Christopher Ré:
Hyena Hierarchy: Towards Larger Convolutional Language Models. ICML 2023: 28043-28078 - [c417]Frederik Träuble, Anirudh Goyal, Nasim Rahaman, Michael Curtis Mozer, Kenji Kawaguchi, Yoshua Bengio, Bernhard Schölkopf:
Discrete Key-Value Bottleneck. ICML 2023: 34431-34455 - [c416]Chen Sun, Wannan Yang, Thomas Jiralerspong, Dane Malenfant, Benjamin Alsbury-Nealy, Yoshua Bengio, Blake A. Richards:
Contrastive Retrospection: honing in on critical steps for rapid learning and generalization in RL. NeurIPS 2023 - [c415]Lazar Atanackovic, Alexander Tong, Bo Wang, Leo J. Lee, Yoshua Bengio, Jason S. Hartford:
DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with GFlowNets. NeurIPS 2023 - [c414]Oussama Boussif, Ghait Boukachab, Dan Assouline, Stefano Massaroli, Tianle Yuan, Loubna Benabbou, Yoshua Bengio:
Improving *day-ahead* Solar Irradiance Time Series Forecasting by Leveraging Spatio-Temporal Context. NeurIPS 2023 - [c413]Tristan Deleu, Mizu Nishikawa-Toomey, Jithendaraa Subramanian, Nikolay Malkin, Laurent Charlin, Yoshua Bengio:
Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network. NeurIPS 2023 - [c412]Alexandre Lacoste, Nils Lehmann, Pau Rodríguez, Evan D. Sherwin, Hannah Kerner, Björn Lütjens, Jeremy Irvin, David Dao, Hamed Alemohammad, Alexandre Drouin, Mehmet Gunturkun, Gabriel Huang, David Vázquez, Dava Newman, Yoshua Bengio, Stefano Ermon, Xiaoxiang Zhu:
GEO-Bench: Toward Foundation Models for Earth Monitoring. NeurIPS 2023 - [c411]Stefano Massaroli, Michael Poli, Daniel Y. Fu, Hermann Kumbong, Rom N. Parnichkun, David W. Romero, Aman Timalsina, Quinn McIntyre, Beidi Chen, Atri Rudra, Ce Zhang, Christopher Ré, Stefano Ermon, Yoshua Bengio:
Laughing Hyena Distillery: Extracting Compact Recurrences From Convolutions. NeurIPS 2023 - [c410]Trang Nguyen, Amin Mansouri, Kanika Madan, Khuong Nguyen, Kartik Ahuja, Dianbo Liu, Yoshua Bengio:
Reusable Slotwise Mechanisms. NeurIPS 2023 - [c409]Eric Nguyen, Michael Poli, Marjan Faizi, Armin W. Thomas, Michael Wornow, Callum Birch-Sykes, Stefano Massaroli, Aman Patel, Clayton M. Rabideau, Yoshua Bengio, Stefano Ermon, Christopher Ré, Stephen Baccus:
HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution. NeurIPS 2023 - [c408]Mélisande Teng, Amna Elmustafa, Benjamin Akera, Yoshua Bengio, Hager Radi Abdelwahed, Hugo Larochelle, David Rolnick:
SatBird: a Dataset for Bird Species Distribution Modeling using Remote Sensing and Citizen Science Data. NeurIPS 2023 - [c407]Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C. Courville, Yoshua Bengio, Ling Pan:
Let the Flows Tell: Solving Graph Combinatorial Problems with GFlowNets. NeurIPS 2023 - [c406]Ling Pan, Dinghuai Zhang, Moksh Jain, Longbo Huang, Yoshua Bengio:
Stochastic Generative Flow Networks. UAI 2023: 1628-1638 - [c405]Yingtian Zou, Vikas Verma, Sarthak Mittal, Wai Hoh Tang, Hieu Pham, Juho Kannala, Yoshua Bengio, Arno Solin, Kenji Kawaguchi:
MixupE: Understanding and improving Mixup from directional derivative perspective. UAI 2023: 2597-2607 - [i495]Xu Tan, Tao Qin, Jiang Bian, Tie-Yan Liu, Yoshua Bengio:
Regeneration Learning: A Learning Paradigm for Data Generation. CoRR abs/2301.08846 (2023) - [i494]Sumukh K. Aithal, Anirudh Goyal, Alex Lamb, Yoshua Bengio, Michael Mozer:
Leveraging the Third Dimension in Contrastive Learning. CoRR abs/2301.11790 (2023) - [i493]Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex Hernández-García, Léna Néhale Ezzine, Yoshua Bengio, Nikolay Malkin:
A theory of continuous generative flow networks. CoRR abs/2301.12594 (2023) - [i492]Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian Fatras, Guy Wolf, Yoshua Bengio:
Conditional Flow Matching: Simulation-Free Dynamic Optimal Transport. CoRR abs/2302.00482 (2023) - [i491]Moksh Jain, Tristan Deleu, Jason S. Hartford, Cheng-Hao Liu, Alex Hernández-García, Yoshua Bengio:
GFlowNets for AI-Driven Scientific Discovery. CoRR abs/2302.00615 (2023) - [i490]Ling Pan, Nikolay Malkin, Dinghuai Zhang, Yoshua Bengio:
Better Training of GFlowNets with Local Credit and Incomplete Trajectories. CoRR abs/2302.01687 (2023) - [i489]Lazar Atanackovic, Alexander Tong, Jason S. Hartford, Leo J. Lee, Bo Wang, Yoshua Bengio:
DynGFN: Bayesian Dynamic Causal Discovery using Generative Flow Networks. CoRR abs/2302.04178 (2023) - [i488]Dinghuai Zhang, Ling Pan, Ricky T. Q. Chen, Aaron C. Courville, Yoshua Bengio:
Distributional GFlowNets with Quantile Flows. CoRR abs/2302.05793 (2023) - [i487]Xu Ji, Eric Elmoznino, George Deane, Axel Constant, Guillaume Dumas, Guillaume Lajoie, Jonathan Simon, Yoshua Bengio:
Sources of Richness and Ineffability for Phenomenally Conscious States. CoRR abs/2302.06403 (2023) - [i486]Edward J. Hu, Nikolay Malkin, Moksh Jain, Katie Everett, Alexandros Graikos, Yoshua Bengio:
GFlowNet-EM for learning compositional latent variable models. CoRR abs/2302.06576 (2023) - [i485]Ling Pan, Dinghuai Zhang, Moksh Jain, Longbo Huang, Yoshua Bengio:
Stochastic Generative Flow Networks. CoRR abs/2302.09465 (2023) - [i484]Trang Nguyen, Amin Mansouri, Kanika Madan, Khuong Nguyen, Kartik Ahuja, Dianbo Liu, Yoshua Bengio:
Reusable Slotwise Mechanisms. CoRR abs/2302.10503 (2023) - [i483]Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua Bengio, Stefano Ermon, Christopher Ré:
Hyena Hierarchy: Towards Larger Convolutional Language Models. CoRR abs/2302.10866 (2023) - [i482]Alexandre Duval, Victor Schmidt, Alex Hernández-García, Santiago Miret, Fragkiskos D. Malliaros, Yoshua Bengio, David Rolnick:
FAENet: Frame Averaging Equivariant GNN for Materials Modeling. CoRR abs/2305.05577 (2023) - [i481]Leo Feng, Frederick Tung, Hossein Hajimirsadeghi, Yoshua Bengio, Mohamed Osama Ahmed:
Constant Memory Attentive Neural Processes. CoRR abs/2305.14567 (2023) - [i480]Toby Shevlane, Sebastian Farquhar, Ben Garfinkel, Mary Phuong, Jess Whittlestone, Jade Leung, Daniel Kokotajlo, Nahema Marchal, Markus Anderljung, Noam Kolt, Lewis Ho, Divya Siddarth, Shahar Avin, Will Hawkins, Been Kim, Iason Gabriel, Vijay Bolina, Jack Clark, Yoshua Bengio, Paul F. Christiano, Allan Dafoe:
Model evaluation for extreme risks. CoRR abs/2305.15324 (2023) - [i479]Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C. Courville, Yoshua Bengio, Ling Pan:
Let the Flows Tell: Solving Graph Combinatorial Optimization Problems with GFlowNets. CoRR abs/2305.17010 (2023) - [i478]Dianbo Liu, Samuele Bolotta, He Zhu, Yoshua Bengio, Guillaume Dumas:
Attention Schema in Neural Agents. CoRR abs/2305.17375 (2023) - [i477]Tristan Deleu, Mizu Nishikawa-Toomey, Jithendaraa Subramanian, Nikolay Malkin, Laurent Charlin, Yoshua Bengio:
Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network. CoRR abs/2305.19366 (2023) - [i476]Ayush Chakravarthy, Trang Nguyen, Anirudh Goyal, Yoshua Bengio, Michael C. Mozer:
Spotlight Attention: Robust Object-Centric Learning With a Spatial Locality Prior. CoRR abs/2305.19550 (2023) - [i475]Oussama Boussif, Ghait Boukachab, Dan Assouline, Stefano Massaroli, Tianle Yuan, Loubna Benabbou, Yoshua Bengio:
What if We Enrich day-ahead Solar Irradiance Time Series Forecasting with Spatio-Temporal Context? CoRR abs/2306.01112 (2023) - [i474]Aniket Didolkar, Anirudh Goyal, Yoshua Bengio:
Cycle Consistency Driven Object Discovery. CoRR abs/2306.02204 (2023) - [i473]Alexandre Lacoste, Nils Lehmann, Pau Rodríguez, Evan David Sherwin, Hannah Kerner, Björn Lütjens, Jeremy Andrew Irvin, David Dao, Hamed Alemohammad, Alexandre Drouin, Mehmet Gunturkun, Gabriel Huang, David Vázquez, Dava Newman, Yoshua Bengio, Stefano Ermon, Xiao Xiang Zhu:
GEO-Bench: Toward Foundation Models for Earth Monitoring. CoRR abs/2306.03831 (2023) - [i472]Alex Hernández-García, Nikita Saxena, Moksh Jain, Cheng-Hao Liu, Yoshua Bengio:
Multi-Fidelity Active Learning with GFlowNets. CoRR abs/2306.11715 (2023) - [i471]Leo Feng, Frederick Tung, Hossein Hajimirsadeghi, Yoshua Bengio, Mohamed Osama Ahmed:
Constant Memory Attention Block. CoRR abs/2306.12599 (2023) - [i470]Shreshth A. Malik, Salem Lahlou, Andrew Jesson, Moksh Jain, Nikolay Malkin, Tristan Deleu, Yoshua Bengio, Yarin Gal:
BatchGFN: Generative Flow Networks for Batch Active Learning. CoRR abs/2306.15058 (2023) - [i469]Eric Nguyen, Michael Poli, Marjan Faizi, Armin W. Thomas, Callum Birch-Sykes, Michael Wornow, Aman Patel, Clayton M. Rabideau, Stefano Massaroli, Yoshua Bengio, Stefano Ermon, Stephen A. Baccus, Christopher Ré:
HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution. CoRR abs/2306.15794 (2023) - [i468]Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Sarath Chandar, Nikolay Malkin, Yoshua Bengio:
Thompson sampling for improved exploration in GFlowNets. CoRR abs/2306.17693 (2023) - [i467]Tristan Deleu, Yoshua Bengio:
Generative Flow Networks: a Markov Chain Perspective. CoRR abs/2307.01422 (2023) - [i466]Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume Huguet, Guy Wolf, Yoshua Bengio:
Simulation-free Schrödinger bridges via score and flow matching. CoRR abs/2307.03672 (2023) - [i465]Lewis Ho, Joslyn Barnhart, Robert Trager, Yoshua Bengio, Miles Brundage, Allison Carnegie, Rumman Chowdhury, Allan Dafoe, Gillian K. Hadfield, Margaret Levi, Duncan Snidal:
International Institutions for Advanced AI. CoRR abs/2307.04699 (2023) - [i464]Chris Chinenye Emezue, Alexandre Drouin, Tristan Deleu, Stefan Bauer, Yoshua Bengio:
Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment Effect Estimation. CoRR abs/2307.04988 (2023) - [i463]Yoshua Bengio, Prateek Gupta, Lu Li, Soham Phade, Sunil Srinivasa, Andrew Williams, Tianyu Zhang, Yang Zhang, Stephan Zheng:
AI For Global Climate Cooperation 2023 Competition Proceedings. CoRR abs/2307.06951 (2023) - [i462]Patrick Butlin, Robert Long, Eric Elmoznino, Yoshua Bengio, Jonathan Birch, Axel Constant, George Deane, Stephen M. Fleming, Chris Frith, Xu Ji, Ryota Kanai, Colin Klein, Grace Lindsay, Matthias Michel, Liad Mudrik, Megan A. K. Peters, Eric Schwitzgebel, Jonathan Simon, Rufin VanRullen:
Consciousness in Artificial Intelligence: Insights from the Science of Consciousness. CoRR abs/2308.08708 (2023) - [i461]Leo Feng, Frederick Tung, Hossein Hajimirsadeghi, Yoshua Bengio, Mohamed Osama Ahmed:
Tree Cross Attention. CoRR abs/2309.17388 (2023) - [i460]Mingde Zhao, Safa Alver, Harm van Seijen, Romain Laroche, Doina Precup, Yoshua Bengio:
Combining Spatial and Temporal Abstraction in Planning for Better Generalization. CoRR abs/2310.00229 (2023) - [i459]Andrew Nam, Eric Elmoznino, Nikolay Malkin, Chen Sun, Yoshua Bengio, Guillaume Lajoie:
Discrete, compositional, and symbolic representations through attractor dynamics. CoRR abs/2310.01807 (2023) - [i458]Luca Scimeca, Alexander Rubinstein, Armand Mihai Nicolicioiu, Damien Teney, Yoshua Bengio:
Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts in Underspecified Visual Tasks. CoRR abs/2310.02230 (2023) - [i457]Jean-Pierre R. Falet, Hae Beom Lee, Nikolay Malkin, Chen Sun, Dragos Secrieru, Dinghuai Zhang, Guillaume Lajoie, Yoshua Bengio:
Delta-AI: Local objectives for amortized inference in sparse graphical models. CoRR abs/2310.02423 (2023) - [i456]Dinghuai Zhang, Ricky Tian Qi Chen, Cheng-Hao Liu, Aaron C. Courville, Yoshua Bengio:
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization. CoRR abs/2310.02679 (2023) - [i455]Minsu Kim, Taeyoung Yun, Emmanuel Bengio, Dinghuai Zhang, Yoshua Bengio, Sungsoo Ahn, Jinkyoo Park:
Local Search GFlowNets. CoRR abs/2310.02710 (2023) - [i454]Marco Jiralerspong, Bilun Sun, Danilo Vucetic, Tianyu Zhang, Yoshua Bengio, Gauthier Gidel, Nikolay Malkin:
Expected flow networks in stochastic environments and two-player zero-sum games. CoRR abs/2310.02779 (2023) - [i453]Minsu Kim, Joohwan Ko, Dinghuai Zhang, Ling Pan, Taeyoung Yun, Woochang Kim, Jinkyoo Park, Yoshua Bengio:
Learning to Scale Logits for Temperature-Conditional GFlowNets. CoRR abs/2310.02823 (2023) - [i452]Ling Pan, Moksh Jain, Kanika Madan, Yoshua Bengio:
Pre-Training and Fine-Tuning Generative Flow Networks. CoRR abs/2310.03419 (2023) - [i451]Trang Nguyen, Alexander Tong, Kanika Madan, Yoshua Bengio, Dianbo Liu:
Causal Inference in Gene Regulatory Networks with GFlowNet: Towards Scalability in Large Systems. CoRR abs/2310.03579 (2023) - [i450]Edward J. Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio, Nikolay Malkin:
Amortizing intractable inference in large language models. CoRR abs/2310.04363 (2023) - [i449]Alex Hernández-García, Alexandre Duval, Alexandra Volokhova, Yoshua Bengio, Divya Sharma, Pierre Luc Carrier, Michal Koziarski, Victor Schmidt:
Crystal-GFN: sampling crystals with desirable properties and constraints. CoRR abs/2310.04925 (2023) - [i448]Alvaro Carbonero, Alexandre Duval, Victor Schmidt, Santiago Miret, Alex Hernández-García, Yoshua Bengio, David Rolnick:
On the importance of catalyst-adsorbate 3D interactions for relaxed energy predictions. CoRR abs/2310.06682 (2023) - [i447]Charles C. Onu, Samantha Latremouille, Arsenii Gorin, Junhao Wang, Uchenna Ekwochi, Peter O. Ubuane, Omolara A. Kehinde, Muhammad A. Salisu, Datonye Briggs, Yoshua Bengio, Doina Precup:
A cry for help: Early detection of brain injury in newborns. CoRR abs/2310.08338 (2023) - [i446]Mingyang Zhou, Zichao Yan, Elliot Layne, Nikolay Malkin, Dinghuai Zhang, Moksh Jain, Mathieu Blanchette, Yoshua Bengio:
PhyloGFN: Phylogenetic inference with generative flow networks. CoRR abs/2310.08774 (2023) - [i445]Alexandra Volokhova, Michal Koziarski, Alex Hernández-García, Cheng-Hao Liu, Santiago Miret, Pablo Lemos, Luca A. Thiede, Zichao Yan, Alán Aspuru-Guzik, Yoshua Bengio:
Towards equilibrium molecular conformation generation with GFlowNets. CoRR abs/2310.14782 (2023) - [i444]Alejandro Tejada-Lapuerta, Paul Bertin, Stefan Bauer, Hananeh Aliee, Yoshua Bengio, Fabian J. Theis:
Causal machine learning for single-cell genomics. CoRR abs/2310.14935 (2023) - [i443]Yoshua Bengio, Geoffrey E. Hinton, Andrew Yao, Dawn Song, Pieter Abbeel, Yuval Noah Harari, Ya-Qin Zhang, Lan Xue, Shai Shalev-Shwartz, Gillian K. Hadfield, Jeff Clune, Tegan Maharaj, Frank Hutter, Atilim Günes Baydin, Sheila A. McIlraith, Qiqi Gao, Ashwin Acharya, David Krueger, Anca D. Dragan, Philip H. S. Torr, Stuart Russell, Daniel Kahneman, Jan Brauner, Sören Mindermann:
Managing AI Risks in an Era of Rapid Progress. CoRR abs/2310.17688 (2023) - [i442]Stefano Massaroli, Michael Poli, Daniel Y. Fu, Hermann Kumbong, Rom N. Parnichkun, Aman Timalsina, David W. Romero, Quinn McIntyre, Beidi Chen, Atri Rudra, Ce Zhang, Christopher Ré, Stefano Ermon, Yoshua Bengio:
Laughing Hyena Distillery: Extracting Compact Recurrences From Convolutions. CoRR abs/2310.18780 (2023) - [i441]Rim Assouel, Pau Rodríguez, Perouz Taslakian, David Vázquez, Yoshua Bengio:
OC-NMN: Object-centric Compositional Neural Module Network for Generative Visual Analogical Reasoning. CoRR abs/2310.18807 (2023) - [i440]Amin Mansouri, Jason S. Hartford, Yan Zhang, Yoshua Bengio:
Object-centric architectures enable efficient causal representation learning. CoRR abs/2310.19054 (2023) - [i439]Mélisande Teng, Amna Elmustafa, Benjamin Akera, Yoshua Bengio, Hager Radi Abdelwahed, Hugo Larochelle, David Rolnick:
SatBird: Bird Species Distribution Modeling with Remote Sensing and Citizen Science Data. CoRR abs/2311.00936 (2023) - [i438]Vedant Shah, Frederik Träuble, Ashish Malik, Hugo Larochelle, Michael Mozer, Sanjeev Arora, Yoshua Bengio, Anirudh Goyal:
Unlearning via Sparse Representations. CoRR abs/2311.15268 (2023) - [i437]Luca Scimeca, Alexander Rubinstein, Damien Teney, Seong Joon Oh, Armand Mihai Nicolicioiu, Yoshua Bengio:
Shortcut Bias Mitigation via Ensemble Diversity Using Diffusion Probabilistic Models. CoRR abs/2311.16176 (2023) - [i436]Pablo Lemos, Nikolay Malkin, Will Handley, Yoshua Bengio, Yashar Hezaveh, Laurence Perreault Levasseur:
Improving Gradient-guided Nested Sampling for Posterior Inference. CoRR abs/2312.03911 (2023) - [i435]Alexandre Duval, Simon V. Mathis, Chaitanya K. Joshi, Victor Schmidt, Santiago Miret, Fragkiskos D. Malliaros, Taco Cohen, Pietro Lio, Yoshua Bengio, Michael M. Bronstein:
A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems. CoRR abs/2312.07511 (2023) - 2022
- [j114]Eric Larsen, Sébastien Lachapelle, Yoshua Bengio, Emma Frejinger, Simon Lacoste-Julien, Andrea Lodi:
Predicting Tactical Solutions to Operational Planning Problems Under Imperfect Information. INFORMS J. Comput. 34(1): 227-242 (2022) - [j113]Cheng-Hao Liu, Maksym Korablyov, Stanislaw Jastrzebski, Pawel Wlodarczyk-Pruszynski, Yoshua Bengio, Marwin H. S. Segler:
RetroGNN: Fast Estimation of Synthesizability for Virtual Screening and De Novo Design by Learning from Slow Retrosynthesis Software. J. Chem. Inf. Model. 62(10): 2293-2300 (2022) - [j112]Vikas Verma, Kenji Kawaguchi, Alex Lamb, Juho Kannala, Arno Solin, Yoshua Bengio, David Lopez-Paz:
Interpolation consistency training for semi-supervised learning. Neural Networks 145: 90-106 (2022) - [j111]Alex Lamb, Vikas Verma, Kenji Kawaguchi, Alexander Matyasko, Savya Khosla, Juho Kannala, Yoshua Bengio:
Interpolated Adversarial Training: Achieving robust neural networks without sacrificing too much accuracy. Neural Networks 154: 218-233 (2022) - [j110]Prateek Gupta, Elias Boutros Khalil, Didier Chételat, Maxime Gasse, Andrea Lodi, Yoshua Bengio, M. Pawan Kumar:
Lookback for Learning to Branch. Trans. Mach. Learn. Res. 2022 (2022) - [j109]Qicheng Lao, Xiang Jiang, Mohammad Havaei, Yoshua Bengio:
A Two-Stream Continual Learning System With Variational Domain-Agnostic Feature Replay. IEEE Trans. Neural Networks Learn. Syst. 33(9): 4466-4478 (2022) - [c404]Tianyi Zhang, Shirui Zhang, Ziwei Chen, Yoshua Bengio, Dianbo Liu:
PMFL: Partial Meta-Federated Learning for heterogeneous tasks and its applications on real-world medical records. IEEE Big Data 2022: 4453-4462 - [c403]Rim Assouel, Lluís Castrejón, Aaron C. Courville, Nicolas Ballas, Yoshua Bengio:
VIM: Variational Independent Modules for Video Prediction. CLeaR 2022: 70-89 - [c402]Kartik Ahuja, Jason S. Hartford, Yoshua Bengio:
Properties from mechanisms: an equivariance perspective on identifiable representation learning. ICLR 2022 - [c401]Tristan Deleu, David Kanaa, Leo Feng, Giancarlo Kerg, Yoshua Bengio, Guillaume Lajoie, Pierre-Luc Bacon:
Continuous-Time Meta-Learning with Forward Mode Differentiation. ICLR 2022 - [c400]Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, Xavier Bresson:
Graph Neural Networks with Learnable Structural and Positional Representations. ICLR 2022 - [c399]Anirudh Goyal, Aniket Rajiv Didolkar, Alex Lamb, Kartikeya Badola, Nan Rosemary Ke, Nasim Rahaman, Jonathan Binas, Charles Blundell, Michael Curtis Mozer, Yoshua Bengio:
Coordination Among Neural Modules Through a Shared Global Workspace. ICLR 2022 - [c398]Sarthak Mittal, Sharath Chandra Raparthy, Irina Rish, Yoshua Bengio, Guillaume Lajoie:
Compositional Attention: Disentangling Search and Retrieval. ICLR 2022 - [c397]Max Morrison, Rithesh Kumar, Kundan Kumar, Prem Seetharaman, Aaron C. Courville, Yoshua Bengio:
Chunked Autoregressive GAN for Conditional Waveform Synthesis. ICLR 2022 - [c396]Victor Schmidt, Alexandra Luccioni, Mélisande Teng, Tianyu Zhang, Alexia Reynaud, Sunand Raghupathi, Gautier Cosne, Adrien Juraver, Vahe Vardanyan, Alex Hernández-García, Yoshua Bengio:
ClimateGAN: Raising Climate Change Awareness by Generating Images of Floods. ICLR 2022 - [c395]Dinghuai Zhang, Jie Fu, Yoshua Bengio, Aaron C. Courville:
Unifying Likelihood-free Inference with Black-box Optimization and Beyond. ICLR 2022 - [c394]Maxence Ernoult, Fabrice Normandin, Abhinav Moudgil, Sean Spinney, Eugene Belilovsky, Irina Rish, Blake A. Richards, Yoshua Bengio:
Towards Scaling Difference Target Propagation by Learning Backprop Targets. ICML 2022: 5968-5987 - [c393]Moksh Jain, Emmanuel Bengio, Alex Hernández-García, Jarrid Rector-Brooks, Bonaventure F. P. Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, Lena Simine, Payel Das, Yoshua Bengio:
Biological Sequence Design with GFlowNets. ICML 2022: 9786-9801 - [c392]Mohammad Pezeshki, Amartya Mitra, Yoshua Bengio, Guillaume Lajoie:
Multi-scale Feature Learning Dynamics: Insights for Double Descent. ICML 2022: 17669-17690 - [c391]Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron C. Courville, Yoshua Bengio:
Generative Flow Networks for Discrete Probabilistic Modeling. ICML 2022: 26412-26428 - [c390]Dinghuai Zhang, Hongyang Zhang, Aaron C. Courville, Yoshua Bengio, Pradeep Ravikumar, Arun Sai Suggala:
Building Robust Ensembles via Margin Boosting. ICML 2022: 26669-26692 - [c389]Kartik Ahuja, Jason S. Hartford, Yoshua Bengio:
Weakly Supervised Representation Learning with Sparse Perturbations. NeurIPS 2022 - [c388]Oussama Boussif, Yoshua Bengio, Loubna Benabbou, Dan Assouline:
MAgNet: Mesh Agnostic Neural PDE Solver. NeurIPS 2022 - [c387]Aniket Didolkar, Kshitij Gupta, Anirudh Goyal, Nitesh B. Gundavarapu, Alex Lamb, Nan Rosemary Ke, Yoshua Bengio:
Temporal Latent Bottleneck: Synthesis of Fast and Slow Processing Mechanisms in Sequence Learning. NeurIPS 2022 - [c386]Jose Gallego-Posada, Juan Ramirez, Akram Erraqabi, Yoshua Bengio, Simon Lacoste-Julien:
Controlled Sparsity via Constrained Optimization or: How I Learned to Stop Tuning Penalties and Love Constraints. NeurIPS 2022 - [c385]Riashat Islam, Hongyu Zang, Anirudh Goyal, Alex Lamb, Kenji Kawaguchi, Xin Li, Romain Laroche, Yoshua Bengio, Remi Tachet des Combes:
Discrete Compositional Representations as an Abstraction for Goal Conditioned Reinforcement Learning. NeurIPS 2022 - [c384]Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, Yoshua Bengio:
Trajectory balance: Improved credit assignment in GFlowNets. NeurIPS 2022 - [c383]Sarthak Mittal, Yoshua Bengio, Guillaume Lajoie:
Is a Modular Architecture Enough? NeurIPS 2022 - [c382]Martin Weiss, Nasim Rahaman, Francesco Locatello, Chris Pal, Yoshua Bengio, Bernhard Schölkopf, Li Erran Li, Nicolas Ballas:
Neural Attentive Circuits. NeurIPS 2022 - [c381]Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer, Yoshua Bengio:
Bayesian structure learning with generative flow networks. UAI 2022: 518-528 - [c380]Akram Erraqabi, Marlos C. Machado, Mingde Zhao, Sainbayar Sukhbaatar, Alessandro Lazaric, Ludovic Denoyer, Yoshua Bengio:
Temporal abstractions-augmented temporally contrastive learning: An alternative to the Laplacian in RL. UAI 2022: 641-651 - [i434]Ramnath Kumar, Tristan Deleu, Yoshua Bengio:
The Effect of Diversity in Meta-Learning. CoRR abs/2201.11775 (2022) - [i433]Ramnath Kumar, Tristan Deleu, Yoshua Bengio:
Rethinking Learning Dynamics in RL using Adversarial Networks. CoRR abs/2201.11783 (2022) - [i432]Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, Yoshua Bengio:
Trajectory Balance: Improved Credit Assignment in GFlowNets. CoRR abs/2201.13259 (2022) - [i431]Maxence Ernoult, Fabrice Normandin, Abhinav Moudgil, Sean Spinney, Eugene Belilovsky, Irina Rish, Blake A. Richards, Yoshua Bengio:
Towards Scaling Difference Target Propagation by Learning Backprop Targets. CoRR abs/2201.13415 (2022) - [i430]Dianbo Liu, Alex Lamb, Xu Ji, Pascal Notsawo, Michael Mozer, Yoshua Bengio, Kenji Kawaguchi:
Adaptive Discrete Communication Bottlenecks with Dynamic Vector Quantization. CoRR abs/2202.01334 (2022) - [i429]Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron C. Courville, Yoshua Bengio:
Generative Flow Networks for Discrete Probabilistic Modeling. CoRR abs/2202.01361 (2022) - [i428]Paul Bertin, Jarrid Rector-Brooks, Deepak Sharma, Thomas Gaudelet, Andrew Anighoro, Torsten Gross, Francisco Martinez-Pena, Eileen L. Tang, Suraj M. S, Cristian Regep, Jeremy B. R. Hayter, Maksym Korablyov, Nicholas Valiante, Almer van der Sloot, Mike Tyers, Charles Roberts, Michael M. Bronstein, Luke L. Lairson, Jake P. Taylor-King, Yoshua Bengio:
RECOVER: sequential model optimization platform for combination drug repurposing identifies novel synergistic compounds in vitro. CoRR abs/2202.04202 (2022) - [i427]Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer, Yoshua Bengio:
Bayesian Structure Learning with Generative Flow Networks. CoRR abs/2202.13903 (2022) - [i426]Tristan Deleu, David Kanaa, Leo Feng, Giancarlo Kerg, Yoshua Bengio, Guillaume Lajoie, Pierre-Luc Bacon:
Continuous-Time Meta-Learning with Forward Mode Differentiation. CoRR abs/2203.01443 (2022) - [i425]François St-Hilaire, Dung Do Vu, Antoine Frau, Nathan Burns, Farid Faraji, Joseph Potochny, Stephane Robert, Arnaud Roussel, Selene Zheng, Taylor Glazier, Junfel Vincent Romano, Robert Belfer, Muhammad Shayan, Ariella Smofsky, Tommy Delarosbil, Seulmin Ahn, Simon Eden-Walker, Kritika Sony, Ansona Onyi Ching, Sabina Elkins, Anush Stepanyan, Adela Matajova, Victor Chen, Hossein Sahraei, Robert Larson, Nadia Markova, Andrew Barkett, Laurent Charlin, Yoshua Bengio, Iulian Vlad Serban, Ekaterina Kochmar:
A New Era: Intelligent Tutoring Systems Will Transform Online Learning for Millions. CoRR abs/2203.03724 (2022) - [i424]Moksh Jain, Emmanuel Bengio, Alex Hernández-García, Jarrid Rector-Brooks, Bonaventure F. P. Dossou, Chanakya Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, Lena Simine, Payel Das, Yoshua Bengio:
Biological Sequence Design with GFlowNets. CoRR abs/2203.04115 (2022) - [i423]Akram Erraqabi, Marlos C. Machado, Mingde Zhao, Sainbayar Sukhbaatar, Alessandro Lazaric, Ludovic Denoyer, Yoshua Bengio:
Temporal Abstractions-Augmented Temporally Contrastive Learning: An Alternative to the Laplacian in RL. CoRR abs/2203.11369 (2022) - [i422]Yoshua Bengio, Prateek Gupta, Dylan R. Radovic, Maarten Scholl, Andrew Williams, Christian Schröder de Witt, Tianyu Zhang, Yang Zhang:
(Private)-Retroactive Carbon Pricing [(P)ReCaP]: A Market-based Approach for Climate Finance and Risk Assessment. CoRR abs/2205.00666 (2022) - [i421]Sanghyun Yoo, Inchul Song, Yoshua Bengio:
A Highly Adaptive Acoustic Model for Accurate Multi-Dialect Speech Recognition. CoRR abs/2205.03027 (2022) - [i420]Mike He Zhu, Léna Néhale Ezzine, Dianbo Liu, Yoshua Bengio:
FedILC: Weighted Geometric Mean and Invariant Gradient Covariance for Federated Learning on Non-IID Data. CoRR abs/2205.09305 (2022) - [i419]Dianbo Liu, Vedant Shah, Oussama Boussif, Cristian Meo, Anirudh Goyal, Tianmin Shu, Michael Mozer, Nicolas Heess, Yoshua Bengio:
Coordinating Policies Among Multiple Agents via an Intelligent Communication Channel. CoRR abs/2205.10607 (2022) - [i418]Sharut Gupta, Kartik Ahuja, Mohammad Havaei, Niladri Chatterjee, Yoshua Bengio:
FL Games: A federated learning framework for distribution shifts. CoRR abs/2205.11101 (2022) - [i417]Aniket Didolkar, Kshitij Gupta, Anirudh Goyal, Alex Lamb, Nan Rosemary Ke, Yoshua Bengio:
Temporal Latent Bottleneck: Synthesis of Fast and Slow Processing Mechanisms in Sequence Learning. CoRR abs/2205.14794 (2022) - [i416]Benjamin Scellier, Siddhartha Mishra, Yoshua Bengio, Yann Ollivier:
Agnostic Physics-Driven Deep Learning. CoRR abs/2205.15021 (2022) - [i415]Kartik Ahuja, Jason S. Hartford, Yoshua Bengio:
Weakly Supervised Representation Learning with Sparse Perturbations. CoRR abs/2206.01101 (2022) - [i414]Sarthak Mittal, Yoshua Bengio, Guillaume Lajoie:
Is a Modular Architecture Enough? CoRR abs/2206.02713 (2022) - [i413]Dinghuai Zhang, Hongyang Zhang, Aaron C. Courville, Yoshua Bengio, Pradeep Ravikumar, Arun Sai Suggala:
Building Robust Ensembles via Margin Boosting. CoRR abs/2206.03362 (2022) - [i412]Nino Scherrer, Anirudh Goyal, Stefan Bauer, Yoshua Bengio, Nan Rosemary Ke:
On the Generalization and Adaption Performance of Causal Models. CoRR abs/2206.04620 (2022) - [i411]Giancarlo Kerg, Sarthak Mittal, David Rolnick, Yoshua Bengio, Blake A. Richards, Guillaume Lajoie:
On Neural Architecture Inductive Biases for Relational Tasks. CoRR abs/2206.05056 (2022) - [i410]Yezhen Wang, Tong Che, Bo Li, Kaitao Song, Hengzhi Pei, Yoshua Bengio, Dongsheng Li:
Your Autoregressive Generative Model Can be Better If You Treat It as an Energy-Based One. CoRR abs/2206.12840 (2022) - [i409]Prateek Gupta, Elias B. Khalil, Didier Chételat, Maxime Gasse, Yoshua Bengio, Andrea Lodi, M. Pawan Kumar:
Lookback for Learning to Branch. CoRR abs/2206.14987 (2022) - [i408]Frederik Träuble, Anirudh Goyal, Nasim Rahaman, Michael Mozer, Kenji Kawaguchi, Yoshua Bengio, Bernhard Schölkopf:
Discrete Key-Value Bottleneck. CoRR abs/2207.11240 (2022) - [i407]Jose Gallego-Posada, Juan Ramirez, Akram Erraqabi, Yoshua Bengio, Simon Lacoste-Julien:
Controlled Sparsity via Constrained Optimization or: How I Learned to Stop Tuning Penalties and Love Constraints. CoRR abs/2208.04425 (2022) - [i406]Siba Moussa, Michael Kilgour, Clara Jans, Alex Hernández-García, Miroslava Cuperlovic-Culf, Yoshua Bengio, Lena Simine:
Diversifying Design of Nucleic Acid Aptamers Using Unsupervised Machine Learning. CoRR abs/2208.05341 (2022) - [i405]Tianyu Zhang, Andrew Williams, Soham Phade, Sunil Srinivasa, Yang Zhang, Prateek Gupta, Yoshua Bengio, Stephan Zheng:
AI for Global Climate Cooperation: Modeling Global Climate Negotiations, Agreements, and Long-Term Cooperation in RICE-N. CoRR abs/2208.07004 (2022) - [i404]Dinghuai Zhang, Ricky T. Q. Chen, Nikolay Malkin, Yoshua Bengio:
Unifying Generative Models with GFlowNets. CoRR abs/2209.02606 (2022) - [i403]Leo Feng, Padideh Nouri, Aneri Muni, Yoshua Bengio, Pierre-Luc Bacon:
Designing Biological Sequences via Meta-Reinforcement Learning and Bayesian Optimization. CoRR abs/2209.06259 (2022) - [i402]Kartik Ahuja, Yixin Wang, Divyat Mahajan, Yoshua Bengio:
Interventional Causal Representation Learning. CoRR abs/2209.11924 (2022) - [i401]Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, Andrei Cristian Nica, Tom Bosc, Yoshua Bengio, Nikolay Malkin:
Learning GFlowNets from partial episodes for improved convergence and stability. CoRR abs/2209.12782 (2022) - [i400]Bonaventure F. P. Dossou, Dianbo Liu, Xu Ji, Moksh Jain, Almer M. van der Sloot, Roger Palou, Michael Tyers, Yoshua Bengio:
Graph-Based Active Machine Learning Method for Diverse and Novel Antimicrobial Peptides Generation and Selection. CoRR abs/2209.13518 (2022) - [i399]Jiaye Teng, Chuan Wen, Dinghuai Zhang, Yoshua Bengio, Yang Gao, Yang Yuan:
Predictive Inference with Feature Conformal Prediction. CoRR abs/2210.00173 (2022) - [i398]Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward J. Hu, Katie Everett, Dinghuai Zhang, Yoshua Bengio:
GFlowNets and variational inference. CoRR abs/2210.00580 (2022) - [i397]Dinghuai Zhang, Aaron C. Courville, Yoshua Bengio, Qinqing Zheng, Amy Zhang, Ricky T. Q. Chen:
Latent State Marginalization as a Low-cost Approach for Improving Exploration. CoRR abs/2210.00999 (2022) - [i396]Dianbo Liu, Vedant Shah, Oussama Boussif, Cristian Meo, Anirudh Goyal, Tianmin Shu, Michael Mozer, Nicolas Heess, Yoshua Bengio:
Stateful active facilitator: Coordination and Environmental Heterogeneity in Cooperative Multi-Agent Reinforcement Learning. CoRR abs/2210.03022 (2022) - [i395]Ling Pan, Dinghuai Zhang, Aaron C. Courville, Longbo Huang, Yoshua Bengio:
Generative Augmented Flow Networks. CoRR abs/2210.03308 (2022) - [i394]Oussama Boussif, Dan Assouline, Loubna Benabbou, Yoshua Bengio:
MAgNet: Mesh Agnostic Neural PDE Solver. CoRR abs/2210.05495 (2022) - [i393]Ruixiang Zhang, Tong Che, Boris Ivanovic, Renhao Wang, Marco Pavone, Yoshua Bengio, Liam Paull:
Robust and Controllable Object-Centric Learning through Energy-based Models. CoRR abs/2210.05519 (2022) - [i392]Chen Sun, Wannan Yang, Benjamin Alsbury-Nealy, Yoshua Bengio, Blake A. Richards:
Contrastive introspection (ConSpec) to rapidly identify invariant steps for success. CoRR abs/2210.05845 (2022) - [i391]Nasim Rahaman, Martin Weiss, Francesco Locatello, Chris Pal, Yoshua Bengio, Bernhard Schölkopf, Li Erran Li, Nicolas Ballas:
Neural Attentive Circuits. CoRR abs/2210.08031 (2022) - [i390]Anthony Zador, Blake A. Richards, Bence Ölveczky, Sean Escola, Yoshua Bengio, Kwabena Boahen, Matthew M. Botvinick, Dmitri B. Chklovskii, Anne Churchland, Claudia Clopath, James DiCarlo, Surya Ganguli, Jeff Hawkins, Konrad P. Körding, Alexei A. Koulakov, Yann LeCun, Timothy P. Lillicrap, Adam H. Marblestone, Bruno A. Olshausen, Alexandre Pouget, Cristina Savin, Terrence J. Sejnowski, Eero P. Simoncelli, Sara A. Solla, David Sussillo, Andreas S. Tolias, Doris Tsao:
Toward Next-Generation Artificial Intelligence: Catalyzing the NeuroAI Revolution. CoRR abs/2210.08340 (2022) - [i389]Moksh Jain, Sharath Chandra Raparthy, Alex Hernández-García, Jarrid Rector-Brooks, Yoshua Bengio, Santiago Miret, Emmanuel Bengio:
Multi-Objective GFlowNets. CoRR abs/2210.12765 (2022) - [i388]Dianbo Liu, Moksh Jain, Bonaventure Dossou, Qianli Shen, Salem Lahlou, Anirudh Goyal, Nikolay Malkin, Chris Emezue, Dinghuai Zhang, Nadhir Hassen, Xu Ji, Kenji Kawaguchi, Yoshua Bengio:
GFlowOut: Dropout with Generative Flow Networks. CoRR abs/2210.12928 (2022) - [i387]Sharut Gupta, Kartik Ahuja, Mohammad Havaei, Niladri Chatterjee, Yoshua Bengio:
FL Games: A Federated Learning Framework for Distribution Shifts. CoRR abs/2211.00184 (2022) - [i386]Riashat Islam, Hongyu Zang, Anirudh Goyal, Alex Lamb, Kenji Kawaguchi, Xin Li, Romain Laroche, Yoshua Bengio, Remi Tachet des Combes:
Discrete Factorial Representations as an Abstraction for Goal Conditioned Reinforcement Learning. CoRR abs/2211.00247 (2022) - [i385]Chanakya Ekbote, Moksh Jain, Payel Das, Yoshua Bengio:
Consistent Training via Energy-Based GFlowNets for Modeling Discrete Joint Distributions. CoRR abs/2211.00568 (2022) - [i384]Nasim Rahaman, Martin Weiss, Frederik Träuble, Francesco Locatello, Alexandre Lacoste, Yoshua Bengio, Chris Pal, Li Erran Li, Bernhard Schölkopf:
A General Purpose Neural Architecture for Geospatial Systems. CoRR abs/2211.02348 (2022) - [i383]Mizu Nishikawa-Toomey, Tristan Deleu, Jithendaraa Subramanian, Yoshua Bengio, Laurent Charlin:
Bayesian learning of Causal Structure and Mechanisms with GFlowNets and Variational Bayes. CoRR abs/2211.02763 (2022) - [i382]Alexandre Adam, Adam Coogan, Nikolay Malkin, Ronan Legin, Laurence Perreault Levasseur, Yashar Hezaveh, Yoshua Bengio:
Posterior samples of source galaxies in strong gravitational lenses with score-based priors. CoRR abs/2211.03812 (2022) - [i381]Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, Siamak Ravanbakhsh:
Equivariance with Learned Canonicalization Functions. CoRR abs/2211.06489 (2022) - [i380]Leo Feng, Hossein Hajimirsadeghi, Yoshua Bengio, Mohamed Osama Ahmed:
Latent Bottlenecked Attentive Neural Processes. CoRR abs/2211.08458 (2022) - [i379]Alexandre Duval, Victor Schmidt, Santiago Miret, Yoshua Bengio, Alex Hernández-García, David Rolnick:
PhAST: Physics-Aware, Scalable, and Task-specific GNNs for Accelerated Catalyst Design. CoRR abs/2211.12020 (2022) - [i378]Sébastien Lachapelle, Tristan Deleu, Divyat Mahajan, Ioannis Mitliagkas, Yoshua Bengio, Simon Lacoste-Julien, Quentin Bertrand:
Synergies Between Disentanglement and Sparsity: a Multi-Task Learning Perspective. CoRR abs/2211.14666 (2022) - [i377]Vikas Verma, Sarthak Mittal, Wai Hoh Tang, Hieu Pham, Juho Kannala, Yoshua Bengio, Arno Solin, Kenji Kawaguchi:
MixupE: Understanding and Improving Mixup from Directional Derivative Perspective. CoRR abs/2212.13381 (2022) - 2021
- [j108]Yoshua Bengio, Yann LeCun, Geoffrey E. Hinton:
Deep learning for AI. Commun. ACM 64(7): 58-65 (2021) - [j107]Alexandra Luccioni, Victor Schmidt, Vahe Vardanyan, Yoshua Bengio, Theresa-Marie Rhyne:
Using Artificial Intelligence to Visualize the Impacts of Climate Change. IEEE Computer Graphics and Applications 41(1): 8-14 (2021) - [j106]Yoshua Bengio, Andrea Lodi, Antoine Prouvost:
Machine learning for combinatorial optimization: A methodological tour d'horizon. Eur. J. Oper. Res. 290(2): 405-421 (2021) - [j105]Yoshua Bengio, Daphne Ippolito, Richard Janda, Max Jarvie, Benjamin Prud'homme, Jean-Franois Rousseau, Abhinav Sharma, Yun William Yu:
Inherent privacy limitations of decentralized contact tracing apps. J. Am. Medical Informatics Assoc. 28(1): 193-195 (2021) - [j104]Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal, Yoshua Bengio:
Toward Causal Representation Learning. Proc. IEEE 109(5): 612-634 (2021) - [j103]Tariq Daouda, Maude Dumont-Lagacé, Albert Feghaly, Yahya Benslimane, Rébecca Panes, Mathieu Courcelles, Mohamed Benhammadi, Lea Harrington, Pierre Thibault, François Major, Yoshua Bengio, Etienne Gagnon, Sébastien Lemieux, Claude Perreault:
CAMAP: Artificial neural networks unveil the role of codon arrangement in modulating MHC-I peptides presentation. PLoS Comput. Biol. 17(10) (2021) - [c379]Tristan Sylvain, Pengchuan Zhang, Yoshua Bengio, R. Devon Hjelm, Shikhar Sharma:
Object-Centric Image Generation from Layouts. AAAI 2021: 2647-2655 - [c378]Giulia Zarpellon, Jason Jo, Andrea Lodi, Yoshua Bengio:
Parameterizing Branch-and-Bound Search Trees to Learn Branching Policies. AAAI 2021: 3931-3939 - [c377]Tong Che, Xiaofeng Liu, Site Li, Yubin Ge, Ruixiang Zhang, Caiming Xiong, Yoshua Bengio:
Deep Verifier Networks: Verification of Deep Discriminative Models with Deep Generative Models. AAAI 2021: 7002-7010 - [c376]Taesup Kim, Sungwoong Kim, Yoshua Bengio:
Visual Concept Reasoning Networks. AAAI 2021: 8172-8180 - [c375]Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, Yoshua Bengio:
Meta-Learning Framework with Applications to Zero-Shot Time-Series Forecasting. AAAI 2021: 9242-9250 - [c374]Vikas Verma, Meng Qu, Kenji Kawaguchi, Alex Lamb, Yoshua Bengio, Juho Kannala, Jian Tang:
GraphMix: Improved Training of GNNs for Semi-Supervised Learning. AAAI 2021: 10024-10032 - [c373]François St-Hilaire, Nathan Burns, Robert Belfer, Muhammad Shayan, Ariella Smofsky, Dung Do Vu, Antoine Frau, Joseph Potochny, Farid Faraji, Vincent Pavero, Neroli Ko, Ansona Onyi Ching, Sabina Elkins, Anush Stepanyan, Adela Matajova, Laurent Charlin, Yoshua Bengio, Iulian Vlad Serban, Ekaterina Kochmar:
A Comparative Study of Learning Outcomes for Online Learning Platforms. AIED (2) 2021: 331-337 - [c372]Rémi Le Priol, Reza Babanezhad, Yoshua Bengio, Simon Lacoste-Julien:
An Analysis of the Adaptation Speed of Causal Models. AISTATS 2021: 775-783 - [c371]Alex Lamb, Anirudh Goyal, Agnieszka Slowik, Michael Mozer, Philippe Beaudoin, Yoshua Bengio:
Neural Function Modules with Sparse Arguments: A Dynamic Approach to Integrating Information across Layers. AISTATS 2021: 919-927 - [c370]Tristan Sylvain, Francis Dutil, Tess Berthier, Lisa Di-Jorio, Margaux Luck, R. Devon Hjelm, Yoshua Bengio:
CMIM: Cross-Modal Information Maximization For Medical Imaging. ICASSP 2021: 1190-1194 - [c369]Yuwei Cheng, Jiannan Zhu, Mengxin Jiang, Jie Fu, Changsong Pang, Peidong Wang, Kris Sankaran, Olawale Onabola, Yimin Liu, Dianbo Liu, Yoshua Bengio:
FloW: A Dataset and Benchmark for Floating Waste Detection in Inland Waters. ICCV 2021: 10933-10942 - [c368]Faruk Ahmed, Yoshua Bengio, Harm van Seijen, Aaron C. Courville:
Systematic generalisation with group invariant predictions. ICLR 2021 - [c367]Ossama Ahmed, Frederik Träuble, Anirudh Goyal, Alexander Neitz, Manuel Wuthrich, Yoshua Bengio, Bernhard Schölkopf, Stefan Bauer:
CausalWorld: A Robotic Manipulation Benchmark for Causal Structure and Transfer Learning. ICLR 2021 - [c366]Yoshua Bengio, Prateek Gupta, Tegan Maharaj, Nasim Rahaman, Martin Weiss, Tristan Deleu, Eilif Benjamin Müller, Meng Qu, Victor Schmidt, Pierre-Luc St-Charles, Hannah Alsdurf, Olexa Bilaniuk, David L. Buckeridge, Gaétan Marceau-Caron, Pierre Luc Carrier, Joumana Ghosn, Satya Ortiz-Gagne, Christopher J. Pal, Irina Rish, Bernhard Schölkopf, Abhinav Sharma, Jian Tang, Andrew Williams:
Predicting Infectiousness for Proactive Contact Tracing. ICLR 2021 - [c365]Anirudh Goyal, Alex Lamb, Phanideep Gampa, Philippe Beaudoin, Charles Blundell, Sergey Levine, Yoshua Bengio, Michael Curtis Mozer:
Factorizing Declarative and Procedural Knowledge in Structured, Dynamical Environments. ICLR 2021 - [c364]Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio, Bernhard Schölkopf:
Recurrent Independent Mechanisms. ICLR 2021 - [c363]Kanika Madan, Nan Rosemary Ke, Anirudh Goyal, Bernhard Schölkopf, Yoshua Bengio:
Fast And Slow Learning Of Recurrent Independent Mechanisms. ICLR 2021 - [c362]Meng Qu, Junkun Chen, Louis-Pascal A. C. Xhonneux, Yoshua Bengio, Jian Tang:
RNNLogic: Learning Logic Rules for Reasoning on Knowledge Graphs. ICLR 2021 - [c361]Nasim Rahaman, Anirudh Goyal, Muhammad Waleed Gondal, Manuel Wuthrich, Stefan Bauer, Yash Sharma, Yoshua Bengio, Bernhard Schölkopf:
Spatially Structured Recurrent Modules. ICLR 2021 - [c360]Joseph D. Viviano, Becks Simpson, Francis Dutil, Yoshua Bengio, Joseph Paul Cohen:
Saliency is a Possible Red Herring When Diagnosing Poor Generalization. ICLR 2021 - [c359]Minkai Xu, Shitong Luo, Yoshua Bengio, Jian Peng, Jian Tang:
Learning Neural Generative Dynamics for Molecular Conformation Generation. ICLR 2021 - [c358]Minkai Xu, Wujie Wang, Shitong Luo, Chence Shi, Yoshua Bengio, Rafael Gómez-Bombarelli, Jian Tang:
An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming. ICML 2021: 11537-11547 - [c357]Konrad Zolna, Chitwan Saharia, Léonard Boussioux, David Yu-Tung Hui, Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Yoshua Bengio:
Combating False Negatives in Adversarial Imitation Learning. IJCNN 2021: 1-9 - [c356]Olawale Onabola, Zhuang Ma, Yang Xie, Benjamin Akera, Abdulrahman Ibraheem, Jia Xue, Dianbo Liu, Yoshua Bengio:
hBERT + BiasCorp - Fighting Racism on the Web. LT-EDI@EACL 2021: 26-33 - [c355]Nan Rosemary Ke, Aniket Didolkar, Sarthak Mittal, Anirudh Goyal, Guillaume Lajoie, Stefan Bauer, Danilo Jimenez Rezende, Michael Mozer, Yoshua Bengio, Chris Pal:
Systematic Evaluation of Causal Discovery in Visual Model Based Reinforcement Learning. NeurIPS Datasets and Benchmarks 2021 - [c354]Mohammad Pezeshki, Sékou-Oumar Kaba, Yoshua Bengio, Aaron C. Courville, Doina Precup, Guillaume Lajoie:
Gradient Starvation: A Learning Proclivity in Neural Networks. NeurIPS 2021: 1256-1272 - [c353]Mingde Zhao, Zhen Liu, Sitao Luan, Shuyuan Zhang, Doina Precup, Yoshua Bengio:
A Consciousness-Inspired Planning Agent for Model-Based Reinforcement Learning. NeurIPS 2021: 1569-1581 - [c352]Dianbo Liu, Alex Lamb, Kenji Kawaguchi, Anirudh Goyal, Chen Sun, Michael C. Mozer, Yoshua Bengio:
Discrete-Valued Neural Communication. NeurIPS 2021: 2109-2121 - [c351]Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Jean-Christophe Gagnon-Audet, Yoshua Bengio, Ioannis Mitliagkas, Irina Rish:
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization. NeurIPS 2021: 3438-3450 - [c350]Kevin Xia, Kai-Zhan Lee, Yoshua Bengio, Elias Bareinboim:
The Causal-Neural Connection: Expressiveness, Learnability, and Inference. NeurIPS 2021: 10823-10836 - [c349]Nasim Rahaman, Muhammad Waleed Gondal, Shruti Joshi, Peter V. Gehler, Yoshua Bengio, Francesco Locatello, Bernhard Schölkopf:
Dynamic Inference with Neural Interpreters. NeurIPS 2021: 10985-10998 - [c348]Aniket Didolkar, Anirudh Goyal, Nan Rosemary Ke, Charles Blundell, Philippe Beaudoin, Nicolas Heess, Michael Mozer, Yoshua Bengio:
Neural Production Systems. NeurIPS 2021: 25673-25687 - [c347]Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, Yoshua Bengio:
Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation. NeurIPS 2021: 27381-27394 - [c346]Tristan Sylvain, Margaux Luck, Joseph Paul Cohen, Héloïse Cardinal, Andrea Lodi, Yoshua Bengio:
Exploring the Wasserstein metric for time-to-event analysis. SPACA 2021: 194-206 - [i376]Axel Laborieux, Maxence Ernoult, Benjamin Scellier, Yoshua Bengio, Julie Grollier, Damien Querlioz:
Scaling Equilibrium Propagation to Deep ConvNets by Drastically Reducing its Gradient Estimator Bias. CoRR abs/2101.05536 (2021) - [i375]Tristan Deleu, Yoshua Bengio:
Structured Sparsity Inducing Adaptive Optimizers for Deep Learning. CoRR abs/2102.03869 (2021) - [i374]Moksh Jain, Salem Lahlou, Hadi Nekoei, Victor Butoi, Paul Bertin, Jarrid Rector-Brooks, Maksym Korablyov, Yoshua Bengio:
DEUP: Direct Epistemic Uncertainty Prediction. CoRR abs/2102.08501 (2021) - [i373]Minkai Xu, Shitong Luo, Yoshua Bengio, Jian Peng, Jian Tang:
Learning Neural Generative Dynamics for Molecular Conformation Generation. CoRR abs/2102.10240 (2021) - [i372]Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal, Yoshua Bengio:
Towards Causal Representation Learning. CoRR abs/2102.11107 (2021) - [i371]Alex Lamb, Di He, Anirudh Goyal, Guolin Ke, Chien-Feng Liao, Mirco Ravanelli, Yoshua Bengio:
Transformers with Competitive Ensembles of Independent Mechanisms. CoRR abs/2103.00336 (2021) - [i370]Anirudh Goyal, Aniket Didolkar, Alex Lamb, Kartikeya Badola, Nan Rosemary Ke, Nasim Rahaman, Jonathan Binas, Charles Blundell, Michael Mozer, Yoshua Bengio:
Coordination Among Neural Modules Through a Shared Global Workspace. CoRR abs/2103.01197 (2021) - [i369]Anirudh Goyal, Aniket Didolkar, Nan Rosemary Ke, Charles Blundell, Philippe Beaudoin, Nicolas Heess, Michael Mozer, Yoshua Bengio:
Neural Production Systems. CoRR abs/2103.01937 (2021) - [i368]Olawale Onabola, Zhuang Ma, Yang Xie, Benjamin Akera, Abdulrahman Ibraheem, Jia Xue, Dianbo Liu, Yoshua Bengio:
hBert + BiasCorp - Fighting Racism on the Web. CoRR abs/2104.02242 (2021) - [i367]François St-Hilaire, Nathan Burns, Robert Belfer, Muhammad Shayan, Ariella Smofsky, Dung Do Vu, Antoine Frau, Joseph Potochny, Farid Faraji, Vincent Pavero, Neroli Ko, Ansona Onyi Ching, Sabina Elkins, Anush Stepanyan, Adela Matajova, Laurent Charlin, Yoshua Bengio, Iulian Vlad Serban, Ekaterina Kochmar:
Comparative Study of Learning Outcomes for Online Learning Platforms. CoRR abs/2104.07763 (2021) - [i366]Minkai Xu, Wujie Wang, Shitong Luo, Chence Shi, Yoshua Bengio, Rafael Gómez-Bombarelli, Jian Tang:
An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming. CoRR abs/2105.07246 (2021) - [i365]Kanika Madan, Nan Rosemary Ke, Anirudh Goyal, Bernhard Schölkopf, Yoshua Bengio:
Fast and Slow Learning of Recurrent Independent Mechanisms. CoRR abs/2105.08710 (2021) - [i364]Mingde Zhao, Zhen Liu, Sitao Luan, Shuyuan Zhang, Doina Precup, Yoshua Bengio:
A Consciousness-Inspired Planning Agent for Model-Based Reinforcement Learning. CoRR abs/2106.02097 (2021) - [i363]Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, Yoshua Bengio:
Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation. CoRR abs/2106.04399 (2021) - [i362]Mirco Ravanelli, Titouan Parcollet, Peter Plantinga, Aku Rouhe, Samuele Cornell, Loren Lugosch, Cem Subakan, Nauman Dawalatabad, Abdelwahab Heba, Jianyuan Zhong, Ju-Chieh Chou, Sung-Lin Yeh, Szu-Wei Fu, Chien-Feng Liao, Elena Rastorgueva, François Grondin, William Aris, Hwidong Na, Yan Gao, Renato De Mori, Yoshua Bengio:
SpeechBrain: A General-Purpose Speech Toolkit. CoRR abs/2106.04624 (2021) - [i361]Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Yoshua Bengio, Ioannis Mitliagkas, Irina Rish:
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization. CoRR abs/2106.06607 (2021) - [i360]Yashas Annadani, Jonas Rothfuss, Alexandre Lacoste, Nino Scherrer, Anirudh Goyal, Yoshua Bengio, Stefan Bauer:
Variational Causal Networks: Approximate Bayesian Inference over Causal Structures. CoRR abs/2106.07635 (2021) - [i359]Xu Ji, Razvan Pascanu, R. Devon Hjelm, Andrea Vedaldi, Balaji Lakshminarayanan, Yoshua Bengio:
Predicting Unreliable Predictions by Shattering a Neural Network. CoRR abs/2106.08365 (2021) - [i358]Kevin Xia, Kai-Zhan Lee, Yoshua Bengio, Elias Bareinboim:
The Causal-Neural Connection: Expressiveness, Learnability, and Inference. CoRR abs/2107.00793 (2021) - [i357]Nan Rosemary Ke, Aniket Didolkar, Sarthak Mittal, Anirudh Goyal, Guillaume Lajoie, Stefan Bauer, Danilo J. Rezende, Yoshua Bengio, Michael Mozer, Christopher J. Pal:
Systematic Evaluation of Causal Discovery in Visual Model Based Reinforcement Learning. CoRR abs/2107.00848 (2021) - [i356]Dianbo Liu, Alex Lamb, Kenji Kawaguchi, Anirudh Goyal, Chen Sun, Michael Curtis Mozer, Yoshua Bengio:
Discrete-Valued Neural Communication. CoRR abs/2107.02367 (2021) - [i355]Nino Scherrer, Olexa Bilaniuk, Yashas Annadani, Anirudh Goyal, Patrick Schwab, Bernhard Schölkopf, Michael C. Mozer, Yoshua Bengio, Stefan Bauer, Nan Rosemary Ke:
Learning Neural Causal Models with Active Interventions. CoRR abs/2109.02429 (2021) - [i354]Victor Schmidt, Alexandra Sasha Luccioni, Mélisande Teng, Tianyu Zhang, Alexia Reynaud, Sunand Raghupathi, Gautier Cosne, Adrien Juraver, Vahe Vardanyan, Alex Hernández-García, Yoshua Bengio:
ClimateGAN: Raising Climate Change Awareness by Generating Images of Floods. CoRR abs/2110.02871 (2021) - [i353]Dinghuai Zhang, Jie Fu, Yoshua Bengio, Aaron C. Courville:
Unifying Likelihood-free Inference with Black-box Sequence Design and Beyond. CoRR abs/2110.03372 (2021) - [i352]Nasim Rahaman, Muhammad Waleed Gondal, Shruti Joshi, Peter V. Gehler, Yoshua Bengio, Francesco Locatello, Bernhard Schölkopf:
Dynamic Inference with Neural Interpreters. CoRR abs/2110.06399 (2021) - [i351]Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, Xavier Bresson:
Graph Neural Networks with Learnable Structural and Positional Representations. CoRR abs/2110.07875 (2021) - [i350]Sarthak Mittal, Sharath Chandra Raparthy, Irina Rish, Yoshua Bengio, Guillaume Lajoie:
Compositional Attention: Disentangling Search and Retrieval. CoRR abs/2110.09419 (2021) - [i349]Max Morrison, Rithesh Kumar, Kundan Kumar, Prem Seetharaman, Aaron C. Courville, Yoshua Bengio:
Chunked Autoregressive GAN for Conditional Waveform Synthesis. CoRR abs/2110.10139 (2021) - [i348]Nicholas Roy, Ingmar Posner, Tim D. Barfoot, Philippe Beaudoin, Yoshua Bengio, Jeannette Bohg, Oliver Brock, Isabelle Depatie, Dieter Fox, Daniel E. Koditschek, Tomás Lozano-Pérez, Vikash Mansinghka, Christopher J. Pal, Blake A. Richards, Dorsa Sadigh, Stefan Schaal, Gaurav S. Sukhatme, Denis Thérien, Marc Toussaint, Michiel van de Panne:
From Machine Learning to Robotics: Challenges and Opportunities for Embodied Intelligence. CoRR abs/2110.15245 (2021) - [i347]Kartik Ahuja, Jason S. Hartford, Yoshua Bengio:
Properties from Mechanisms: An Equivariance Perspective on Identifiable Representation Learning. CoRR abs/2110.15796 (2021) - [i346]Yoshua Bengio, Tristan Deleu, Edward J. Hu, Salem Lahlou, Mo Tiwari, Emmanuel Bengio:
GFlowNet Foundations. CoRR abs/2111.09266 (2021) - [i345]Mohammad Pezeshki, Amartya Mitra, Yoshua Bengio, Guillaume Lajoie:
Multi-scale Feature Learning Dynamics: Insights for Double Descent. CoRR abs/2112.03215 (2021) - [i344]Enoch Tetteh, Joseph D. Viviano, Yoshua Bengio, David Krueger, Joseph Paul Cohen:
Multi-Domain Balanced Sampling Improves Out-of-Distribution Generalization of Chest X-ray Pathology Prediction Models. CoRR abs/2112.13734 (2021) - 2020
- [j102]ByungIn Yoo, Tristan Sylvain, Yoshua Bengio, Junmo Kim:
Joint Learning of Generative Translator and Classifier for Visually Similar Classes. IEEE Access 8: 219160-219173 (2020) - [j101]Assya Trofimov, Joseph Paul Cohen, Yoshua Bengio, Claude Perreault, Sébastien Lemieux:
Factorized embeddings learns rich and biologically meaningful embedding spaces using factorized tensor decomposition. Bioinform. 36(Supplement-1): i417-i426 (2020) - [j100]Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville, Yoshua Bengio:
Generative adversarial networks. Commun. ACM 63(11): 139-144 (2020) - [j99]Iulian Vlad Serban, Chinnadhurai Sankar, Michael Pieper, Joelle Pineau, Yoshua Bengio:
The Bottleneck Simulator: A Model-Based Deep Reinforcement Learning Approach. J. Artif. Intell. Res. 69: 571-612 (2020) - [j98]Sharon Zhou, Alexandra Luccioni, Gautier Cosne, Michael S. Bernstein, Yoshua Bengio:
Establishing an evaluation metric to quantify climate change image realism. Mach. Learn. Sci. Technol. 1(2): 25005 (2020) - [j97]Shagun Sodhani, Sarath Chandar, Yoshua Bengio:
Toward Training Recurrent Neural Networks for Lifelong Learning. Neural Comput. 32(1): 1-35 (2020) - [j96]Alexandra Luccioni, Yoshua Bengio:
On the Morality of Artificial Intelligence [Commentary]. IEEE Technol. Soc. Mag. 39(1): 16-25 (2020) - [c345]Konrad Zolna, Chitwan Saharia, Léonard Boussioux, David Yu-Tung Hui, Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Yoshua Bengio:
Combating False Negatives in Adversarial Imitation Learning (Student Abstract). AAAI 2020: 13999-14000 - [c344]Jacob L. Russin, Jason Jo, Randall C. O'Reilly, Yoshua Bengio:
Compositional Generalization by Factorizing Alignment and Translation. ACL (student) 2020: 313-327 - [c343]Wenyu Du, Zhouhan Lin, Yikang Shen, Timothy J. O'Donnell, Yoshua Bengio, Yue Zhang:
Exploiting Syntactic Structure for Better Language Modeling: A Syntactic Distance Approach. ACL 2020: 6611-6628 - [c342]Iulian Vlad Serban, Varun Gupta, Ekaterina Kochmar, Dung Do Vu, Robert Belfer, Joelle Pineau, Aaron C. Courville, Laurent Charlin, Yoshua Bengio:
A Large-Scale, Open-Domain, Mixed-Interface Dialogue-Based ITS for STEM. AIED (2) 2020: 387-392 - [c341]Valentin Thomas, Fabian Pedregosa, Bart van Merriënboer, Pierre-Antoine Manzagol, Yoshua Bengio, Nicolas Le Roux:
On the interplay between noise and curvature and its effect on optimization and generalization. AISTATS 2020: 3503-3513 - [c340]Jacob L. Russin, Jason Jo, Randall C. O'Reilly, Yoshua Bengio:
Systematicity in a Recurrent Neural Network by Factorizing Syntax and Semantics. CogSci 2020 - [c339]Yoshua Bengio, Emma Frejinger, Andrea Lodi, Rahul Patel, Sriram Sankaranarayanan:
A Learning-Based Algorithm to Quickly Compute Good Primal Solutions for Stochastic Integer Programs. CPAIOR 2020: 99-111 - [c338]Md Rifat Arefin, Vincent Michalski, Pierre-Luc St-Charles, Alfredo Kalaitzis, Sookyung Kim, Samira Ebrahimi Kahou, Yoshua Bengio:
Multi-Image Super-Resolution for Remote Sensing using Deep Recurrent Networks. CVPR Workshops 2020: 816-825 - [c337]Timo Milbich, Karsten Roth, Homanga Bharadhwaj, Samarth Sinha, Yoshua Bengio, Björn Ommer, Joseph Paul Cohen:
DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning. ECCV (8) 2020: 590-607 - [c336]Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob Andreas, Yoshua Bengio, Joyce Chai, Mirella Lapata, Angeliki Lazaridou, Jonathan May, Aleksandr Nisnevich, Nicolas Pinto, Joseph P. Turian:
Experience Grounds Language. EMNLP (1) 2020: 8718-8735 - [c335]Mirco Ravanelli, Jianyuan Zhong, Santiago Pascual, Pawel Swietojanski, João Monteiro, Jan Trmal, Yoshua Bengio:
Multi-Task Self-Supervised Learning for Robust Speech Recognition. ICASSP 2020: 6989-6993 - [c334]Yoshua Bengio, Tristan Deleu, Nasim Rahaman, Nan Rosemary Ke, Sébastien Lachapelle, Olexa Bilaniuk, Anirudh Goyal, Christopher J. Pal:
A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms. ICLR 2020 - [c333]Anirudh Goyal, Yoshua Bengio, Matthew M. Botvinick, Sergey Levine:
The Variational Bandwidth Bottleneck: Stochastic Evaluation on an Information Budget. ICLR 2020 - [c332]Anirudh Goyal, Shagun Sodhani, Jonathan Binas, Xue Bin Peng, Sergey Levine, Yoshua Bengio:
Reinforcement Learning with Competitive Ensembles of Information-Constrained Primitives. ICLR 2020 - [c331]Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, Yoshua Bengio:
N-BEATS: Neural basis expansion analysis for interpretable time series forecasting. ICLR 2020 - [c330]Nasim Rahaman, Steffen Wolf, Anirudh Goyal, Roman Remme, Yoshua Bengio:
Learning the Arrow of Time for Problems in Reinforcement Learning. ICLR 2020 - [c329]William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark Rowland, Will Dabney:
Revisiting Fundamentals of Experience Replay. ICML 2020: 3061-3071 - [c328]Sai Krishna Gottipati, Boris Sattarov, Sufeng Niu, Yashaswi Pathak, Haoran Wei, Shengchao Liu, Simon Blackburn, Karam M. J. Thomas, Connor W. Coley, Jian Tang, Sarath Chandar, Yoshua Bengio:
Learning to Navigate The Synthetically Accessible Chemical Space Using Reinforcement Learning. ICML 2020: 3668-3679 - [c327]Sarthak Mittal, Alex Lamb, Anirudh Goyal, Vikram Voleti, Murray Shanahan, Guillaume Lajoie, Michael Mozer, Yoshua Bengio:
Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules. ICML 2020: 6972-6986 - [c326]Samarth Sinha, Han Zhang, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, Augustus Odena:
Small-GAN: Speeding up GAN Training using Core-Sets. ICML 2020: 9005-9015 - [c325]Zijun Zhang, Ruixiang Zhang, Zongpeng Li, Yoshua Bengio, Liam Paull:
Perceptual Generative Autoencoders. ICML 2020: 11298-11306 - [c324]Ghouthi Boukli Hacene, Carlos Lassance, Vincent Gripon, Matthieu Courbariaux, Yoshua Bengio:
Attention Based Pruning for Shift Networks. ICPR 2020: 4054-4061 - [c323]Ghouthi Boukli Hacene, Vincent Gripon, Matthieu Arzel, Nicolas Farrugia, Yoshua Bengio:
Quantized Guided Pruning for Efficient Hardware Implementations of Deep Neural Networks. NEWCAS 2020: 206-209 - [c322]Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull, Yuan Cao, Yoshua Bengio:
Your GAN is Secretly an Energy-based Model and You Should Use Discriminator Driven Latent Sampling. NeurIPS 2020 - [c321]Prateek Gupta, Maxime Gasse, Elias B. Khalil, Pawan Kumar Mudigonda, Andrea Lodi, Yoshua Bengio:
Hybrid Models for Learning to Branch. NeurIPS 2020 - [c320]Giancarlo Kerg, Bhargav Kanuparthi, Anirudh Goyal, Kyle Goyette, Yoshua Bengio, Guillaume Lajoie:
Untangling tradeoffs between recurrence and self-attention in artificial neural networks. NeurIPS 2020 - [i343]Travis LaCroix, Yoshua Bengio:
Learning from Learning Machines: Optimisation, Rules, and Social Norms. CoRR abs/2001.00006 (2020) - [i342]Chen Ma, Dylan R. Ashley, Junfeng Wen, Yoshua Bengio:
Universal Successor Features for Transfer Reinforcement Learning. CoRR abs/2001.04025 (2020) - [i341]Mirco Ravanelli, Jianyuan Zhong, Santiago Pascual, Pawel Swietojanski, João Monteiro, Jan Trmal, Yoshua Bengio:
Multi-task self-supervised learning for Robust Speech Recognition. CoRR abs/2001.09239 (2020) - [i340]Gautier Cosne, Adrien Juraver, Mélisande Teng, Victor Schmidt, Vahe Vardanyan, Alexandra Luccioni, Yoshua Bengio:
Using Simulated Data to Generate Images of Climate Change. CoRR abs/2001.09531 (2020) - [i339]Konrad Zolna, Chitwan Saharia, Léonard Boussioux, David Yu-Tung Hui, Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Yoshua Bengio:
Combating False Negatives in Adversarial Imitation Learning. CoRR abs/2002.00412 (2020) - [i338]Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, Yoshua Bengio:
Meta-learning framework with applications to zero-shot time-series forecasting. CoRR abs/2002.02887 (2020) - [i337]Milos Nikolic, Ghouthi Boukli Hacene, Ciaran Bannon, Alberto Delmas Lascorz, Matthieu Courbariaux, Yoshua Bengio, Vincent Gripon, Andreas Moshovos:
BitPruning: Learning Bitlengths for Aggressive and Accurate Quantization. CoRR abs/2002.03090 (2020) - [i336]Giulia Zarpellon, Jason Jo, Andrea Lodi, Yoshua Bengio:
Parameterizing Branch-and-Bound Search Trees to Learn Branching Policies. CoRR abs/2002.05120 (2020) - [i335]Michel Deudon, Alfredo Kalaitzis, Israel Goytom, Md Rifat Arefin, Zhichao Lin, Kris Sankaran, Vincent Michalski, Samira Ebrahimi Kahou, Julien Cornebise, Yoshua Bengio:
HighRes-net: Recursive Fusion for Multi-Frame Super-Resolution of Satellite Imagery. CoRR abs/2002.06460 (2020) - [i334]Devansh Arpit, Huan Wang, Caiming Xiong, Richard Socher, Yoshua Bengio:
Neural Bayes: A Generic Parameterization Method for Unsupervised Representation Learning. CoRR abs/2002.09046 (2020) - [i333]William Fedus, Dibya Ghosh, John D. Martin, Marc G. Bellemare, Yoshua Bengio, Hugo Larochelle:
On Catastrophic Interference in Atari 2600 Games. CoRR abs/2002.12499 (2020) - [i332]Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, Xavier Bresson:
Benchmarking Graph Neural Networks. CoRR abs/2003.00982 (2020) - [i331]Qicheng Lao, Xiang Jiang, Mohammad Havaei, Yoshua Bengio:
Continuous Domain Adaptation with Variational Domain-Agnostic Feature Replay. CoRR abs/2003.04382 (2020) - [i330]Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull, Yuan Cao, Yoshua Bengio:
Your GAN is Secretly an Energy-based Model and You Should use Discriminator Driven Latent Sampling. CoRR abs/2003.06060 (2020) - [i329]Tristan Sylvain, Pengchuan Zhang, Yoshua Bengio, R. Devon Hjelm, Shikhar Sharma:
Object-Centric Image Generation from Layouts. CoRR abs/2003.07449 (2020) - [i328]Miles Brundage, Shahar Avin, Jasmine Wang, Haydn Belfield, Gretchen Krueger, Gillian K. Hadfield, Heidy Khlaaf, Jingying Yang, Helen Toner, Ruth Fong, Tegan Maharaj, Pang Wei Koh, Sara Hooker, Jade Leung, Andrew Trask, Emma Bluemke, Jonathan Lebensold, Cullen O'Keefe, Mark Koren, Théo Ryffel, J. B. Rubinovitz, Tamay Besiroglu, Federica Carugati, Jack Clark, Peter Eckersley, Sarah de Haas, Maritza Johnson, Ben Laurie, Alex Ingerman, Igor Krawczuk, Amanda Askell, Rosario Cammarota, Andrew Lohn, David Krueger, Charlotte Stix, Peter Henderson, Logan Graham, Carina Prunkl, Bianca Martin, Elizabeth Seger, Noa Zilberman, Seán Ó hÉigeartaigh, Frens Kroeger, Girish Sastry, Rebecca Kagan, Adrian Weller, Brian Tse, Elizabeth Barnes, Allan Dafoe, Paul Scharre, Ariel Herbert-Voss, Martijn Rasser, Shagun Sodhani, Carrick Flynn, Thomas Krendl Gilbert, Lisa Dyer, Saif Khan, Yoshua Bengio, Markus Anderljung:
Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable Claims. CoRR abs/2004.07213 (2020) - [i327]Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob Andreas, Yoshua Bengio, Joyce Chai, Mirella Lapata, Angeliki Lazaridou, Jonathan May, Aleksandr Nisnevich, Nicolas Pinto, Joseph P. Turian:
Experience Grounds Language. CoRR abs/2004.10151 (2020) - [i326]Anirudh Goyal, Yoshua Bengio, Matthew M. Botvinick, Sergey Levine:
The Variational Bandwidth Bottleneck: Stochastic Evaluation on an Information Budget. CoRR abs/2004.11935 (2020) - [i325]Sai Krishna Gottipati, Boris Sattarov, Sufeng Niu, Yashaswi Pathak, Haoran Wei, Shengchao Liu, Karam M. J. Thomas, Simon Blackburn, Connor W. Coley, Jian Tang, Sarath Chandar, Yoshua Bengio:
Learning To Navigate The Synthetically Accessible Chemical Space Using Reinforcement Learning. CoRR abs/2004.12485 (2020) - [i324]Timo Milbich, Karsten Roth, Homanga Bharadhwaj, Samarth Sinha, Yoshua Bengio, Björn Ommer, Joseph Paul Cohen:
DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning. CoRR abs/2004.13458 (2020) - [i323]Maxence Ernoult, Julie Grollier, Damien Querlioz, Yoshua Bengio, Benjamin Scellier:
Equilibrium Propagation with Continual Weight Updates. CoRR abs/2005.04168 (2020) - [i322]Maxence Ernoult, Julie Grollier, Damien Querlioz, Yoshua Bengio, Benjamin Scellier:
Continual Weight Updates and Convolutional Architectures for Equilibrium Propagation. CoRR abs/2005.04169 (2020) - [i321]Wenyu Du, Zhouhan Lin, Yikang Shen, Timothy J. O'Donnell, Yoshua Bengio, Yue Zhang:
Exploiting Syntactic Structure for Better Language Modeling: A Syntactic Distance Approach. CoRR abs/2005.05864 (2020) - [i320]Iulian Vlad Serban, Varun Gupta, Ekaterina Kochmar, Dung Do Vu, Robert Belfer, Joelle Pineau, Aaron C. Courville, Laurent Charlin, Yoshua Bengio:
A Large-Scale, Open-Domain, Mixed-Interface Dialogue-Based ITS for STEM. CoRR abs/2005.06616 (2020) - [i319]Hannah Alsdurf, Yoshua Bengio, Tristan Deleu, Prateek Gupta, Daphne Ippolito, Richard Janda, Max Jarvie, Tyler Kolody, Sekoul Krastev, Tegan Maharaj, Robert Obryk, Dan Pilat, Valerie Pisano, Benjamin Prud'homme, Meng Qu, Nasim Rahaman, Irina Rish, Jean-Franois Rousseau, Abhinav Sharma, Brooke Struck, Jian Tang, Martin Weiss, Yun William Yu:
COVI White Paper. CoRR abs/2005.08502 (2020) - [i318]Rémi Le Priol, Reza Babanezhad Harikandeh, Yoshua Bengio, Simon Lacoste-Julien:
An Analysis of the Adaptation Speed of Causal Models. CoRR abs/2005.09136 (2020) - [i317]Joseph Paul Cohen, Lan Dao, Paul Morrison, Karsten Roth, Yoshua Bengio, Beiyi Shen, Almas Abbasi, Mahsa Hoshmand-Kochi, Marzyeh Ghassemi, Haifang Li, Tim Q. Duong:
Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning. CoRR abs/2005.11856 (2020) - [i316]Jack D. Kendall, Ross D. Pantone, Kalpana Manickavasagam, Yoshua Bengio, Benjamin Scellier:
Training End-to-End Analog Neural Networks with Equilibrium Propagation. CoRR abs/2006.01981 (2020) - [i315]Axel Laborieux, Maxence Ernoult, Benjamin Scellier, Yoshua Bengio, Julie Grollier, Damien Querlioz:
Scaling Equilibrium Propagation to Deep ConvNets by Drastically Reducing its Gradient Estimator Bias. CoRR abs/2006.03824 (2020) - [i314]Khurram Javed, Martha White, Yoshua Bengio:
Learning Causal Models Online. CoRR abs/2006.07461 (2020) - [i313]Giancarlo Kerg, Bhargav Kanuparthi, Anirudh Goyal, Kyle Goyette, Yoshua Bengio, Guillaume Lajoie:
Untangling tradeoffs between recurrence and self-attention in neural networks. CoRR abs/2006.09471 (2020) - [i312]Yihe Dong, Will Sawin, Yoshua Bengio:
HNHN: Hypergraph Networks with Hyperedge Neurons. CoRR abs/2006.12278 (2020) - [i311]Matthew Amodio, Rim Assouel, Victor Schmidt, Tristan Sylvain, Smita Krishnaswamy, Yoshua Bengio:
Image-to-image Mapping with Many Domains by Sparse Attribute Transfer. CoRR abs/2006.13291 (2020) - [i310]Bo Li, Yezhen Wang, Tong Che, Shanghang Zhang, Sicheng Zhao, Pengfei Xu, Wei Zhou, Yoshua Bengio, Kurt Keutzer:
Rethinking Distributional Matching Based Domain Adaptation. CoRR abs/2006.13352 (2020) - [i309]Prateek Gupta, Maxime Gasse, Elias B. Khalil, M. Pawan Kumar, Andrea Lodi, Yoshua Bengio:
Hybrid Models for Learning to Branch. CoRR abs/2006.15212 (2020) - [i308]Anirudh Goyal, Alex Lamb, Phanideep Gampa, Philippe Beaudoin, Sergey Levine, Charles Blundell, Yoshua Bengio, Michael Mozer:
Object Files and Schemata: Factorizing Declarative and Procedural Knowledge in Dynamical Systems. CoRR abs/2006.16225 (2020) - [i307]Sarthak Mittal, Alex Lamb, Anirudh Goyal, Vikram Voleti, Murray Shanahan, Guillaume Lajoie, Michael Mozer, Yoshua Bengio:
Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules. CoRR abs/2006.16981 (2020) - [i306]Nasim Rahaman, Anirudh Goyal, Muhammad Waleed Gondal, Manuel Wuthrich, Stefan Bauer, Yash Sharma, Yoshua Bengio, Bernhard Schölkopf:
S2RMs: Spatially Structured Recurrent Modules. CoRR abs/2007.06533 (2020) - [i305]William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark Rowland, Will Dabney:
Revisiting Fundamentals of Experience Replay. CoRR abs/2007.06700 (2020) - [i304]David Yu-Tung Hui, Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Yoshua Bengio:
BabyAI 1.1. CoRR abs/2007.12770 (2020) - [i303]Yoshua Bengio:
Deriving Differential Target Propagation from Iterating Approximate Inverses. CoRR abs/2007.15139 (2020) - [i302]Lucas Willems, Salem Lahlou, Yoshua Bengio:
Mastering Rate based Curriculum Learning. CoRR abs/2008.06456 (2020) - [i301]Taesup Kim, Sungwoong Kim, Yoshua Bengio:
Visual Concept Reasoning Networks. CoRR abs/2008.11783 (2020) - [i300]Meng Qu, Junkun Chen, Louis-Pascal A. C. Xhonneux, Yoshua Bengio, Jian Tang:
RNNLogic: Learning Logic Rules for Reasoning on Knowledge Graphs. CoRR abs/2010.04029 (2020) - [i299]Ossama Ahmed, Frederik Träuble, Anirudh Goyal, Alexander Neitz, Manuel Wüthrich, Yoshua Bengio, Bernhard Schölkopf, Stefan Bauer:
CausalWorld: A Robotic Manipulation Benchmark for Causal Structure and Transfer Learning. CoRR abs/2010.04296 (2020) - [i298]Alex Lamb, Anirudh Goyal, Agnieszka Slowik, Michael Mozer, Philippe Beaudoin, Yoshua Bengio:
Neural Function Modules with Sparse Arguments: A Dynamic Approach to Integrating Information across Layers. CoRR abs/2010.08012 (2020) - [i297]Tristan Sylvain, Francis Dutil, Tess Berthier, Lisa Di-Jorio, Margaux Luck, R. Devon Hjelm, Yoshua Bengio:
Cross-Modal Information Maximization for Medical Imaging: CMIM. CoRR abs/2010.10593 (2020) - [i296]Rithesh Kumar, Kundan Kumar, Vicki Anand, Yoshua Bengio, Aaron C. Courville:
NU-GAN: High resolution neural upsampling with GAN. CoRR abs/2010.11362 (2020) - [i295]Yoshua Bengio, Prateek Gupta, Tegan Maharaj, Nasim Rahaman, Martin Weiss, Tristan Deleu, Eilif B. Müller, Meng Qu, Victor Schmidt, Pierre-Luc St-Charles, Hannah Alsdurf, Olexa Bilaniuk, David L. Buckeridge, Gaétan Marceau Caron, Pierre Luc Carrier, Joumana Ghosn, Satya Ortiz-Gagne, Chris Pal, Irina Rish, Bernhard Schölkopf, Abhinav Sharma, Jian Tang, Andrew Williams:
Predicting Infectiousness for Proactive Contact Tracing. CoRR abs/2010.12536 (2020) - [i294]Prateek Gupta, Tegan Maharaj, Martin Weiss, Nasim Rahaman, Hannah Alsdurf, Abhinav Sharma, Nanor Minoyan, Soren Harnois-Leblanc, Victor Schmidt, Pierre-Luc St-Charles, Tristan Deleu, Andrew Williams, Akshay Patel, Meng Qu, Olexa Bilaniuk, Gaétan Marceau Caron, Pierre Luc Carrier, Satya Ortiz-Gagné, Marc-Andre Rousseau, David L. Buckeridge, Joumana Ghosn, Yang Zhang, Bernhard Schölkopf, Jian Tang, Irina Rish, Christopher Joseph Pal, Joanna Merckx, Eilif B. Müller, Yoshua Bengio:
COVI-AgentSim: an Agent-based Model for Evaluating Methods of Digital Contact Tracing. CoRR abs/2010.16004 (2020) - [i293]Mohammad Pezeshki, Sékou-Oumar Kaba, Yoshua Bengio, Aaron C. Courville, Doina Precup, Guillaume Lajoie:
Gradient Starvation: A Learning Proclivity in Neural Networks. CoRR abs/2011.09468 (2020) - [i292]Cheng-Hao Liu, Maksym Korablyov, Stanislaw Jastrzebski, Pawel Wlodarczyk-Pruszynski, Yoshua Bengio, Marwin H. S. Segler:
RetroGNN: Approximating Retrosynthesis by Graph Neural Networks for De Novo Drug Design. CoRR abs/2011.13042 (2020) - [i291]Anirudh Goyal, Yoshua Bengio:
Inductive Biases for Deep Learning of Higher-Level Cognition. CoRR abs/2011.15091 (2020) - [i290]Shimaa Baraka, Benjamin Akera, Bibek Aryal, Tenzing Chogyal Sherpa, Finu Shresta, Anthony Ortiz, Kris Sankaran, Juan Lavista Ferres, Mir Matin, Yoshua Bengio:
Machine Learning for Glacier Monitoring in the Hindu Kush Himalaya. CoRR abs/2012.05013 (2020)
2010 – 2019
- 2019
- [j95]Benjamin Scellier, Yoshua Bengio:
Equivalence of Equilibrium Propagation and Recurrent Backpropagation. Neural Comput. 31(2) (2019) - [j94]Li Jing, Çaglar Gülçehre, John Peurifoy, Yichen Shen, Max Tegmark, Marin Soljacic, Yoshua Bengio:
Gated Orthogonal Recurrent Units: On Learning to Forget. Neural Comput. 31(4) (2019) - [j93]Kenji Kawaguchi, Yoshua Bengio:
Depth with nonlinearity creates no bad local minima in ResNets. Neural Networks 118: 167-174 (2019) - [c319]Sarath Chandar, Chinnadhurai Sankar, Eugene Vorontsov, Samira Ebrahimi Kahou, Yoshua Bengio:
Towards Non-Saturating Recurrent Units for Modelling Long-Term Dependencies. AAAI 2019: 3280-3287 - [c318]Vincent François-Lavet, Yoshua Bengio, Doina Precup, Joelle Pineau:
Combined Reinforcement Learning via Abstract Representations. AAAI 2019: 3582-3589 - [c317]Chinnadhurai Sankar, Sandeep Subramanian, Chris Pal, Sarath Chandar, Yoshua Bengio:
Do Neural Dialog Systems Use the Conversation History Effectively? An Empirical Study. ACL (1) 2019: 32-37 - [c316]Alex Lamb, Vikas Verma, Juho Kannala, Yoshua Bengio:
Interpolated Adversarial Training: Achieving Robust Neural Networks Without Sacrificing Too Much Accuracy. AISec@CCS 2019: 95-103 - [c315]Xingdi Yuan, Marc-Alexandre Côté, Jie Fu, Zhouhan Lin, Chris Pal, Yoshua Bengio, Adam Trischler:
Interactive Language Learning by Question Answering. EMNLP/IJCNLP (1) 2019: 2796-2813 - [c314]Jessica A. F. Thompson, Marc Schönwiesner, Yoshua Bengio, Daniel Willett:
How Transferable Are Features in Convolutional Neural Network Acoustic Models across Languages? ICASSP 2019: 2827-2831 - [c313]Sanghyun Yoo, Inchul Song, Yoshua Bengio:
A Highly Adaptive Acoustic Model for Accurate Multi-dialect Speech Recognition. ICASSP 2019: 5716-5720 - [c312]Kyle Kastner, João Felipe Santos, Yoshua Bengio, Aaron C. Courville:
Representation Mixing for TTS Synthesis. ICASSP 2019: 5906-5910 - [c311]Mirco Ravanelli, Titouan Parcollet, Yoshua Bengio:
The Pytorch-kaldi Speech Recognition Toolkit. ICASSP 2019: 6465-6469 - [c310]Md Mahfuzur Rahman Siddiquee, Zongwei Zhou, Nima Tajbakhsh, Ruibin Feng, Michael B. Gotway, Yoshua Bengio, Jianming Liang:
Learning Fixed Points in Generative Adversarial Networks: From Image-to-Image Translation to Disease Detection and Localization. ICCV 2019: 191-200 - [c309]Alaaeldin El-Nouby, Shikhar Sharma, Hannes Schulz, R. Devon Hjelm, Layla El Asri, Samira Ebrahimi Kahou, Yoshua Bengio, Graham W. Taylor:
Tell, Draw, and Repeat: Generating and Modifying Images Based on Continual Linguistic Instruction. ICCV 2019: 10303-10311 - [c308]Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu Nguyen, Yoshua Bengio:
BabyAI: A Platform to Study the Sample Efficiency of Grounded Language Learning. ICLR (Poster) 2019 - [c307]Ali Farshchian, Juan Alvaro Gallego, Joseph Paul Cohen, Yoshua Bengio, Lee E. Miller, Sara A. Solla:
Adversarial Domain Adaptation for Stable Brain-Machine Interfaces. ICLR (Poster) 2019 - [c306]Anirudh Goyal, Philemon Brakel, William Fedus, Soumye Singhal, Timothy P. Lillicrap, Sergey Levine, Hugo Larochelle, Yoshua Bengio:
Recall Traces: Backtracking Models for Efficient Reinforcement Learning. ICLR (Poster) 2019 - [c305]Anirudh Goyal, Riashat Islam, Daniel Strouse, Zafarali Ahmed, Hugo Larochelle, Matthew M. Botvinick, Yoshua Bengio, Sergey Levine:
InfoBot: Transfer and Exploration via the Information Bottleneck. ICLR (Poster) 2019 - [c304]R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip Bachman, Adam Trischler, Yoshua Bengio:
Learning deep representations by mutual information estimation and maximization. ICLR 2019 - [c303]Stanislaw Jastrzebski, Zachary Kenton, Nicolas Ballas, Asja Fischer, Yoshua Bengio, Amos J. Storkey:
On the Relation Between the Sharpest Directions of DNN Loss and the SGD Step Length. ICLR (Poster) 2019 - [c302]Bhargav Kanuparthi, Devansh Arpit, Giancarlo Kerg, Nan Rosemary Ke, Ioannis Mitliagkas, Yoshua Bengio:
h-detach: Modifying the LSTM Gradient Towards Better Optimization. ICLR (Poster) 2019 - [c301]Nan Rosemary Ke, Amanpreet Singh, Ahmed Touati, Anirudh Goyal, Yoshua Bengio, Devi Parikh, Dhruv Batra:
Modeling the Long Term Future in Model-Based Reinforcement Learning. ICLR (Poster) 2019 - [c300]Titouan Parcollet, Mirco Ravanelli, Mohamed Morchid, Georges Linarès, Chiheb Trabelsi, Renato De Mori, Yoshua Bengio:
Quaternion Recurrent Neural Networks. ICLR (Poster) 2019 - [c299]Alexandre Piché, Valentin Thomas, Cyril Ibrahim, Yoshua Bengio, Chris Pal:
Probabilistic Planning with Sequential Monte Carlo methods. ICLR (Poster) 2019 - [c298]Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, Geoffrey J. Gordon:
An Empirical Study of Example Forgetting during Deep Neural Network Learning. ICLR (Poster) 2019 - [c297]Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, R. Devon Hjelm:
Deep Graph Infomax. ICLR (Poster) 2019 - [c296]Zijun Zhang, Ruixiang Zhang, Zongpeng Li, Yoshua Bengio, Liam Paull:
Perceptual Generative Autoencoders. DGS@ICLR 2019 - [c295]Alex Lamb, Jonathan Binas, Anirudh Goyal, Sandeep Subramanian, Ioannis Mitliagkas, Yoshua Bengio, Michael Mozer:
State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations. ICML 2019: 3622-3631 - [c294]Meng Qu, Yoshua Bengio, Jian Tang:
GMNN: Graph Markov Neural Networks. ICML 2019: 5241-5250 - [c293]Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred A. Hamprecht, Yoshua Bengio, Aaron C. Courville:
On the Spectral Bias of Neural Networks. ICML 2019: 5301-5310 - [c292]Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz, Yoshua Bengio:
Manifold Mixup: Better Representations by Interpolating Hidden States. ICML 2019: 6438-6447 - [c291]Homanga Bharadhwaj, Zihan Wang, Yoshua Bengio, Liam Paull:
A Data-Efficient Framework for Training and Sim-to-Real Transfer of Navigation Policies. ICRA 2019: 782-788 - [c290]Vikas Verma, Alex Lamb, Juho Kannala, Yoshua Bengio, David Lopez-Paz:
Interpolation Consistency Training for Semi-supervised Learning. IJCAI 2019: 3635-3641 - [c289]Santiago Pascual, Mirco Ravanelli, Joan Serrà, Antonio Bonafonte, Yoshua Bengio:
Learning Problem-Agnostic Speech Representations from Multiple Self-Supervised Tasks. INTERSPEECH 2019: 161-165 - [c288]Loren Lugosch, Mirco Ravanelli, Patrick Ignoto, Vikrant Singh Tomar, Yoshua Bengio:
Speech Model Pre-Training for End-to-End Spoken Language Understanding. INTERSPEECH 2019: 814-818 - [c287]Mirco Ravanelli, Yoshua Bengio:
Learning Speaker Representations with Mutual Information. INTERSPEECH 2019: 1153-1157 - [c286]Saeid Asgari Taghanaki, Mohammad Havaei, Tess Berthier, Francis Dutil, Lisa Di-Jorio, Ghassan Hamarneh, Yoshua Bengio:
InfoMask: Masked Variational Latent Representation to Localize Chest Disease. MICCAI (6) 2019: 739-747 - [c285]Christopher Beckham, Sina Honari, Vikas Verma, Alex Lamb, Farnoosh Ghadiri, R. Devon Hjelm, Yoshua Bengio, Chris Pal:
On Adversarial Mixup Resynthesis. NeurIPS 2019: 4348-4359 - [c284]Maxence Ernoult, Julie Grollier, Damien Querlioz, Yoshua Bengio, Benjamin Scellier:
Updates of Equilibrium Prop Match Gradients of Backprop Through Time in an RNN with Static Input. NeurIPS 2019: 7079-7089 - [c283]Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, R. Devon Hjelm:
Unsupervised State Representation Learning in Atari. NeurIPS 2019: 8766-8779 - [c282]Devansh Arpit, Víctor Campos, Yoshua Bengio:
How to Initialize your Network? Robust Initialization for WeightNorm & ResNets. NeurIPS 2019: 10900-10909 - [c281]Taesup Kim, Sungjin Ahn, Yoshua Bengio:
Variational Temporal Abstraction. NeurIPS 2019: 11566-11575 - [c280]Rahaf Aljundi, Min Lin, Baptiste Goujaud, Yoshua Bengio:
Gradient based sample selection for online continual learning. NeurIPS 2019: 11816-11825 - [c279]Giancarlo Kerg, Kyle Goyette, Maximilian Puelma Touzel, Gauthier Gidel, Eugene Vorontsov, Yoshua Bengio, Guillaume Lajoie:
Non-normal Recurrent Neural Network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. NeurIPS 2019: 13591-13601 - [c278]Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre de Brébisson, Yoshua Bengio, Aaron C. Courville:
MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis. NeurIPS 2019: 14881-14892 - [c277]Sherjil Ozair, Corey Lynch, Yoshua Bengio, Aäron van den Oord, Sergey Levine, Pierre Sermanet:
Wasserstein Dependency Measure for Representation Learning. NeurIPS 2019: 15578-15588 - [i289]Devansh Arpit, Yoshua Bengio:
The Benefits of Over-parameterization at Initialization in Deep ReLU Networks. CoRR abs/1901.03611 (2019) - [i288]Rithesh Kumar, Anirudh Goyal, Aaron C. Courville, Yoshua Bengio:
Maximum Entropy Generators for Energy-Based Models. CoRR abs/1901.08508 (2019) - [i287]Anirudh Goyal, Riashat Islam, Daniel Strouse, Zafarali Ahmed, Matthew M. Botvinick, Hugo Larochelle, Sergey Levine, Yoshua Bengio:
InfoBot: Transfer and Exploration via the Information Bottleneck. CoRR abs/1901.10902 (2019) - [i286]Yoshua Bengio, Tristan Deleu, Nasim Rahaman, Nan Rosemary Ke, Sébastien Lachapelle, Olexa Bilaniuk, Anirudh Goyal, Christopher J. Pal:
A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms. CoRR abs/1901.10912 (2019) - [i285]Sarath Chandar, Chinnadhurai Sankar, Eugene Vorontsov, Samira Ebrahimi Kahou, Yoshua Bengio:
Towards Non-saturating Recurrent Units for Modelling Long-term Dependencies. CoRR abs/1902.06704 (2019) - [i284]William Fedus, Carles Gelada, Yoshua Bengio, Marc G. Bellemare, Hugo Larochelle:
Hyperbolic Discounting and Learning over Multiple Horizons. CoRR abs/1902.06865 (2019) - [i283]Nan Rosemary Ke, Amanpreet Singh, Ahmed Touati, Anirudh Goyal, Yoshua Bengio, Devi Parikh, Dhruv Batra:
Learning Dynamics Model in Reinforcement Learning by Incorporating the Long Term Future. CoRR abs/1903.01599 (2019) - [i282]Vikas Verma, Alex Lamb, Juho Kannala, Yoshua Bengio, David Lopez-Paz:
Interpolation Consistency Training for Semi-Supervised Learning. CoRR abs/1903.03825 (2019) - [i281]Rahaf Aljundi, Min Lin, Baptiste Goujaud, Yoshua Bengio:
Online continual learning with no task boundaries. CoRR abs/1903.08671 (2019) - [i280]Saeid Asgari Taghanaki, Mohammad Havaei, Tess Berthier, Francis Dutil, Lisa Di-Jorio, Ghassan Hamarneh, Yoshua Bengio:
InfoMask: Masked Variational Latent Representation to Localize Chest Disease. CoRR abs/1903.11741 (2019) - [i279]Sherjil Ozair, Corey Lynch, Yoshua Bengio, Aäron van den Oord, Sergey Levine, Pierre Sermanet:
Wasserstein Dependency Measure for Representation Learning. CoRR abs/1903.11780 (2019) - [i278]Misha Benjamin, Paul Gagnon, Negar Rostamzadeh, Chris Pal, Yoshua Bengio, Alex Shee:
Towards Standardization of Data Licenses: The Montreal Data License. CoRR abs/1903.12262 (2019) - [i277]Santiago Pascual, Mirco Ravanelli, Joan Serrà, Antonio Bonafonte, Yoshua Bengio:
Learning Problem-agnostic Speech Representations from Multiple Self-supervised Tasks. CoRR abs/1904.03416 (2019) - [i276]Konrad Zolna, Negar Rostamzadeh, Yoshua Bengio, Sungjin Ahn, Pedro O. Pinheiro:
Reinforced Imitation in Heterogeneous Action Space. CoRR abs/1904.03438 (2019) - [i275]Loren Lugosch, Mirco Ravanelli, Patrick Ignoto, Vikrant Singh Tomar, Yoshua Bengio:
Speech Model Pre-training for End-to-End Spoken Language Understanding. CoRR abs/1904.03670 (2019) - [i274]Becks Simpson, Francis Dutil, Yoshua Bengio, Joseph Paul Cohen:
GradMask: Reduce Overfitting by Regularizing Saliency. CoRR abs/1904.07478 (2019) - [i273]Jake Russin, Jason Jo, Randall C. O'Reilly, Yoshua Bengio:
Compositional generalization in a deep seq2seq model by separating syntax and semantics. CoRR abs/1904.09708 (2019) - [i272]Victor Schmidt, Alexandra Luccioni, S. Karthik Mukkavilli, Narmada Balasooriya, Kris Sankaran, Jennifer T. Chayes, Yoshua Bengio:
Visualizing the Consequences of Climate Change Using Cycle-Consistent Adversarial Networks. CoRR abs/1905.03709 (2019) - [i271]Meng Qu, Yoshua Bengio, Jian Tang:
GMNN: Graph Markov Neural Networks. CoRR abs/1905.06214 (2019) - [i270]Jonathan Binas, Sherjil Ozair, Yoshua Bengio:
The Journey is the Reward: Unsupervised Learning of Influential Trajectories. CoRR abs/1905.09334 (2019) - [i269]Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, Yoshua Bengio:
N-BEATS: Neural basis expansion analysis for interpretable time series forecasting. CoRR abs/1905.10437 (2019) - [i268]Alex Lamb, Jonathan Binas, Anirudh Goyal, Sandeep Subramanian, Ioannis Mitliagkas, Denis Kazakov, Yoshua Bengio, Michael C. Mozer:
State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations. CoRR abs/1905.11382 (2019) - [i267]Giancarlo Kerg, Kyle Goyette, Maximilian Puelma Touzel, Gauthier Gidel, Eugene Vorontsov, Yoshua Bengio, Guillaume Lajoie:
Non-normal Recurrent Neural Network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. CoRR abs/1905.12080 (2019) - [i266]Ghouthi Boukli Hacene, Carlos Eduardo Rosar Kós Lassance, Vincent Gripon, Matthieu Courbariaux, Yoshua Bengio:
Attention Based Pruning for Shift Networks. CoRR abs/1905.12300 (2019) - [i265]Maxence Ernoult, Julie Grollier, Damien Querlioz, Yoshua Bengio, Benjamin Scellier:
Updates of Equilibrium Prop Match Gradients of Backprop Through Time in an RNN with Static Input. CoRR abs/1905.13633 (2019) - [i264]Chinnadhurai Sankar, Sandeep Subramanian, Christopher J. Pal, Sarath Chandar, Yoshua Bengio:
Do Neural Dialog Systems Use the Conversation History Effectively? An Empirical Study. CoRR abs/1906.01603 (2019) - [i263]Devansh Arpit, Victor Campos, Yoshua Bengio:
How to Initialize your Network? Robust Initialization for WeightNorm & ResNets. CoRR abs/1906.02341 (2019) - [i262]Shagun Sodhani, Anirudh Goyal, Tristan Deleu, Yoshua Bengio, Sergey Levine, Jian Tang:
Learning Powerful Policies by Using Consistent Dynamics Model. CoRR abs/1906.04355 (2019) - [i261]David Rolnick, Priya L. Donti, Lynn H. Kaack, Kelly Kochanski, Alexandre Lacoste, Kris Sankaran, Andrew Slavin Ross, Nikola Milojevic-Dupont, Natasha Jaques, Anna Waldman-Brown, Alexandra Luccioni, Tegan Maharaj, Evan D. Sherwin, S. Karthik Mukkavilli, Konrad P. Körding, Carla P. Gomes, Andrew Y. Ng, Demis Hassabis, John C. Platt, Felix Creutzig, Jennifer T. Chayes, Yoshua Bengio:
Tackling Climate Change with Machine Learning. CoRR abs/1906.05433 (2019) - [i260]Min Lin, Jie Fu, Yoshua Bengio:
Conditional Computation for Continual Learning. CoRR abs/1906.06635 (2019) - [i259]Alex Lamb, Vikas Verma, Juho Kannala, Yoshua Bengio:
Interpolated Adversarial Training: Achieving Robust Neural Networks without Sacrificing Accuracy. CoRR abs/1906.06784 (2019) - [i258]Valentin Thomas, Fabian Pedregosa, Bart van Merriënboer, Pierre-Antoine Manzagol, Yoshua Bengio, Nicolas Le Roux:
Information matrices and generalization. CoRR abs/1906.07774 (2019) - [i257]Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, R. Devon Hjelm:
Unsupervised State Representation Learning in Atari. CoRR abs/1906.08226 (2019) - [i256]Zijun Zhang, Ruixiang Zhang, Zongpeng Li, Yoshua Bengio, Liam Paull:
Perceptual Generative Autoencoders. CoRR abs/1906.10335 (2019) - [i255]Anirudh Goyal, Shagun Sodhani, Jonathan Binas, Xue Bin Peng, Sergey Levine, Yoshua Bengio:
Reinforcement Learning with Competitive Ensembles of Information-Constrained Primitives. CoRR abs/1906.10667 (2019) - [i254]Nasim Rahaman, Steffen Wolf, Anirudh Goyal, Roman Remme, Yoshua Bengio:
Learning the Arrow of Time. CoRR abs/1907.01285 (2019) - [i253]Meng Qu, Jian Tang, Yoshua Bengio:
Weakly-supervised Knowledge Graph Alignment with Adversarial Learning. CoRR abs/1907.03179 (2019) - [i252]Md Mahfuzur Rahman Siddiquee, Zongwei Zhou, Nima Tajbakhsh, Ruibin Feng, Michael B. Gotway, Yoshua Bengio, Jianming Liang:
Learning Fixed Points in Generative Adversarial Networks: From Image-to-Image Translation to Disease Detection and Localization. CoRR abs/1908.06965 (2019) - [i251]Xingdi Yuan, Marc-Alexandre Côté, Jie Fu, Zhouhan Lin, Christopher J. Pal, Yoshua Bengio, Adam Trischler:
Interactive Language Learning by Question Answering. CoRR abs/1908.10909 (2019) - [i250]Jordan Hoffmann, Louis Maestrati, Yoshihide Sawada, Jian Tang, Jean Michel D. Sellier, Yoshua Bengio:
Data-Driven Approach to Encoding and Decoding 3-D Crystal Structures. CoRR abs/1909.00949 (2019) - [i249]Tristan Deleu, Tobias Würfl, Mandana Samiei, Joseph Paul Cohen, Yoshua Bengio:
Torchmeta: A Meta-Learning library for PyTorch. CoRR abs/1909.06576 (2019) - [i248]Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio, Bernhard Schölkopf:
Recurrent Independent Mechanisms. CoRR abs/1909.10893 (2019) - [i247]David Venuto, Léonard Boussioux, Junhao Wang, Rola Dali, Jhelum Chakravorty, Yoshua Bengio, Doina Precup:
Avoidance Learning Using Observational Reinforcement Learning. CoRR abs/1909.11228 (2019) - [i246]Vikas Verma, Meng Qu, Alex Lamb, Yoshua Bengio, Juho Kannala, Jian Tang:
GraphMix: Regularized Training of Graph Neural Networks for Semi-Supervised Learning. CoRR abs/1909.11715 (2019) - [i245]Joseph D. Viviano, Becks Simpson, Francis Dutil, Yoshua Bengio, Joseph Paul Cohen:
Underwhelming Generalization Improvements From Controlling Feature Attribution. CoRR abs/1910.00199 (2019) - [i244]Taesup Kim, Sungjin Ahn, Yoshua Bengio:
Variational Temporal Abstraction. CoRR abs/1910.00775 (2019) - [i243]Nan Rosemary Ke, Olexa Bilaniuk, Anirudh Goyal, Stefan Bauer, Hugo Larochelle, Chris Pal, Yoshua Bengio:
Learning Neural Causal Models from Unknown Interventions. CoRR abs/1910.01075 (2019) - [i242]Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre de Brébisson, Yoshua Bengio, Aaron C. Courville:
MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis. CoRR abs/1910.06711 (2019) - [i241]Yimeng Min, S. Karthik Mukkavilli, Yoshua Bengio:
Predicting ice flow using machine learning. CoRR abs/1910.08922 (2019) - [i240]Shawn Tan, Guillaume Androz, Ahmad Chamseddine, Pierre Fecteau, Aaron C. Courville, Yoshua Bengio, Joseph Paul Cohen:
Icentia11K: An Unsupervised Representation Learning Dataset for Arrhythmia Subtype Discovery. CoRR abs/1910.09570 (2019) - [i239]Sharon Zhou, Alexandra Luccioni, Gautier Cosne, Michael S. Bernstein, Yoshua Bengio:
Establishing an Evaluation Metric to Quantify Climate Change Image Realism. CoRR abs/1910.10143 (2019) - [i238]Samarth Sinha, Han Zhang, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, Augustus Odena:
Small-GAN: Speeding Up GAN Training Using Core-sets. CoRR abs/1910.13540 (2019) - [i237]Tong Che, Xiaofeng Liu, Site Li, Yubin Ge, Ruixiang Zhang, Caiming Xiong, Yoshua Bengio:
Deep Verifier Networks: Verification of Deep Discriminative Models with Deep Generative Models. CoRR abs/1911.07421 (2019) - [i236]Thomas Mesnard, Gaëtan Vignoud, João Sacramento, Walter Senn, Yoshua Bengio:
Ghost Units Yield Biologically Plausible Backprop in Deep Neural Networks. CoRR abs/1911.08585 (2019) - [i235]Anirudh Srinivasan, Dzmitry Bahdanau, Maxime Chevalier-Boisvert, Yoshua Bengio:
Automated curriculum generation for Policy Gradients from Demonstrations. CoRR abs/1912.00444 (2019) - [i234]Jessenia Gonzalez, Debjani Bhowmick, Cesar Beltran, Kris Sankaran, Yoshua Bengio:
Applying Knowledge Transfer for Water Body Segmentation in Peru. CoRR abs/1912.00957 (2019) - [i233]Jessica A. F. Thompson, Yoshua Bengio, Marc Schönwiesner:
The effect of task and training on intermediate representations in convolutional neural networks revealed with modified RV similarity analysis. CoRR abs/1912.02260 (2019) - [i232]Dzmitry Bahdanau, Harm de Vries, Timothy J. O'Donnell, Shikhar Murty, Philippe Beaudoin, Yoshua Bengio, Aaron C. Courville:
CLOSURE: Assessing Systematic Generalization of CLEVR Models. CoRR abs/1912.05783 (2019) - [i231]ByungIn Yoo, Tristan Sylvain, Yoshua Bengio, Junmo Kim:
Joint Learning of Generative Translator and Classifier for Visually Similar Classes. CoRR abs/1912.06994 (2019) - [i230]Yoshua Bengio, Emma Frejinger, Andrea Lodi, Rahul Patel, Sriram Sankaranarayanan:
A learning-based algorithm to quickly compute good primal solutions for Stochastic Integer Programs. CoRR abs/1912.08112 (2019) - [i229]Alexandra Luccioni, Yoshua Bengio:
On the Morality of Artificial Intelligence. CoRR abs/1912.11945 (2019) - 2018
- [j92]Georgy Derevyanko, Sergei Grudinin, Yoshua Bengio, Guillaume Lamoureux:
Deep convolutional networks for quality assessment of protein folds. Bioinform. 34(23): 4046-4053 (2018) - [j91]Heeyoul Choi, Kyunghyun Cho, Yoshua Bengio:
Fine-grained attention mechanism for neural machine translation. Neurocomputing 284: 171-176 (2018) - [j90]Michal Drozdzal, Gabriel Chartrand, Eugene Vorontsov, Mahsa Shakeri, Lisa Di-Jorio, An Tang, Adriana Romero, Yoshua Bengio, Chris Pal, Samuel Kadoury:
Learning normalized inputs for iterative estimation in medical image segmentation. Medical Image Anal. 44: 1-13 (2018) - [j89]Çaglar Gülçehre, Sarath Chandar, Kyunghyun Cho, Yoshua Bengio:
Dynamic Neural Turing Machine with Continuous and Discrete Addressing Schemes. Neural Comput. 30(4) (2018) - [j88]Xu-Yao Zhang, Fei Yin, Yan-Ming Zhang, Cheng-Lin Liu, Yoshua Bengio:
Drawing and Recognizing Chinese Characters with Recurrent Neural Network. IEEE Trans. Pattern Anal. Mach. Intell. 40(4): 849-862 (2018) - [j87]Mirco Ravanelli, Philemon Brakel, Maurizio Omologo, Yoshua Bengio:
Light Gated Recurrent Units for Speech Recognition. IEEE Trans. Emerg. Top. Comput. Intell. 2(2): 92-102 (2018) - [c276]Li Jing, Çaglar Gülçehre, John Peurifoy, Yichen Shen, Max Tegmark, Marin Soljacic, Yoshua Bengio:
Gated Orthogonal Recurrent Units: On Learning to Forget. AAAI Workshops 2018: 720-726 - [c275]Sandeep Subramanian, Tong Wang, Xingdi Yuan, Saizheng Zhang, Adam Trischler, Yoshua Bengio:
Neural Models for Key Phrase Extraction and Question Generation. QA@ACL 2018: 78-88 - [c274]Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessandro Sordoni, Aaron C. Courville, Yoshua Bengio:
Straight to the Tree: Constituency Parsing with Neural Syntactic Distance. ACL (1) 2018: 1171-1180 - [c273]Arantxa Casanova, Guillem Cucurull, Michal Drozdzal, Adriana Romero, Yoshua Bengio:
On the Iterative Refinement of Densely Connected Representation Levels for Semantic Segmentation. CVPR Workshops 2018: 978-987 - [c272]Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov, Christopher D. Manning:
HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering. EMNLP 2018: 2369-2380 - [c271]Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio, Amos J. Storkey:
Width of Minima Reached by Stochastic Gradient Descent is Influenced by Learning Rate to Batch Size Ratio. ICANN (3) 2018: 392-402 - [c270]Stylianos Ioannis Mimilakis, Konstantinos Drossos, João Felipe Santos, Gerald Schuller, Tuomas Virtanen, Yoshua Bengio:
Monaural Singing Voice Separation with Skip-Filtering Connections and Recurrent Inference of Time-Frequency Mask. ICASSP 2018: 721-725 - [c269]Inchul Song, Junyoung Chung, Taesup Kim, Yoshua Bengio:
Dynamic Frame Skipping for Fast Speech Recognition in Recurrent Neural Network Based Acoustic Models. ICASSP 2018: 4984-4988 - [c268]Dmitriy Serdyuk, Yongqiang Wang, Christian Fuegen, Anuj Kumar, Baiyang Liu, Yoshua Bengio:
Towards End-to-end Spoken Language Understanding. ICASSP 2018: 5754-5758 - [c267]R. Devon Hjelm, Athul Paul Jacob, Adam Trischler, Gerry Che, Kyunghyun Cho, Yoshua Bengio:
Boundary Seeking GANs. ICLR (Poster) 2018 - [c266]Stanislaw Jastrzebski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che, Yoshua Bengio:
Residual Connections Encourage Iterative Inference. ICLR (Poster) 2018 - [c265]Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio, Amos J. Storkey:
Finding Flatter Minima with SGD. ICLR (Workshop) 2018 - [c264]Samira Ebrahimi Kahou, Vincent Michalski, Adam Atkinson, Ákos Kádár, Adam Trischler, Yoshua Bengio:
FigureQA: An Annotated Figure Dataset for Visual Reasoning. ICLR (Workshop) 2018 - [c263]Chen Ma, Junfeng Wen, Yoshua Bengio:
Universal Successor Representations for Transfer Reinforcement Learning. ICLR (Workshop) 2018 - [c262]Benjamin Scellier, Anirudh Goyal, Jonathan Binas, Thomas Mesnard, Yoshua Bengio:
Extending the Framework of Equilibrium Propagation to General Dynamics. ICLR (Workshop) 2018 - [c261]Dmitriy Serdyuk, Nan Rosemary Ke, Alessandro Sordoni, Adam Trischler, Chris Pal, Yoshua Bengio:
Twin Networks: Matching the Future for Sequence Generation. ICLR (Poster) 2018 - [c260]Shikhar Sharma, Dendi Suhubdy, Vincent Michalski, Samira Ebrahimi Kahou, Yoshua Bengio:
ChatPainter: Improving Text to Image Generation using Dialogue. ICLR (Workshop) 2018 - [c259]Sandeep Subramanian, Adam Trischler, Yoshua Bengio, Christopher J. Pal:
Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning. ICLR (Poster) 2018 - [c258]Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk, Sandeep Subramanian, João Felipe Santos, Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio, Christopher J. Pal:
Deep Complex Networks. ICLR (Poster) 2018 - [c257]Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, Yoshua Bengio:
Graph Attention Networks. ICLR (Poster) 2018 - [c256]Konrad Zolna, Devansh Arpit, Dendi Suhubdy, Yoshua Bengio:
Fraternal Dropout. ICLR (Poster) 2018 - [c255]Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio, R. Devon Hjelm, Aaron C. Courville:
Mutual Information Neural Estimation. ICML 2018: 530-539 - [c254]Nan Rosemary Ke, Konrad Zolna, Alessandro Sordoni, Zhouhan Lin, Adam Trischler, Yoshua Bengio, Joelle Pineau, Laurent Charlin, Christopher J. Pal:
Focused Hierarchical RNNs for Conditional Sequence Processing. ICML 2018: 2559-2568 - [c253]Konstantinos Drossos, Stylianos Ioannis Mimilakis, Dmitriy Serdyuk, Gerald Schuller, Tuomas Virtanen, Yoshua Bengio:
MaD TwinNet: Masker-Denoiser Architecture with Twin Networks for Monaural Sound Source Separation. IJCNN 2018: 1-8 - [c252]Titouan Parcollet, Ying Zhang, Mohamed Morchid, Chiheb Trabelsi, Georges Linarès, Renato de Mori, Yoshua Bengio:
Quaternion Convolutional Neural Networks for End-to-End Automatic Speech Recognition. INTERSPEECH 2018: 22-26 - [c251]Mirco Ravanelli, Dmitriy Serdyuk, Yoshua Bengio:
Twin Regularization for Online Speech Recognition. INTERSPEECH 2018: 3718-3722 - [c250]Abel Gonzalez-Garcia, Joost van de Weijer, Yoshua Bengio:
Image-to-image translation for cross-domain disentanglement. NeurIPS 2018: 1294-1305 - [c249]Ruixiang Zhang, Tong Che, Zoubin Ghahramani, Yoshua Bengio, Yangqiu Song:
MetaGAN: An Adversarial Approach to Few-Shot Learning. NeurIPS 2018: 2371-2380 - [c248]Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, Sungjin Ahn:
Bayesian Model-Agnostic Meta-Learning. NeurIPS 2018: 7343-7353 - [c247]Nan Rosemary Ke, Anirudh Goyal, Olexa Bilaniuk, Jonathan Binas, Michael C. Mozer, Chris Pal, Yoshua Bengio:
Sparse Attentive Backtracking: Temporal Credit Assignment Through Reminding. NeurIPS 2018: 7651-7662 - [c246]João Sacramento, Rui Ponte Costa, Yoshua Bengio, Walter Senn:
Dendritic cortical microcircuits approximate the backpropagation algorithm. NeurIPS 2018: 8735-8746 - [c245]Athul Paul Jacob, Zhouhan Lin, Alessandro Sordoni, Yoshua Bengio:
Learning Hierarchical Structures On-The-Fly with a Recurrent-Recursive Model for Sequences. Rep4NLP@ACL 2018: 154-158 - [c244]Mirco Ravanelli, Yoshua Bengio:
Speaker Recognition from Raw Waveform with SincNet. SLT 2018: 1021-1028 - [i228]João Sacramento, Rui Ponte Costa, Yoshua Bengio, Walter Senn:
Dendritic error backpropagation in deep cortical microcircuits. CoRR abs/1801.00062 (2018) - [i227]Rithesh Kumar, Jose Sotelo, Kundan Kumar, Alexandre de Brébisson, Yoshua Bengio:
ObamaNet: Photo-realistic lip-sync from text. CoRR abs/1801.01442 (2018) - [i226]Akram Erraqabi, Aristide Baratin, Yoshua Bengio, Simon Lacoste-Julien:
A3T: Adversarially Augmented Adversarial Training. CoRR abs/1801.04055 (2018) - [i225]Iulian Vlad Serban, Chinnadhurai Sankar, Mathieu Germain, Saizheng Zhang, Zhouhan Lin, Sandeep Subramanian, Taesup Kim, Michael Pieper, Sarath Chandar, Nan Rosemary Ke, Sai Rajeswar, Alexandre de Brébisson, Jose M. R. Sotelo, Dendi Suhubdy, Vincent Michalski, Alexandre Nguyen, Joelle Pineau, Yoshua Bengio:
A Deep Reinforcement Learning Chatbot (Short Version). CoRR abs/1801.06700 (2018) - [i224]Konstantinos Drossos, Stylianos Ioannis Mimilakis, Dmitriy Serdyuk, Gerald Schuller, Tuomas Virtanen, Yoshua Bengio:
MaD TwinNet: Masker-Denoiser Architecture with Twin Networks for Monaural Sound Source Separation. CoRR abs/1802.00300 (2018) - [i223]Kenji Kawaguchi, Yoshua Bengio:
Generalization in Machine Learning via Analytical Learning Theory. CoRR abs/1802.07426 (2018) - [i222]Shikhar Sharma, Dendi Suhubdy, Vincent Michalski, Samira Ebrahimi Kahou, Yoshua Bengio:
ChatPainter: Improving Text to Image Generation using Dialogue. CoRR abs/1802.08216 (2018) - [i221]Dmitriy Serdyuk, Yongqiang Wang, Christian Fuegen, Anuj Kumar, Baiyang Liu, Yoshua Bengio:
Towards end-to-end spoken language understanding. CoRR abs/1802.08395 (2018) - [i220]Chen Xing, Devansh Arpit, Christos Tsirigotis, Yoshua Bengio:
A Walk with SGD. CoRR abs/1802.08770 (2018) - [i219]Clément Feutry, Pablo Piantanida, Yoshua Bengio, Pierre Duhamel:
Learning Anonymized Representations with Adversarial Neural Networks. CoRR abs/1802.09386 (2018) - [i218]Valentin Thomas, Emmanuel Bengio, William Fedus, Jules Pondard, Philippe Beaudoin, Hugo Larochelle, Joelle Pineau, Doina Precup, Yoshua Bengio:
Disentangling the independently controllable factors of variation by interacting with the world. CoRR abs/1802.09484 (2018) - [i217]Mirco Ravanelli, Philemon Brakel, Maurizio Omologo, Yoshua Bengio:
Light Gated Recurrent Units for Speech Recognition. CoRR abs/1803.10225 (2018) - [i216]Heeyoul Choi, Kyunghyun Cho, Yoshua Bengio:
Fine-Grained Attention Mechanism for Neural Machine Translation. CoRR abs/1803.11407 (2018) - [i215]Sandeep Subramanian, Adam Trischler, Yoshua Bengio, Christopher J. Pal:
Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning. CoRR abs/1804.00079 (2018) - [i214]Anirudh Goyal, Philemon Brakel, William Fedus, Timothy P. Lillicrap, Sergey Levine, Hugo Larochelle, Yoshua Bengio:
Recall Traces: Backtracking Models for Efficient Reinforcement Learning. CoRR abs/1804.00379 (2018) - [i213]Alex Lamb, Jonathan Binas, Anirudh Goyal, Dmitriy Serdyuk, Sandeep Subramanian, Ioannis Mitliagkas, Yoshua Bengio:
Fortified Networks: Improving the Robustness of Deep Networks by Modeling the Manifold of Hidden Representations. CoRR abs/1804.02485 (2018) - [i212]Chen Ma, Junfeng Wen, Yoshua Bengio:
Universal Successor Representations for Transfer Reinforcement Learning. CoRR abs/1804.03758 (2018) - [i211]Mirco Ravanelli, Dmitriy Serdyuk, Yoshua Bengio:
Twin Regularization for online speech recognition. CoRR abs/1804.05374 (2018) - [i210]Stanislaw Jastrzebski, Dzmitry Bahdanau, Seyedarian Hosseini, Michael Noukhovitch, Yoshua Bengio, Jackie Chi Kit Cheung:
Commonsense mining as knowledge base completion? A study on the impact of novelty. CoRR abs/1804.09259 (2018) - [i209]Jonathan Binas, Yoshua Bengio:
Low-memory convolutional neural networks through incremental depth-first processing. CoRR abs/1804.10727 (2018) - [i208]Arantxa Casanova, Guillem Cucurull, Michal Drozdzal, Adriana Romero, Yoshua Bengio:
On the iterative refinement of densely connected representation levels for semantic segmentation. CoRR abs/1804.11332 (2018) - [i207]Abel Gonzalez-Garcia, Joost van de Weijer, Yoshua Bengio:
Image-to-image translation for cross-domain disentanglement. CoRR abs/1805.09730 (2018) - [i206]Margaux Luck, Tristan Sylvain, Joseph Paul Cohen, Héloïse Cardinal, Andrea Lodi, Yoshua Bengio:
Learning to rank for censored survival data. CoRR abs/1806.01984 (2018) - [i205]Taesup Kim, Jaesik Yoon, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, Sungjin Ahn:
Bayesian Model-Agnostic Meta-Learning. CoRR abs/1806.03836 (2018) - [i204]Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessandro Sordoni, Aaron C. Courville, Yoshua Bengio:
Straight to the Tree: Constituency Parsing with Neural Syntactic Distance. CoRR abs/1806.04168 (2018) - [i203]Nan Rosemary Ke, Konrad Zolna, Alessandro Sordoni, Zhouhan Lin, Adam Trischler, Yoshua Bengio, Joelle Pineau, Laurent Charlin, Chris Pal:
Focused Hierarchical RNNs for Conditional Sequence Processing. CoRR abs/1806.04342 (2018) - [i202]Titouan Parcollet, Mirco Ravanelli, Mohamed Morchid, Georges Linarès, Chiheb Trabelsi, Renato De Mori, Yoshua Bengio:
Quaternion Recurrent Neural Networks. CoRR abs/1806.04418 (2018) - [i201]Vikas Verma, Alex Lamb, Christopher Beckham, Aaron C. Courville, Ioannis Mitliagkas, Yoshua Bengio:
Manifold Mixup: Encouraging Meaningful On-Manifold Interpolation as a Regularizer. CoRR abs/1806.05236 (2018) - [i200]Jason Jo, Vikas Verma, Yoshua Bengio:
Modularity Matters: Learning Invariant Relational Reasoning Tasks. CoRR abs/1806.06765 (2018) - [i199]Francis Dutil, Joseph Paul Cohen, Martin Weiss, Georgy Derevyanko, Yoshua Bengio:
Towards Gene Expression Convolutions using Gene Interaction Graphs. CoRR abs/1806.06975 (2018) - [i198]Titouan Parcollet, Ying Zhang, Mohamed Morchid, Chiheb Trabelsi, Georges Linarès, Renato De Mori, Yoshua Bengio:
Quaternion Convolutional Neural Networks for End-to-End Automatic Speech Recognition. CoRR abs/1806.07789 (2018) - [i197]Nasim Rahaman, Devansh Arpit, Aristide Baratin, Felix Draxler, Min Lin, Fred A. Hamprecht, Yoshua Bengio, Aaron C. Courville:
On the Spectral Bias of Deep Neural Networks. CoRR abs/1806.08734 (2018) - [i196]Iulian Vlad Serban, Chinnadhurai Sankar, Michael Pieper, Joelle Pineau, Yoshua Bengio:
The Bottleneck Simulator: A Model-based Deep Reinforcement Learning Approach. CoRR abs/1807.04723 (2018) - [i195]Stanislaw Jastrzebski, Zachary Kenton, Nicolas Ballas, Asja Fischer, Yoshua Bengio, Amos J. Storkey:
DNN's Sharpest Directions Along the SGD Trajectory. CoRR abs/1807.05031 (2018) - [i194]Eric Larsen, Sébastien Lachapelle, Yoshua Bengio, Emma Frejinger, Simon Lacoste-Julien, Andrea Lodi:
Predicting Solution Summaries to Integer Linear Programs under Imperfect Information with Machine Learning. CoRR abs/1807.11876 (2018) - [i193]Mirco Ravanelli, Yoshua Bengio:
Speaker Recognition from raw waveform with SincNet. CoRR abs/1808.00158 (2018) - [i192]Benjamin Scellier, Anirudh Goyal, Jonathan Binas, Thomas Mesnard, Yoshua Bengio:
Generalization of Equilibrium Propagation to Vector Field Dynamics. CoRR abs/1808.04873 (2018) - [i191]R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Adam Trischler, Yoshua Bengio:
Learning deep representations by mutual information estimation and maximization. CoRR abs/1808.06670 (2018) - [i190]Nan Rosemary Ke, Anirudh Goyal, Olexa Bilaniuk, Jonathan Binas, Michael C. Mozer, Chris Pal, Yoshua Bengio:
Sparse Attentive Backtracking: Temporal CreditAssignment Through Reminding. CoRR abs/1809.03702 (2018) - [i189]Vincent François-Lavet, Yoshua Bengio, Doina Precup, Joelle Pineau:
Combined Reinforcement Learning via Abstract Representations. CoRR abs/1809.04506 (2018) - [i188]Remi Tachet des Combes, Mohammad Pezeshki, Samira Shabanian, Aaron C. Courville, Yoshua Bengio:
On the Learning Dynamics of Deep Neural Networks. CoRR abs/1809.06848 (2018) - [i187]Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov, Christopher D. Manning:
HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering. CoRR abs/1809.09600 (2018) - [i186]Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, R. Devon Hjelm:
Deep Graph Infomax. CoRR abs/1809.10341 (2018) - [i185]Ali Farshchian, Juan Alvaro Gallego, Joseph Paul Cohen, Yoshua Bengio, Lee E. Miller, Sara A. Solla:
Adversarial Domain Adaptation for Stable Brain-Machine Interfaces. CoRR abs/1810.00045 (2018) - [i184]Devansh Arpit, Bhargav Kanuparthi, Giancarlo Kerg, Nan Rosemary Ke, Ioannis Mitliagkas, Yoshua Bengio:
h-detach: Modifying the LSTM Gradient Towards Better Optimization. CoRR abs/1810.03023 (2018) - [i183]Assya Trofimov, Francis Dutil, Claude Perreault, Sébastien Lemieux, Yoshua Bengio, Joseph Paul Cohen:
Towards the Latent Transcriptome. CoRR abs/1810.03442 (2018) - [i182]Homanga Bharadhwaj, Zihan Wang, Yoshua Bengio, Liam Paull:
A Data-Efficient Framework for Training and Sim-to-Real Transfer of Navigation Policies. CoRR abs/1810.04871 (2018) - [i181]Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu Nguyen, Yoshua Bengio:
BabyAI: First Steps Towards Grounded Language Learning With a Human In the Loop. CoRR abs/1810.08272 (2018) - [i180]Jessica A. F. Thompson, Yoshua Bengio, Elia Formisano, Marc Schönwiesner:
How can deep learning advance computational modeling of sensory information processing? CoRR abs/1810.08651 (2018) - [i179]Kenji Kawaguchi, Yoshua Bengio:
Depth with Nonlinearity Creates No Bad Local Minima in ResNets. CoRR abs/1810.09038 (2018) - [i178]João Sacramento, Rui Ponte Costa, Yoshua Bengio, Walter Senn:
Dendritic cortical microcircuits approximate the backpropagation algorithm. CoRR abs/1810.11393 (2018) - [i177]Yoshua Bengio, Andrea Lodi, Antoine Prouvost:
Machine Learning for Combinatorial Optimization: a Methodological Tour d'Horizon. CoRR abs/1811.06128 (2018) - [i176]Shagun Sodhani, Sarath Chandar, Yoshua Bengio:
On Training Recurrent Neural Networks for Lifelong Learning. CoRR abs/1811.07017 (2018) - [i175]Kyle Kastner, João Felipe Santos, Yoshua Bengio, Aaron C. Courville:
Representation Mixing for TTS Synthesis. CoRR abs/1811.07240 (2018) - [i174]Mirco Ravanelli, Titouan Parcollet, Yoshua Bengio:
The PyTorch-Kaldi Speech Recognition Toolkit. CoRR abs/1811.07453 (2018) - [i173]Mirco Ravanelli, Yoshua Bengio:
Interpretable Convolutional Filters with SincNet. CoRR abs/1811.09725 (2018) - [i172]Rim Assouel, Mohamed Ahmed, Marwin H. S. Segler, Amir Saffari, Yoshua Bengio:
DEFactor: Differentiable Edge Factorization-based Probabilistic Graph Generation. CoRR abs/1811.09766 (2018) - [i171]Alaaeldin El-Nouby, Shikhar Sharma, Hannes Schulz, R. Devon Hjelm, Layla El Asri, Samira Ebrahimi Kahou, Yoshua Bengio, Graham W. Taylor:
Keep Drawing It: Iterative language-based image generation and editing. CoRR abs/1811.09845 (2018) - [i170]Mirco Ravanelli, Yoshua Bengio:
Learning Speaker Representations with Mutual Information. CoRR abs/1812.00271 (2018) - [i169]Tristan Deleu, Yoshua Bengio:
The effects of negative adaptation in Model-Agnostic Meta-Learning. CoRR abs/1812.02159 (2018) - [i168]Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, Geoffrey J. Gordon:
An Empirical Study of Example Forgetting during Deep Neural Network Learning. CoRR abs/1812.05159 (2018) - [i167]Mirco Ravanelli, Yoshua Bengio:
Speech and Speaker Recognition from Raw Waveform with SincNet. CoRR abs/1812.05920 (2018) - [i166]Ghouthi Boukli Hacene, Vincent Gripon, Matthieu Arzel, Nicolas Farrugia, Yoshua Bengio:
Quantized Guided Pruning for Efficient Hardware Implementations of Convolutional Neural Networks. CoRR abs/1812.11337 (2018) - 2017
- [j86]Çaglar Gülçehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Yoshua Bengio:
On integrating a language model into neural machine translation. Comput. Speech Lang. 45: 137-148 (2017) - [j85]Heeyoul Choi, Kyunghyun Cho, Yoshua Bengio:
Context-dependent word representation for neural machine translation. Comput. Speech Lang. 45: 149-160 (2017) - [j84]Orhan Firat, Kyunghyun Cho, Baskaran Sankaran, Fatos T. Yarman-Vural, Yoshua Bengio:
Multi-way, multilingual neural machine translation. Comput. Speech Lang. 45: 236-252 (2017) - [j83]Benjamin Scellier, Yoshua Bengio:
Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation. Frontiers Comput. Neurosci. 11: 24 (2017) - [j82]Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, Yoshua Bengio:
Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations. J. Mach. Learn. Res. 18: 187:1-187:30 (2017) - [j81]Mohammad Havaei, Axel Davy, David Warde-Farley, Antoine Biard, Aaron C. Courville, Yoshua Bengio, Chris Pal, Pierre-Marc Jodoin, Hugo Larochelle:
Brain tumor segmentation with Deep Neural Networks. Medical Image Anal. 35: 18-31 (2017) - [j80]Felix Hill, Kyunghyun Cho, Sébastien Jean, Yoshua Bengio:
The representational geometry of word meanings acquired by neural machine translation models. Mach. Transl. 31(1-2): 3-18 (2017) - [j79]Yoshua Bengio, Thomas Mesnard, Asja Fischer, Saizheng Zhang, Yuhuai Wu:
STDP-Compatible Approximation of Backpropagation in an Energy-Based Model. Neural Comput. 29(3): 555-577 (2017) - [j78]Xu-Yao Zhang, Yoshua Bengio, Cheng-Lin Liu:
Online and offline handwritten Chinese character recognition: A comprehensive study and new benchmark. Pattern Recognit. 61: 348-360 (2017) - [j77]Xu-Yao Zhang, Guo-Sen Xie, Cheng-Lin Liu, Yoshua Bengio:
End-to-End Online Writer Identification With Recurrent Neural Network. IEEE Trans. Hum. Mach. Syst. 47(2): 285-292 (2017) - [c243]Daniel Jiwoong Im, Sungjin Ahn, Roland Memisevic, Yoshua Bengio:
Denoising Criterion for Variational Auto-Encoding Framework. AAAI 2017: 2059-2065 - [c242]Iulian Vlad Serban, Tim Klinger, Gerald Tesauro, Kartik Talamadupula, Bowen Zhou, Yoshua Bengio, Aaron C. Courville:
Multiresolution Recurrent Neural Networks: An Application to Dialogue Response Generation. AAAI 2017: 3288-3294 - [c241]Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau, Aaron C. Courville, Yoshua Bengio:
A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues. AAAI 2017: 3295-3301 - [c240]Ryan Lowe, Michael Noseworthy, Iulian Vlad Serban, Nicolas Angelard-Gontier, Yoshua Bengio, Joelle Pineau:
Towards an Automatic Turing Test: Learning to Evaluate Dialogue Responses. ACL (1) 2017: 1116-1126 - [c239]Simon Jégou, Michal Drozdzal, David Vázquez, Adriana Romero, Yoshua Bengio:
The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation. CVPR Workshops 2017: 1175-1183 - [c238]Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, Jason Yosinski:
Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space. CVPR 2017: 3510-3520 - [c237]Mihir Mongia, Kundan Kumar, Akram Erraqabi, Yoshua Bengio:
On random weights for texture generation in one layer CNNS. ICASSP 2017: 2207-2211 - [c236]Mirco Ravanelli, Philemon Brakel, Maurizio Omologo, Yoshua Bengio:
A network of deep neural networks for Distant Speech Recognition. ICASSP 2017: 4880-4884 - [c235]Joseph Paul Cohen, Geneviève Boucher, Craig A. Glastonbury, Henry Z. Lo, Yoshua Bengio:
Count-ception: Counting by Fully Convolutional Redundant Counting. ICCV Workshops 2017: 18-26 - [c234]Guillaume Alain, Yoshua Bengio:
Understanding intermediate layers using linear classifier probes. ICLR (Workshop) 2017 - [c233]Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron C. Courville, Yoshua Bengio:
An Actor-Critic Algorithm for Sequence Prediction. ICLR (Poster) 2017 - [c232]Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, Wenjie Li:
Mode Regularized Generative Adversarial Networks. ICLR (Poster) 2017 - [c231]Junyoung Chung, Sungjin Ahn, Yoshua Bengio:
Hierarchical Multiscale Recurrent Neural Networks. ICLR (Poster) 2017 - [c230]Çaglar Gülçehre, Marcin Moczulski, Francesco Visin, Yoshua Bengio:
Mollifying Networks. ICLR (Poster) 2017 - [c229]David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas Ballas, Nan Rosemary Ke, Anirudh Goyal, Yoshua Bengio, Aaron C. Courville, Christopher J. Pal:
Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations. ICLR (Poster) 2017 - [c228]Zhouhan Lin, Minwei Feng, Cícero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, Yoshua Bengio:
A Structured Self-Attentive Sentence Embedding. ICLR (Poster) 2017 - [c227]Ryan Lowe, Michael Noseworthy, Iulian Vlad Serban, Nicolas Angelard-Gontier, Yoshua Bengio, Joelle Pineau:
Towards an automatic Turing test: Learning to evaluate dialogue responses. ICLR (Workshop) 2017 - [c226]Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham Jain, Jose Sotelo, Aaron C. Courville, Yoshua Bengio:
SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. ICLR (Poster) 2017 - [c225]Mehdi Mirza, Aaron C. Courville, Yoshua Bengio:
Generalizable Features From Unsupervised Learning. ICLR (Workshop) 2017 - [c224]Adriana Romero, Pierre Luc Carrier, Akram Erraqabi, Tristan Sylvain, Alex Auvolat, Etienne Dejoie, Marc-André Legault, Marie-Pierre Dubé, Julie G. Hussin, Yoshua Bengio:
Diet Networks: Thin Parameters for Fat Genomics. ICLR (Poster) 2017 - [c223]Jose Sotelo, Soroush Mehri, Kundan Kumar, João Felipe Santos, Kyle Kastner, Aaron C. Courville, Yoshua Bengio:
Char2Wav: End-to-End Speech Synthesis. ICLR (Workshop) 2017 - [c222]David Warde-Farley, Yoshua Bengio:
Improving Generative Adversarial Networks with Denoising Feature Matching. ICLR (Poster) 2017 - [c221]Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron C. Courville, Yoshua Bengio, Simon Lacoste-Julien:
A Closer Look at Memorization in Deep Networks. ICML 2017: 233-242 - [c220]Laurent Dinh, Razvan Pascanu, Samy Bengio, Yoshua Bengio:
Sharp Minima Can Generalize For Deep Nets. ICML 2017: 1019-1028 - [c219]Çaglar Gülçehre, Jose Sotelo, Marcin Moczulski, Yoshua Bengio:
A robust adaptive stochastic gradient method for deep learning. IJCNN 2017: 125-132 - [c218]Mirco Ravanelli, Philemon Brakel, Maurizio Omologo, Yoshua Bengio:
Improving Speech Recognition by Revising Gated Recurrent Units. INTERSPEECH 2017: 1308-1312 - [c217]Taesup Kim, Inchul Song, Yoshua Bengio:
Dynamic Layer Normalization for Adaptive Neural Acoustic Modeling in Speech Recognition. INTERSPEECH 2017: 2411-2415 - [c216]Yoshua Bengio:
Towards more hardware-friendly deep learning. TIML@ISCA 2017: 5 - [c215]Anirudh Goyal, Nan Rosemary Ke, Surya Ganguli, Yoshua Bengio:
Variational Walkback: Learning a Transition Operator as a Stochastic Recurrent Net. NIPS 2017: 4392-4402 - [c214]Alex Lamb, R. Devon Hjelm, Yaroslav Ganin, Joseph Paul Cohen, Aaron C. Courville, Yoshua Bengio:
GibbsNet: Iterative Adversarial Inference for Deep Graphical Models. NIPS 2017: 5089-5098 - [c213]Çaglar Gülçehre, Francis Dutil, Adam Trischler, Yoshua Bengio:
Plan, Attend, Generate: Planning for Sequence-to-Sequence Models. NIPS 2017: 5474-5483 - [c212]Anirudh Goyal, Alessandro Sordoni, Marc-Alexandre Côté, Nan Rosemary Ke, Yoshua Bengio:
Z-Forcing: Training Stochastic Recurrent Networks. NIPS 2017: 6713-6723 - [c211]Çaglar Gülçehre, Francis Dutil, Adam Trischler, Yoshua Bengio:
Plan, Attend, Generate: Character-Level Neural Machine Translation with Planning. Rep4NLP@ACL 2017: 228-234 - [i165]Ying Zhang, Mohammad Pezeshki, Philemon Brakel, Saizheng Zhang, César Laurent, Yoshua Bengio, Aaron C. Courville:
Towards End-to-End Speech Recognition with Deep Convolutional Neural Networks. CoRR abs/1701.02720 (2017) - [i164]Çaglar Gülçehre, Sarath Chandar, Yoshua Bengio:
Memory Augmented Neural Networks with Wormhole Connections. CoRR abs/1701.08718 (2017) - [i163]Michal Drozdzal, Gabriel Chartrand, Eugene Vorontsov, Lisa Di-Jorio, An Tang, Adriana Romero, Yoshua Bengio, Chris Pal, Samuel Kadoury:
Learning Normalized Inputs for Iterative Estimation in Medical Image Segmentation. CoRR abs/1702.05174 (2017) - [i162]Tong Che, Yanran Li, Ruixiang Zhang, R. Devon Hjelm, Wenjie Li, Yangqiu Song, Yoshua Bengio:
Maximum-Likelihood Augmented Discrete Generative Adversarial Networks. CoRR abs/1702.07983 (2017) - [i161]R. Devon Hjelm, Athul Paul Jacob, Tong Che, Kyunghyun Cho, Yoshua Bengio:
Boundary-Seeking Generative Adversarial Networks. CoRR abs/1702.08431 (2017) - [i160]Çaglar Gülçehre, Jose Sotelo, Marcin Moczulski, Yoshua Bengio:
A Robust Adaptive Stochastic Gradient Method for Deep Learning. CoRR abs/1703.00788 (2017) - [i159]Zhouhan Lin, Minwei Feng, Cícero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, Yoshua Bengio:
A Structured Self-attentive Sentence Embedding. CoRR abs/1703.03130 (2017) - [i158]Laurent Dinh, Razvan Pascanu, Samy Bengio, Yoshua Bengio:
Sharp Minima Can Generalize For Deep Nets. CoRR abs/1703.04933 (2017) - [i157]Emmanuel Bengio, Valentin Thomas, Joelle Pineau, Doina Precup, Yoshua Bengio:
Independently Controllable Features. CoRR abs/1703.07718 (2017) - [i156]Mirco Ravanelli, Philemon Brakel, Maurizio Omologo, Yoshua Bengio:
A network of deep neural networks for distant speech recognition. CoRR abs/1703.08002 (2017) - [i155]Mirco Ravanelli, Philemon Brakel, Maurizio Omologo, Yoshua Bengio:
Batch-normalized joint training for DNN-based distant speech recognition. CoRR abs/1703.08471 (2017) - [i154]Joseph Paul Cohen, Henry Z. Lo, Yoshua Bengio:
Count-ception: Counting by Fully Convolutional Redundant Counting. CoRR abs/1703.08710 (2017) - [i153]Adriana Romero, Michal Drozdzal, Akram Erraqabi, Simon Jégou, Yoshua Bengio:
Image Segmentation by Iterative Inference from Conditional Score Estimation. CoRR abs/1705.07450 (2017) - [i152]Chiheb Trabelsi, Olexa Bilaniuk, Dmitriy Serdyuk, Sandeep Subramanian, João Felipe Santos, Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio, Christopher J. Pal:
Deep Complex Networks. CoRR abs/1705.09792 (2017) - [i151]Margaux Luck, Tristan Sylvain, Héloïse Cardinal, Andrea Lodi, Yoshua Bengio:
Deep Learning for Patient-Specific Kidney Graft Survival Analysis. CoRR abs/1705.10245 (2017) - [i150]Dzmitry Bahdanau, Tom Bosc, Stanislaw Jastrzebski, Edward Grefenstette, Pascal Vincent, Yoshua Bengio:
Learning to Compute Word Embeddings On the Fly. CoRR abs/1706.00286 (2017) - [i149]Li Jing, Çaglar Gülçehre, John Peurifoy, Yichen Shen, Max Tegmark, Marin Soljacic, Yoshua Bengio:
Gated Orthogonal Recurrent Units: On Learning to Forget. CoRR abs/1706.02761 (2017) - [i148]Çaglar Gülçehre, Francis Dutil, Adam Trischler, Yoshua Bengio:
Plan, Attend, Generate: Character-level Neural Machine Translation with Planning in the Decoder. CoRR abs/1706.05087 (2017) - [i147]Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron C. Courville, Yoshua Bengio, Simon Lacoste-Julien:
A Closer Look at Memorization in Deep Networks. CoRR abs/1706.05394 (2017) - [i146]Bart van Merriënboer, Amartya Sanyal, Hugo Larochelle, Yoshua Bengio:
Multiscale sequence modeling with a learned dictionary. CoRR abs/1707.00762 (2017) - [i145]Taesup Kim, Inchul Song, Yoshua Bengio:
Dynamic Layer Normalization for Adaptive Neural Acoustic Modeling in Speech Recognition. CoRR abs/1707.06065 (2017) - [i144]Valentin Thomas, Jules Pondard, Emmanuel Bengio, Marc Sarfati, Philippe Beaudoin, Marie-Jean Meurs, Joelle Pineau, Doina Precup, Yoshua Bengio:
Independently Controllable Factors. CoRR abs/1708.01289 (2017) - [i143]Dmitriy Serdyuk, Nan Rosemary Ke, Alessandro Sordoni, Chris Pal, Yoshua Bengio:
Twin Networks: Using the Future as a Regularizer. CoRR abs/1708.06742 (2017) - [i142]Ryan Lowe, Michael Noseworthy, Iulian Vlad Serban, Nicolas Angelard-Gontier, Yoshua Bengio, Joelle Pineau:
Towards an Automatic Turing Test: Learning to Evaluate Dialogue Responses. CoRR abs/1708.07149 (2017) - [i141]Iulian Vlad Serban, Chinnadhurai Sankar, Mathieu Germain, Saizheng Zhang, Zhouhan Lin, Sandeep Subramanian, Taesup Kim, Michael Pieper, Sarath Chandar, Nan Rosemary Ke, Sai Mudumba, Alexandre de Brébisson, Jose Sotelo, Dendi Suhubdy, Vincent Michalski, Alexandre Nguyen, Joelle Pineau, Yoshua Bengio:
A Deep Reinforcement Learning Chatbot. CoRR abs/1709.02349 (2017) - [i140]Yoshua Bengio:
The Consciousness Prior. CoRR abs/1709.08568 (2017) - [i139]Mirco Ravanelli, Philemon Brakel, Maurizio Omologo, Yoshua Bengio:
Improving speech recognition by revising gated recurrent units. CoRR abs/1710.00641 (2017) - [i138]Stanislaw Jastrzebski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che, Yoshua Bengio:
Residual Connections Encourage Iterative Inference. CoRR abs/1710.04773 (2017) - [i137]Kenji Kawaguchi, Leslie Pack Kaelbling, Yoshua Bengio:
Generalization in Deep Learning. CoRR abs/1710.05468 (2017) - [i136]Samira Ebrahimi Kahou, Adam Atkinson, Vincent Michalski, Ákos Kádár, Adam Trischler, Yoshua Bengio:
FigureQA: An Annotated Figure Dataset for Visual Reasoning. CoRR abs/1710.07300 (2017) - [i135]Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, Yoshua Bengio:
Graph Attention Networks. CoRR abs/1710.10903 (2017) - [i134]Konrad Zolna, Devansh Arpit, Dendi Suhubdy, Yoshua Bengio:
Fraternal Dropout. CoRR abs/1711.00066 (2017) - [i133]Stylianos Ioannis Mimilakis, Konstantinos Drossos, João Felipe Santos, Gerald Schuller, Tuomas Virtanen, Yoshua Bengio:
Monaural Singing Voice Separation with Skip-Filtering Connections and Recurrent Inference of Time-Frequency Mask. CoRR abs/1711.01437 (2017) - [i132]Anirudh Goyal, Nan Rosemary Ke, Surya Ganguli, Yoshua Bengio:
Variational Walkback: Learning a Transition Operator as a Stochastic Recurrent Net. CoRR abs/1711.02282 (2017) - [i131]Nan Rosemary Ke, Anirudh Goyal, Olexa Bilaniuk, Jonathan Binas, Laurent Charlin, Chris Pal, Yoshua Bengio:
Sparse Attentive Backtracking: Long-Range Credit Assignment in Recurrent Networks. CoRR abs/1711.02326 (2017) - [i130]Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio, Amos J. Storkey:
Three Factors Influencing Minima in SGD. CoRR abs/1711.04623 (2017) - [i129]Anirudh Goyal, Nan Rosemary Ke, Alex Lamb, R. Devon Hjelm, Chris Pal, Joelle Pineau, Yoshua Bengio:
ACtuAL: Actor-Critic Under Adversarial Learning. CoRR abs/1711.04755 (2017) - [i128]Anirudh Goyal, Alessandro Sordoni, Marc-Alexandre Côté, Nan Rosemary Ke, Yoshua Bengio:
Z-Forcing: Training Stochastic Recurrent Networks. CoRR abs/1711.05411 (2017) - [i127]Samira Shabanian, Devansh Arpit, Adam Trischler, Yoshua Bengio:
Variational Bi-LSTMs. CoRR abs/1711.05717 (2017) - [i126]Benjamin Scellier, Yoshua Bengio:
Equivalence of Equilibrium Propagation and Recurrent Backpropagation. CoRR abs/1711.08416 (2017) - [i125]Francis Dutil, Çaglar Gülçehre, Adam Trischler, Yoshua Bengio:
Plan, Attend, Generate: Planning for Sequence-to-Sequence Models. CoRR abs/1711.10462 (2017) - [i124]Jason Jo, Yoshua Bengio:
Measuring the tendency of CNNs to Learn Surface Statistical Regularities. CoRR abs/1711.11561 (2017) - [i123]Alex Lamb, R. Devon Hjelm, Yaroslav Ganin, Joseph Paul Cohen, Aaron C. Courville, Yoshua Bengio:
GibbsNet: Iterative Adversarial Inference for Deep Graphical Models. CoRR abs/1712.04120 (2017) - 2016
- [b1]Ian J. Goodfellow, Yoshua Bengio, Aaron C. Courville:
Deep Learning. Adaptive computation and machine learning, MIT Press 2016, ISBN 978-0-262-03561-3, pp. 1-775 - [j76]Çaglar Gülçehre, Yoshua Bengio:
Knowledge Matters: Importance of Prior Information for Optimization. J. Mach. Learn. Res. 17: 8:1-8:32 (2016) - [j75]Samira Ebrahimi Kahou, Xavier Bouthillier, Pascal Lamblin, Çaglar Gülçehre, Vincent Michalski, Kishore Konda, Sébastien Jean, Pierre Froumenty, Yann N. Dauphin, Nicolas Boulanger-Lewandowski, Raul Chandias Ferrari, Mehdi Mirza, David Warde-Farley, Aaron C. Courville, Pascal Vincent, Roland Memisevic, Christopher Joseph Pal, Yoshua Bengio:
EmoNets: Multimodal deep learning approaches for emotion recognition in video. J. Multimodal User Interfaces 10(2): 99-111 (2016) - [j74]Simon Haykin, Stephen J. Wright, Yoshua Bengio:
Big Data: Theoretical Aspects [Scanning the Issue]. Proc. IEEE 104(1): 8-10 (2016) - [j73]Felix Hill, KyungHyun Cho, Anna Korhonen, Yoshua Bengio:
Learning to Understand Phrases by Embedding the Dictionary. Trans. Assoc. Comput. Linguistics 4: 17-30 (2016) - [c210]Iulian Vlad Serban, Alessandro Sordoni, Yoshua Bengio, Aaron C. Courville, Joelle Pineau:
Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models. AAAI 2016: 3776-3784 - [c209]Junyoung Chung, Kyunghyun Cho, Yoshua Bengio:
A Character-level Decoder without Explicit Segmentation for Neural Machine Translation. ACL (1) 2016 - [c208]Çaglar Gülçehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, Yoshua Bengio:
Pointing the Unknown Words. ACL (1) 2016 - [c207]Iulian Vlad Serban, Alberto García-Durán, Çaglar Gülçehre, Sungjin Ahn, Sarath Chandar, Aaron C. Courville, Yoshua Bengio:
Generating Factoid Questions With Recurrent Neural Networks: The 30M Factoid Question-Answer Corpus. ACL (1) 2016 - [c206]Li Yao, Nicolas Ballas, Kyunghyun Cho, John R. Smith, Yoshua Bengio:
Oracle Performance for Visual Captioning. BMVC 2016 - [c205]Francesco Visin, Adriana Romero, Kyunghyun Cho, Matteo Matteucci, Marco Ciccone, Kyle Kastner, Yoshua Bengio, Aaron C. Courville:
ReSeg: A Recurrent Neural Network-Based Model for Semantic Segmentation. CVPR Workshops 2016: 426-433 - [c204]César Laurent, Gabriel Pereyra, Philemon Brakel, Ying Zhang, Yoshua Bengio:
Batch normalized recurrent neural networks. ICASSP 2016: 2657-2661 - [c203]Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel, Yoshua Bengio:
End-to-end attention-based large vocabulary speech recognition. ICASSP 2016: 4945-4949 - [c202]Martín Arjovsky, Amar Shah, Yoshua Bengio:
Unitary Evolution Recurrent Neural Networks. ICML 2016: 1120-1128 - [c201]Mohammad Pezeshki, Linxi Fan, Philemon Brakel, Aaron C. Courville, Yoshua Bengio:
Deconstructing the Ladder Network Architecture. ICML 2016: 2368-2376 - [c200]Jörg Bornschein, Samira Shabanian, Asja Fischer, Yoshua Bengio:
Bidirectional Helmholtz Machines. ICML 2016: 2511-2519 - [c199]Çaglar Gülçehre, Marcin Moczulski, Misha Denil, Yoshua Bengio:
Noisy Activation Functions. ICML 2016: 3059-3068 - [c198]Ying Zhang, Mohammad Pezeshki, Philémon Brakel, Saizheng Zhang, César Laurent, Yoshua Bengio, Aaron C. Courville:
Towards End-to-End Speech Recognition with Deep Convolutional Neural Networks. INTERSPEECH 2016: 410-414 - [c197]Mohammad Havaei, Nicolas Guizard, Nicolas Chapados, Yoshua Bengio:
HeMIS: Hetero-Modal Image Segmentation. MICCAI (2) 2016: 469-477 - [c196]Orhan Firat, Kyunghyun Cho, Yoshua Bengio:
Multi-Way, Multilingual Neural Machine Translation with a Shared Attention Mechanism. HLT-NAACL 2016: 866-875 - [c195]Saizheng Zhang, Yuhuai Wu, Tong Che, Zhouhan Lin, Roland Memisevic, Ruslan Salakhutdinov, Yoshua Bengio:
Architectural Complexity Measures of Recurrent Neural Networks. NIPS 2016: 1822-1830 - [c194]Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Bengio, Ruslan Salakhutdinov:
On Multiplicative Integration with Recurrent Neural Networks. NIPS 2016: 2856-2864 - [c193]Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, Yoshua Bengio:
Binarized Neural Networks. NIPS 2016: 4107-4115 - [c192]Anirudh Goyal, Alex Lamb, Ying Zhang, Saizheng Zhang, Aaron C. Courville, Yoshua Bengio:
Professor Forcing: A New Algorithm for Training Recurrent Networks. NIPS 2016: 4601-4609 - [c191]Mirco Ravanelli, Philemon Brakel, Maurizio Omologo, Yoshua Bengio:
Batch-normalized joint training for DNN-based distant speech recognition. SLT 2016: 28-34 - [c190]Junyoung Chung, Kyunghyun Cho, Yoshua Bengio:
NYU-MILA Neural Machine Translation Systems for WMT'16. WMT 2016: 268-271 - [c189]Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, Yoshua Bengio:
Neural Networks with Few Multiplications. ICLR 2016 - [e9]Yoshua Bengio, Yann LeCun:
4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. 2016 [contents] - [i122]Orhan Firat, KyungHyun Cho, Yoshua Bengio:
Multi-Way, Multilingual Neural Machine Translation with a Shared Attention Mechanism. CoRR abs/1601.01073 (2016) - [i121]Matthieu Courbariaux, Yoshua Bengio:
BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. CoRR abs/1602.02830 (2016) - [i120]Benjamin Scellier, Yoshua Bengio:
Towards a Biologically Plausible Backprop. CoRR abs/1602.05179 (2016) - [i119]Saizheng Zhang, Yuhuai Wu, Tong Che, Zhouhan Lin, Roland Memisevic, Ruslan Salakhutdinov, Yoshua Bengio:
Architectural Complexity Measures of Recurrent Neural Networks. CoRR abs/1602.08210 (2016) - [i118]Çaglar Gülçehre, Marcin Moczulski, Misha Denil, Yoshua Bengio:
Noisy Activation Functions. CoRR abs/1603.00391 (2016) - [i117]Junyoung Chung, Kyunghyun Cho, Yoshua Bengio:
A Character-level Decoder without Explicit Segmentation for Neural Machine Translation. CoRR abs/1603.06147 (2016) - [i116]Iulian Vlad Serban, Alberto García-Durán, Çaglar Gülçehre, Sungjin Ahn, Sarath Chandar, Aaron C. Courville, Yoshua Bengio:
Generating Factoid Questions With Recurrent Neural Networks: The 30M Factoid Question-Answer Corpus. CoRR abs/1603.06807 (2016) - [i115]Çaglar Gülçehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, Yoshua Bengio:
Pointing the Unknown Words. CoRR abs/1603.08148 (2016) - [i114]Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermüller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexander Belopolsky, Yoshua Bengio, Arnaud Bergeron, James Bergstra, Valentin Bisson, Josh Bleecher Snyder, Nicolas Bouchard, Nicolas Boulanger-Lewandowski, Xavier Bouthillier, Alexandre de Brébisson, Olivier Breuleux, Pierre Luc Carrier, Kyunghyun Cho, Jan Chorowski, Paul F. Christiano, Tim Cooijmans, Marc-Alexandre Côté, Myriam Côté, Aaron C. Courville, Yann N. Dauphin, Olivier Delalleau, Julien Demouth, Guillaume Desjardins, Sander Dieleman, Laurent Dinh, Melanie Ducoffe, Vincent Dumoulin, Samira Ebrahimi Kahou, Dumitru Erhan, Ziye Fan, Orhan Firat, Mathieu Germain, Xavier Glorot, Ian J. Goodfellow, Matthew Graham, Çaglar Gülçehre, Philippe Hamel, Iban Harlouchet, Jean-Philippe Heng, Balázs Hidasi, Sina Honari, Arjun Jain, Sébastien Jean, Kai Jia, Mikhail Korobov, Vivek Kulkarni, Alex Lamb, Pascal Lamblin, Eric Larsen, César Laurent, Sean Lee, Simon Lefrançois, Simon Lemieux, Nicholas Léonard, Zhouhan Lin, Jesse A. Livezey, Cory Lorenz, Jeremiah Lowin, Qianli Ma, Pierre-Antoine Manzagol, Olivier Mastropietro, Robert McGibbon, Roland Memisevic, Bart van Merriënboer, Vincent Michalski, Mehdi Mirza, Alberto Orlandi, Christopher Joseph Pal, Razvan Pascanu, Mohammad Pezeshki, Colin Raffel, Daniel Renshaw, Matthew Rocklin, Adriana Romero, Markus Roth, Peter Sadowski, John Salvatier, François Savard, Jan Schlüter, John Schulman, Gabriel Schwartz, Iulian Vlad Serban, Dmitriy Serdyuk, Samira Shabanian, Étienne Simon, Sigurd Spieckermann, S. Ramana Subramanyam, Jakub Sygnowski, Jérémie Tanguay, Gijs van Tulder, Joseph P. Turian, Sebastian Urban, Pascal Vincent, Francesco Visin, Harm de Vries, David Warde-Farley, Dustin J. Webb, Matthew Willson, Kelvin Xu, Lijun Xue, Li Yao, Saizheng Zhang, Ying Zhang:
Theano: A Python framework for fast computation of mathematical expressions. CoRR abs/1605.02688 (2016) - [i113]Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau, Aaron C. Courville, Yoshua Bengio:
A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues. CoRR abs/1605.06069 (2016) - [i112]Sarath Chandar, Sungjin Ahn, Hugo Larochelle, Pascal Vincent, Gerald Tesauro, Yoshua Bengio:
Hierarchical Memory Networks. CoRR abs/1605.07427 (2016) - [i111]Iulian Vlad Serban, Tim Klinger, Gerald Tesauro, Kartik Talamadupula, Bowen Zhou, Yoshua Bengio, Aaron C. Courville:
Multiresolution Recurrent Neural Networks: An Application to Dialogue Response Generation. CoRR abs/1606.00776 (2016) - [i110]David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas Ballas, Nan Rosemary Ke, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, Aaron C. Courville, Chris Pal:
Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations. CoRR abs/1606.01305 (2016) - [i109]Yoshua Bengio, Benjamin Scellier, Olexa Bilaniuk, João Sacramento, Walter Senn:
Feedforward Initialization for Fast Inference of Deep Generative Networks is biologically plausible. CoRR abs/1606.01651 (2016) - [i108]Alessandro Sordoni, Philip Bachman, Yoshua Bengio:
Iterative Alternating Neural Attention for Machine Reading. CoRR abs/1606.02245 (2016) - [i107]Taesup Kim, Yoshua Bengio:
Deep Directed Generative Models with Energy-Based Probability Estimation. CoRR abs/1606.03439 (2016) - [i106]Xu-Yao Zhang, Yoshua Bengio, Cheng-Lin Liu:
Online and Offline Handwritten Chinese Character Recognition: A Comprehensive Study and New Benchmark. CoRR abs/1606.05763 (2016) - [i105]Xu-Yao Zhang, Fei Yin, Yan-Ming Zhang, Cheng-Lin Liu, Yoshua Bengio:
Drawing and Recognizing Chinese Characters with Recurrent Neural Network. CoRR abs/1606.06539 (2016) - [i104]Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Bengio, Ruslan Salakhutdinov:
On Multiplicative Integration with Recurrent Neural Networks. CoRR abs/1606.06630 (2016) - [i103]Çaglar Gülçehre, Sarath Chandar, Kyunghyun Cho, Yoshua Bengio:
Dynamic Neural Turing Machine with Soft and Hard Addressing Schemes. CoRR abs/1607.00036 (2016) - [i102]Heeyoul Choi, Kyunghyun Cho, Yoshua Bengio:
Context-Dependent Word Representation for Neural Machine Translation. CoRR abs/1607.00578 (2016) - [i101]Mohammad Havaei, Nicolas Guizard, Nicolas Chapados, Yoshua Bengio:
HeMIS: Hetero-Modal Image Segmentation. CoRR abs/1607.05194 (2016) - [i100]Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron C. Courville, Yoshua Bengio:
An Actor-Critic Algorithm for Sequence Prediction. CoRR abs/1607.07086 (2016) - [i99]Sungjin Ahn, Heeyoul Choi, Tanel Pärnamaa, Yoshua Bengio:
A Neural Knowledge Language Model. CoRR abs/1608.00318 (2016) - [i98]Çaglar Gülçehre, Marcin Moczulski, Francesco Visin, Yoshua Bengio:
Mollifying Networks. CoRR abs/1608.04980 (2016) - [i97]Joachim Ott, Zhouhan Lin, Ying Zhang, Shih-Chii Liu, Yoshua Bengio:
Recurrent Neural Networks With Limited Numerical Precision. CoRR abs/1608.06902 (2016) - [i96]Junyoung Chung, Sungjin Ahn, Yoshua Bengio:
Hierarchical Multiscale Recurrent Neural Networks. CoRR abs/1609.01704 (2016) - [i95]Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, Yoshua Bengio:
Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations. CoRR abs/1609.07061 (2016) - [i94]Guillaume Alain, Yoshua Bengio:
Understanding intermediate layers using linear classifier probes. CoRR abs/1610.01644 (2016) - [i93]Alex Lamb, Anirudh Goyal, Ying Zhang, Saizheng Zhang, Aaron C. Courville, Yoshua Bengio:
Professor Forcing: A New Algorithm for Training Recurrent Networks. CoRR abs/1610.09038 (2016) - [i92]Joachim Ott, Zhouhan Lin, Ying Zhang, Shih-Chii Liu, Yoshua Bengio:
Recurrent Neural Networks With Limited Numerical Precision. CoRR abs/1611.07065 (2016) - [i91]Simon Jégou, Michal Drozdzal, David Vázquez, Adriana Romero, Yoshua Bengio:
The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation. CoRR abs/1611.09326 (2016) - [i90]Adriana Romero, Pierre Luc Carrier, Akram Erraqabi, Tristan Sylvain, Alex Auvolat, Etienne Dejoie, Marc-André Legault, Marie-Pierre Dubé, Julie G. Hussin, Yoshua Bengio:
Diet Networks: Thin Parameters for Fat Genomic. CoRR abs/1611.09340 (2016) - [i89]Anh Nguyen, Jason Yosinski, Yoshua Bengio, Alexey Dosovitskiy, Jeff Clune:
Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space. CoRR abs/1612.00005 (2016) - [i88]Dmitriy Serdyuk, Kartik Audhkhasi, Philemon Brakel, Bhuvana Ramabhadran, Samuel Thomas, Yoshua Bengio:
Invariant Representations for Noisy Speech Recognition. CoRR abs/1612.01928 (2016) - [i87]Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, Wenjie Li:
Mode Regularized Generative Adversarial Networks. CoRR abs/1612.02136 (2016) - [i86]Mehdi Mirza, Aaron C. Courville, Yoshua Bengio:
Generalizable Features From Unsupervised Learning. CoRR abs/1612.03809 (2016) - [i85]Mihir Mongia, Kundan Kumar, Akram Erraqabi, Yoshua Bengio:
On Random Weights for Texture Generation in One Layer Neural Networks. CoRR abs/1612.06070 (2016) - [i84]Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham Jain, Jose Sotelo, Aaron C. Courville, Yoshua Bengio:
SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. CoRR abs/1612.07837 (2016) - 2015
- [j72]Yann LeCun, Yoshua Bengio, Geoffrey E. Hinton:
Deep learning. Nat. 521(7553): 436-444 (2015) - [j71]Yoshua Bengio, Honglak Lee:
Editorial introduction to the Neural Networks special issue on Deep Learning of Representations. Neural Networks 64: 1-3 (2015) - [j70]Ian J. Goodfellow, Dumitru Erhan, Pierre Luc Carrier, Aaron C. Courville, Mehdi Mirza, Benjamin Hamner, William Cukierski, Yichuan Tang, David Thaler, Dong-Hyun Lee, Yingbo Zhou, Chetan Ramaiah, Fangxiang Feng, Ruifan Li, Xiaojie Wang, Dimitris Athanasakis, John Shawe-Taylor, Maxim Milakov, John Park, Radu Tudor Ionescu, Marius Popescu, Cristian Grozea, James Bergstra, Jingjing Xie, Lukasz Romaszko, Bing Xu, Zhang Chuang, Yoshua Bengio:
Challenges in representation learning: A report on three machine learning contests. Neural Networks 64: 59-63 (2015) - [j69]Grégoire Mesnil, Yann N. Dauphin, Kaisheng Yao, Yoshua Bengio, Li Deng, Dilek Hakkani-Tür, Xiaodong He, Larry P. Heck, Gökhan Tür, Dong Yu, Geoffrey Zweig:
Using Recurrent Neural Networks for Slot Filling in Spoken Language Understanding. IEEE ACM Trans. Audio Speech Lang. Process. 23(3): 530-539 (2015) - [j68]Kyunghyun Cho, Aaron C. Courville, Yoshua Bengio:
Describing Multimedia Content Using Attention-Based Encoder-Decoder Networks. IEEE Trans. Multim. 17(11): 1875-1886 (2015) - [c188]Sébastien Jean, KyungHyun Cho, Roland Memisevic, Yoshua Bengio:
On Using Very Large Target Vocabulary for Neural Machine Translation. ACL (1) 2015: 1-10 - [c187]Yoshua Bengio:
IAPR keynote lecture IV: Deep learning. ACPR 2015: xx - [c186]Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob Grue Simonsen, Jian-Yun Nie:
A Hierarchical Recurrent Encoder-Decoder for Generative Context-Aware Query Suggestion. CIKM 2015: 553-562 - [c185]Stephan Gouws, Yoshua Bengio, Greg Corrado:
BilBOWA: Fast Bilingual Distributed Representations without Word Alignments. ICML 2015: 748-756 - [c184]Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhutdinov, Richard S. Zemel, Yoshua Bengio:
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. ICML 2015: 2048-2057 - [c183]Junyoung Chung, Çaglar Gülçehre, Kyunghyun Cho, Yoshua Bengio:
Gated Feedback Recurrent Neural Networks. ICML 2015: 2067-2075 - [c182]Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, Yoshua Bengio:
Attention-Based Models for Speech Recognition. NIPS 2015: 577-585 - [c181]Yann N. Dauphin, Harm de Vries, Yoshua Bengio:
Equilibrated adaptive learning rates for non-convex optimization. NIPS 2015: 1504-1512 - [c180]Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C. Courville, Yoshua Bengio:
A Recurrent Latent Variable Model for Sequential Data. NIPS 2015: 2980-2988 - [c179]Matthieu Courbariaux, Yoshua Bengio, Jean-Pierre David:
BinaryConnect: Training Deep Neural Networks with binary weights during propagations. NIPS 2015: 3123-3131 - [c178]Alexandre de Brébisson, Étienne Simon, Alex Auvolat, Pascal Vincent, Yoshua Bengio:
Artificial Neural Networks Applied to Taxi Destination Prediction. DC@PKDD/ECML 2015 - [c177]Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, Yoshua Bengio:
Difference Target Propagation. ECML/PKDD (1) 2015: 498-515 - [c176]Sébastien Jean, Orhan Firat, Kyunghyun Cho, Roland Memisevic, Yoshua Bengio:
Montreal Neural Machine Translation Systems for WMT'15. WMT@EMNLP 2015: 134-140 - [c175]Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio:
Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015 - [c174]Jörg Bornschein, Yoshua Bengio:
Reweighted Wake-Sleep. ICLR 2015 - [c173]Matthieu Courbariaux, Yoshua Bengio, Jean-Pierre David:
Low precision arithmetic for deep learning. ICLR (Workshop) 2015 - [c172]Laurent Dinh, David Krueger, Yoshua Bengio:
NICE: Non-linear Independent Components Estimation. ICLR (Workshop) 2015 - [c171]Felix Hill, Kyunghyun Cho, Sébastien Jean, Coline Devin, Yoshua Bengio:
Embedding Word Similarity with Neural Machine Translation. ICLR (Workshop) 2015 - [c170]Dong-Hyun Lee, Saizheng Zhang, Antoine Biard, Yoshua Bengio:
Target Propagation. ICLR (Workshop) 2015 - [c169]Grégoire Mesnil, Tomás Mikolov, Marc'Aurelio Ranzato, Yoshua Bengio:
Ensemble of Generative and Discriminative Techniques for Sentiment Analysis of Movie Reviews. ICLR (Workshop) 2015 - [c168]Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, Yoshua Bengio:
FitNets: Hints for Thin Deep Nets. ICLR (Poster) 2015 - [e8]Yoshua Bengio, Yann LeCun:
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. 2015 [contents] - [e7]Yoshua Bengio, Yann LeCun:
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings. 2015 [contents] - [i83]Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, Yoshua Bengio:
Gated Feedback Recurrent Neural Networks. CoRR abs/1502.02367 (2015) - [i82]Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhutdinov, Richard S. Zemel, Yoshua Bengio:
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. CoRR abs/1502.03044 (2015) - [i81]Yoshua Bengio, Dong-Hyun Lee, Jörg Bornschein, Zhouhan Lin:
Towards Biologically Plausible Deep Learning. CoRR abs/1502.04156 (2015) - [i80]Yann N. Dauphin, Harm de Vries, Junyoung Chung, Yoshua Bengio:
RMSProp and equilibrated adaptive learning rates for non-convex optimization. CoRR abs/1502.04390 (2015) - [i79]Samira Ebrahimi Kahou, Xavier Bouthillier, Pascal Lamblin, Çaglar Gülçehre, Vincent Michalski, Kishore Reddy Konda, Sébastien Jean, Pierre Froumenty, Yann N. Dauphin, Nicolas Boulanger-Lewandowski, Raul Chandias Ferrari, Mehdi Mirza, David Warde-Farley, Aaron C. Courville, Pascal Vincent, Roland Memisevic, Christopher J. Pal, Yoshua Bengio:
EmoNets: Multimodal deep learning approaches for emotion recognition in video. CoRR abs/1503.01800 (2015) - [i78]Çaglar Gülçehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Loïc Barrault, Huei-Chi Lin, Fethi Bougares, Holger Schwenk, Yoshua Bengio:
On Using Monolingual Corpora in Neural Machine Translation. CoRR abs/1503.03535 (2015) - [i77]Guillaume Alain, Yoshua Bengio, Li Yao, Jason Yosinski, Eric Thibodeau-Laufer, Saizheng Zhang, Pascal Vincent:
GSNs : Generative Stochastic Networks. CoRR abs/1503.05571 (2015) - [i76]Felix Hill, Kyunghyun Cho, Anna Korhonen, Yoshua Bengio:
Learning to Understand Phrases by Embedding the Dictionary. CoRR abs/1504.00548 (2015) - [i75]Francesco Visin, Kyle Kastner, Kyunghyun Cho, Matteo Matteucci, Aaron C. Courville, Yoshua Bengio:
ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks. CoRR abs/1505.00393 (2015) - [i74]Mohammad Havaei, Axel Davy, David Warde-Farley, Antoine Biard, Aaron C. Courville, Yoshua Bengio, Chris Pal, Pierre-Marc Jodoin, Hugo Larochelle:
Brain Tumor Segmentation with Deep Neural Networks. CoRR abs/1505.03540 (2015) - [i73]Bart van Merriënboer, Dzmitry Bahdanau, Vincent Dumoulin, Dmitriy Serdyuk, David Warde-Farley, Jan Chorowski, Yoshua Bengio:
Blocks and Fuel: Frameworks for deep learning. CoRR abs/1506.00619 (2015) - [i72]Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C. Courville, Yoshua Bengio:
A Recurrent Latent Variable Model for Sequential Data. CoRR abs/1506.02216 (2015) - [i71]Jörg Bornschein, Samira Shabanian, Asja Fischer, Yoshua Bengio:
Training opposing directed models using geometric mean matching. CoRR abs/1506.03877 (2015) - [i70]Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, KyungHyun Cho, Yoshua Bengio:
Attention-Based Models for Speech Recognition. CoRR abs/1506.07503 (2015) - [i69]KyungHyun Cho, Aaron C. Courville, Yoshua Bengio:
Describing Multimedia Content using Attention-based Encoder-Decoder Networks. CoRR abs/1507.01053 (2015) - [i68]Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob Grue Simonsen, Jian-Yun Nie:
A Hierarchical Recurrent Encoder-Decoder For Generative Context-Aware Query Suggestion. CoRR abs/1507.02221 (2015) - [i67]Iulian Vlad Serban, Alessandro Sordoni, Yoshua Bengio, Aaron C. Courville, Joelle Pineau:
Hierarchical Neural Network Generative Models for Movie Dialogues. CoRR abs/1507.04808 (2015) - [i66]Alexandre de Brébisson, Étienne Simon, Alex Auvolat, Pascal Vincent, Yoshua Bengio:
Artificial Neural Networks Applied to Taxi Destination Prediction. CoRR abs/1508.00021 (2015) - [i65]Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel, Yoshua Bengio:
End-to-End Attention-based Large Vocabulary Speech Recognition. CoRR abs/1508.04395 (2015) - [i64]Yoshua Bengio, Thomas Mesnard, Asja Fischer, Saizheng Zhang, Yuhai Wu:
An objective function for STDP. CoRR abs/1509.05936 (2015) - [i63]César Laurent, Gabriel Pereyra, Philemon Brakel, Ying Zhang, Yoshua Bengio:
Batch Normalized Recurrent Neural Networks. CoRR abs/1510.01378 (2015) - [i62]Yoshua Bengio:
Early Inference in Energy-Based Models Approximates Back-Propagation. CoRR abs/1510.02777 (2015) - [i61]Matthieu Courbariaux, Yoshua Bengio, Jean-Pierre David:
BinaryConnect: Training Deep Neural Networks with binary weights during propagations. CoRR abs/1511.00363 (2015) - [i60]Li Yao, Nicolas Ballas, KyungHyun Cho, John R. Smith, Yoshua Bengio:
Trainable performance upper bounds for image and video captioning. CoRR abs/1511.04590 (2015) - [i59]Daniel Jiwoong Im, Sungjin Ahn, Roland Memisevic, Yoshua Bengio:
Denoising Criterion for Variational Auto-Encoding Framework. CoRR abs/1511.06406 (2015) - [i58]Mohammad Pezeshki, Linxi Fan, Philemon Brakel, Aaron C. Courville, Yoshua Bengio:
Deconstructing the Ladder Network Architecture. CoRR abs/1511.06430 (2015) - [i57]Dzmitry Bahdanau, Dmitriy Serdyuk, Philemon Brakel, Nan Rosemary Ke, Jan Chorowski, Aaron C. Courville, Yoshua Bengio:
Task Loss Estimation for Sequence Prediction. CoRR abs/1511.06456 (2015) - [i56]Martín Arjovsky, Amar Shah, Yoshua Bengio:
Unitary Evolution Recurrent Neural Networks. CoRR abs/1511.06464 (2015) - [i55]Guillaume Alain, Alex Lamb, Chinnadhurai Sankar, Aaron C. Courville, Yoshua Bengio:
Variance Reduction in SGD by Distributed Importance Sampling. CoRR abs/1511.06481 (2015) - [i54]Francesco Visin, Kyle Kastner, Aaron C. Courville, Yoshua Bengio, Matteo Matteucci, KyungHyun Cho:
ReSeg: A Recurrent Neural Network for Object Segmentation. CoRR abs/1511.07053 (2015) - 2014
- [j67]François Rivest, John Kalaska, Yoshua Bengio:
Conditioning and time representation in long short-term memory networks. Biol. Cybern. 108(1): 23-48 (2014) - [j66]Guillaume Alain, Yoshua Bengio:
What regularized auto-encoders learn from the data-generating distribution. J. Mach. Learn. Res. 15(1): 3563-3593 (2014) - [j65]Antoine Bordes, Xavier Glorot, Jason Weston, Yoshua Bengio:
A semantic matching energy function for learning with multi-relational data - Application to word-sense disambiguation. Mach. Learn. 94(2): 233-259 (2014) - [j64]Grégoire Mesnil, Antoine Bordes, Jason Weston, Gal Chechik, Yoshua Bengio:
Learning semantic representations of objects and their parts. Mach. Learn. 94(2): 281-301 (2014) - [j63]Aaron C. Courville, Guillaume Desjardins, James Bergstra, Yoshua Bengio:
The Spike-and-Slab RBM and Extensions to Discrete and Sparse Data Distributions. IEEE Trans. Pattern Anal. Mach. Intell. 36(9): 1874-1887 (2014) - [c167]Vincent Dumoulin, Ian J. Goodfellow, Aaron C. Courville, Yoshua Bengio:
On the Challenges of Physical Implementations of RBMs. AAAI 2014: 1199-1205 - [c166]Alessandro Sordoni, Yoshua Bengio, Jian-Yun Nie:
Learning Concept Embeddings for Query Expansion by Quantum Entropy Minimization. AAAI 2014: 1586-1592 - [c165]Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio:
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. EMNLP 2014: 1724-1734 - [c164]Yoshua Bengio:
Deep learning and cultural evolution. GECCO (Companion) 2014: 1-2 - [c163]Yoshua Bengio, Eric Laufer, Guillaume Alain, Jason Yosinski:
Deep Generative Stochastic Networks Trainable by Backprop. ICML 2014: 226-234 - [c162]Minmin Chen, Kilian Q. Weinberger, Fei Sha, Yoshua Bengio:
Marginalized Denoising Auto-encoders for Nonlinear Representations. ICML 2014: 1476-1484 - [c161]Yoshua Bengio:
Scaling up deep learning. KDD 2014: 1966 - [c160]Tapani Raiko, Li Yao, KyungHyun Cho, Yoshua Bengio:
Iterative Neural Autoregressive Distribution Estimator NADE-k. NIPS 2014: 325-333 - [c159]Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville, Yoshua Bengio:
Generative Adversarial Nets. NIPS 2014: 2672-2680 - [c158]Guido Montúfar, Razvan Pascanu, KyungHyun Cho, Yoshua Bengio:
On the Number of Linear Regions of Deep Neural Networks. NIPS 2014: 2924-2932 - [c157]Yann N. Dauphin, Razvan Pascanu, Çaglar Gülçehre, KyungHyun Cho, Surya Ganguli, Yoshua Bengio:
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. NIPS 2014: 2933-2941 - [c156]Jason Yosinski, Jeff Clune, Yoshua Bengio, Hod Lipson:
How transferable are features in deep neural networks? NIPS 2014: 3320-3328 - [c155]Li Yao, Sherjil Ozair, KyungHyun Cho, Yoshua Bengio:
On the Equivalence between Deep NADE and Generative Stochastic Networks. ECML/PKDD (3) 2014: 322-336 - [c154]Çaglar Gülçehre, KyungHyun Cho, Razvan Pascanu, Yoshua Bengio:
Learned-Norm Pooling for Deep Feedforward and Recurrent Neural Networks. ECML/PKDD (1) 2014: 530-546 - [c153]Jean Pouget-Abadie, Dzmitry Bahdanau, Bart van Merrienboer, Kyunghyun Cho, Yoshua Bengio:
Overcoming the Curse of Sentence Length for Neural Machine Translation using Automatic Segmentation. SSST@EMNLP 2014: 78-85 - [c152]Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, Yoshua Bengio:
On the Properties of Neural Machine Translation: Encoder-Decoder Approaches. SSST@EMNLP 2014: 103-111 - [c151]Yoshua Bengio, Li Yao:
Bounding the Test Log-Likelihood of Generative Models. ICLR (Poster) 2014 - [c150]Ian J. Goodfellow, Mehdi Mirza, Xia Da, Aaron C. Courville, Yoshua Bengio:
An Empirical Investigation of Catastrophic Forgeting in Gradient-Based Neural Networks. ICLR (Poster) 2014 - [c149]Sherjil Ozair, Li Yao, Yoshua Bengio:
Multimodal Transitions for Generative Stochastic Networks. ICLR (Workshop Poster) 2014 - [c148]Razvan Pascanu, Çaglar Gülçehre, Kyunghyun Cho, Yoshua Bengio:
How to Construct Deep Recurrent Neural Networks. ICLR (Poster) 2014 - [c147]Razvan Pascanu, Guido Montúfar, Yoshua Bengio:
On the number of inference regions of deep feed forward networks with piece-wise linear activations. ICLR (Poster) 2014 - [c146]David Warde-Farley, Ian J. Goodfellow, Aaron C. Courville, Yoshua Bengio:
An empirical analysis of dropout in piecewise linear networks. ICLR (Poster) 2014 - [c145]Razvan Pascanu, Yoshua Bengio:
Revisiting Natural Gradient for Deep Networks. ICLR 2014 - [p7]Yoshua Bengio:
Evolving Culture Versus Local Minima. Growing Adaptive Machines 2014: 109-138 - [e6]Yoshua Bengio, Yann LeCun:
2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings. 2014 [contents] - [e5]Yoshua Bengio, Yann LeCun:
2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Workshop Track Proceedings. 2014 [contents] - [i53]Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, Yoshua Bengio:
On the Number of Linear Regions of Deep Neural Networks. CoRR abs/1402.1869 (2014) - [i52]Razvan Pascanu, Yann N. Dauphin, Surya Ganguli, Yoshua Bengio:
On the saddle point problem for non-convex optimization. CoRR abs/1405.4604 (2014) - [i51]Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk, Yoshua Bengio:
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. CoRR abs/1406.1078 (2014) - [i50]Tapani Raiko, Li Yao, Kyunghyun Cho, Yoshua Bengio:
Iterative Neural Autoregressive Distribution Estimator (NADE-k). CoRR abs/1406.1485 (2014) - [i49]Yann N. Dauphin, Razvan Pascanu, Çaglar Gülçehre, Kyunghyun Cho, Surya Ganguli, Yoshua Bengio:
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. CoRR abs/1406.2572 (2014) - [i48]Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville, Yoshua Bengio:
Generative Adversarial Networks. CoRR abs/1406.2661 (2014) - [i47]Kyunghyun Cho, Yoshua Bengio:
Exponentially Increasing the Capacity-to-Computation Ratio for Conditional Computation in Deep Learning. CoRR abs/1406.7362 (2014) - [i46]Yoshua Bengio:
How Auto-Encoders Could Provide Credit Assignment in Deep Networks via Target Propagation. CoRR abs/1407.7906 (2014) - [i45]Li Yao, Sherjil Ozair, Kyunghyun Cho, Yoshua Bengio:
On the Equivalence Between Deep NADE and Generative Stochastic Networks. CoRR abs/1409.0585 (2014) - [i44]Jean Pouget-Abadie, Dzmitry Bahdanau, Bart van Merrienboer, KyungHyun Cho, Yoshua Bengio:
Overcoming the Curse of Sentence Length for Neural Machine Translation using Automatic Segmentation. CoRR abs/1409.1257 (2014) - [i43]KyungHyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, Yoshua Bengio:
On the Properties of Neural Machine Translation: Encoder-Decoder Approaches. CoRR abs/1409.1259 (2014) - [i42]Guillaume Desjardins, Heng Luo, Aaron C. Courville, Yoshua Bengio:
Deep Tempering. CoRR abs/1410.0123 (2014) - [i41]Sherjil Ozair, Yoshua Bengio:
Deep Directed Generative Autoencoders. CoRR abs/1410.0630 (2014) - [i40]Felix Hill, KyungHyun Cho, Sébastien Jean, Coline Devin, Yoshua Bengio:
Not All Neural Embeddings are Born Equal. CoRR abs/1410.0718 (2014) - [i39]Stephan Gouws, Yoshua Bengio, Greg Corrado:
BilBOWA: Fast Bilingual Distributed Representations without Word Alignments. CoRR abs/1410.2455 (2014) - [i38]Jason Yosinski, Jeff Clune, Yoshua Bengio, Hod Lipson:
How transferable are features in deep neural networks? CoRR abs/1411.1792 (2014) - [i37]Jan Chorowski, Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio:
End-to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Results. CoRR abs/1412.1602 (2014) - [i36]Sébastien Jean, Kyunghyun Cho, Roland Memisevic, Yoshua Bengio:
On Using Very Large Target Vocabulary for Neural Machine Translation. CoRR abs/1412.2007 (2014) - [i35]Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, Yoshua Bengio:
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. CoRR abs/1412.3555 (2014) - [i34]Çaglar Gülçehre, Yoshua Bengio:
ADASECANT: Robust Adaptive Secant Method for Stochastic Gradient. CoRR abs/1412.7419 (2014) - 2013
- [j62]Héctor Pérez Martínez, Yoshua Bengio, Georgios N. Yannakakis:
Learning Deep Physiological Models of Affect. IEEE Comput. Intell. Mag. 8(2): 20-33 (2013) - [j61]Yoshua Bengio, Aaron C. Courville, Pascal Vincent:
Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8): 1798-1828 (2013) - [j60]Ian J. Goodfellow, Aaron C. Courville, Yoshua Bengio:
Scaling Up Spike-and-Slab Models for Unsupervised Feature Learning. IEEE Trans. Pattern Anal. Mach. Intell. 35(8): 1902-1914 (2013) - [c144]Heng Luo, Pierre Luc Carrier, Aaron C. Courville, Yoshua Bengio:
Texture Modeling with Convolutional Spike-and-Slab RBMs and Deep Extensions. AISTATS 2013: 415-423 - [c143]Eric Thibodeau-Laufer, Raul Chandias Ferrari, Li Yao, Olivier Delalleau, Yoshua Bengio:
Stacked calibration of off-policy policy evaluation for video game matchmaking. CIG 2013: 1-8 - [c142]Nicolas Boulanger-Lewandowski, Yoshua Bengio, Pascal Vincent:
High-dimensional sequence transduction. ICASSP 2013: 3178-3182 - [c141]Yoshua Bengio, Nicolas Boulanger-Lewandowski, Razvan Pascanu:
Advances in optimizing recurrent networks. ICASSP 2013: 8624-8628 - [c140]Samira Ebrahimi Kahou, Christopher J. Pal, Xavier Bouthillier, Pierre Froumenty, Çaglar Gülçehre, Roland Memisevic, Pascal Vincent, Aaron C. Courville, Yoshua Bengio, Raul Chandias Ferrari, Mehdi Mirza, Sébastien Jean, Pierre Luc Carrier, Yann N. Dauphin, Nicolas Boulanger-Lewandowski, Abhishek Aggarwal, Jeremie Zumer, Pascal Lamblin, Jean-Philippe Raymond, Guillaume Desjardins, Razvan Pascanu, David Warde-Farley, Atousa Torabi, Arjun Sharma, Emmanuel Bengio, Kishore Reddy Konda, Zhenzhou Wu:
Combining modality specific deep neural networks for emotion recognition in video. ICMI 2013: 543-550 - [c139]Yoshua Bengio, Grégoire Mesnil, Yann N. Dauphin, Salah Rifai:
Better Mixing via Deep Representations. ICML (1) 2013: 552-560 - [c138]Razvan Pascanu, Tomás Mikolov, Yoshua Bengio:
On the difficulty of training recurrent neural networks. ICML (3) 2013: 1310-1318 - [c137]Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron C. Courville, Yoshua Bengio:
Maxout Networks. ICML (3) 2013: 1319-1327 - [c136]Ian J. Goodfellow, Dumitru Erhan, Pierre Luc Carrier, Aaron C. Courville, Mehdi Mirza, Benjamin Hamner, William Cukierski, Yichuan Tang, David Thaler, Dong-Hyun Lee, Yingbo Zhou, Chetan Ramaiah, Fangxiang Feng, Ruifan Li, Xiaojie Wang, Dimitris Athanasakis, John Shawe-Taylor, Maxim Milakov, John Park, Radu Tudor Ionescu, Marius Popescu, Cristian Grozea, James Bergstra, Jingjing Xie, Lukasz Romaszko, Bing Xu, Chuang Zhang, Yoshua Bengio:
Challenges in Representation Learning: A Report on Three Machine Learning Contests. ICONIP (3) 2013: 117-124 - [c135]Grégoire Mesnil, Salah Rifai, Antoine Bordes, Xavier Glorot, Yoshua Bengio, Pascal Vincent:
Unsupervised Learning of Semantics of Object Detections for Scene Categorization. ICPRAM (Selected Papers) 2013: 209-224 - [c134]Grégoire Mesnil, Salah Rifai, Antoine Bordes, Xavier Glorot, Yoshua Bengio, Pascal Vincent:
Unsupervised and Transfer Learning under Uncertainty - From Object Detections to Scene Categorization. ICPRAM 2013: 345-354 - [c133]Grégoire Mesnil, Xiaodong He, Li Deng, Yoshua Bengio:
Investigation of recurrent-neural-network architectures and learning methods for spoken language understanding. INTERSPEECH 2013: 3771-3775 - [c132]Nicolas Boulanger-Lewandowski, Yoshua Bengio, Pascal Vincent:
Audio Chord Recognition with Recurrent Neural Networks. ISMIR 2013: 335-340 - [c131]Ian J. Goodfellow, Mehdi Mirza, Aaron C. Courville, Yoshua Bengio:
Multi-Prediction Deep Boltzmann Machines. NIPS 2013: 548-556 - [c130]Yoshua Bengio, Li Yao, Guillaume Alain, Pascal Vincent:
Generalized Denoising Auto-Encoders as Generative Models. NIPS 2013: 899-907 - [c129]Yann N. Dauphin, Yoshua Bengio:
Stochastic Ratio Matching of RBMs for Sparse High-Dimensional Inputs. NIPS 2013: 1340-1348 - [c128]Alessandro Sordoni, Jian-Yun Nie, Yoshua Bengio:
Modeling term dependencies with quantum language models for IR. SIGIR 2013: 653-662 - [c127]Yoshua Bengio:
Deep Learning of Representations: Looking Forward. SLSP 2013: 1-37 - [c126]Guillaume Alain, Yoshua Bengio, Salah Rifai:
Regularized Auto-Encoders Estimate Local Statistics. ICLR 2013 - [c125]Xavier Glorot, Antoine Bordes, Jason Weston, Yoshua Bengio:
A Semantic Matching Energy Function for Learning with Multi-relational Data. ICLR (Workshop Poster) 2013 - [c124]Guillaume Desjardins, Razvan Pascanu, Aaron C. Courville, Yoshua Bengio:
Metric-Free Natural Gradient for Joint-Training of Boltzmann Machines. ICLR (Poster) 2013 - [c123]Ian J. Goodfellow, Aaron C. Courville, Yoshua Bengio:
Joint Training Deep Boltzmann Machines for Classification. ICLR (Workshop) 2013 - [c122]Yann N. Dauphin, Yoshua Bengio:
Big Neural Networks Waste Capacity. ICLR (Workshop) 2013 - [c121]Razvan Pascanu, Yoshua Bengio:
Natural Gradient Revisited. ICLR (Workshop Poster) 2013 - [c120]Çaglar Gülçehre, Yoshua Bengio:
Knowledge Matters: Importance of Prior Information for Optimization. ICLR 2013 - [p6]Yoshua Bengio, Aaron C. Courville:
Deep Learning of Representations. Handbook on Neural Information Processing 2013: 1-28 - [e4]Yoshua Bengio, Yann LeCun:
1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Conference Track Proceedings. 2013 [contents] - [e3]Yoshua Bengio, Yann LeCun:
1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings. 2013 [contents] - [i33]Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron C. Courville, Yoshua Bengio:
Maxout Networks. CoRR abs/1302.4389 (2013) - [i32]Yoshua Bengio:
Deep Learning of Representations: Looking Forward. CoRR abs/1305.0445 (2013) - [i31]Yoshua Bengio:
Estimating or Propagating Gradients Through Stochastic Neurons. CoRR abs/1305.2982 (2013) - [i30]Yoshua Bengio, Li Yao, Guillaume Alain, Pascal Vincent:
Generalized Denoising Auto-Encoders as Generative Models. CoRR abs/1305.6663 (2013) - [i29]Yoshua Bengio, Eric Thibodeau-Laufer, Jason Yosinski:
Deep Generative Stochastic Networks Trainable by Backprop. CoRR abs/1306.1091 (2013) - [i28]Ian J. Goodfellow, Dumitru Erhan, Pierre Luc Carrier, Aaron C. Courville, Mehdi Mirza, Benjamin Hamner, William Cukierski, Yichuan Tang, David Thaler, Dong-Hyun Lee, Yingbo Zhou, Chetan Ramaiah, Fangxiang Feng, Ruifan Li, Xiaojie Wang, Dimitris Athanasakis, John Shawe-Taylor, Maxim Milakov, John Park, Radu Tudor Ionescu, Marius Popescu, Cristian Grozea, James Bergstra, Jingjing Xie, Lukasz Romaszko, Bing Xu, Chuang Zhang, Yoshua Bengio:
Challenges in Representation Learning: A report on three machine learning contests. CoRR abs/1307.0414 (2013) - [i27]Yoshua Bengio, Nicholas Léonard, Aaron C. Courville:
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation. CoRR abs/1308.3432 (2013) - [i26]Ian J. Goodfellow, David Warde-Farley, Pascal Lamblin, Vincent Dumoulin, Mehdi Mirza, Razvan Pascanu, James Bergstra, Frédéric Bastien, Yoshua Bengio:
Pylearn2: a machine learning research library. CoRR abs/1308.4214 (2013) - [i25]Çaglar Gülçehre, Kyunghyun Cho, Razvan Pascanu, Yoshua Bengio:
Learned-norm pooling for deep neural networks. CoRR abs/1311.1780 (2013) - [i24]Vincent Dumoulin, Ian J. Goodfellow, Aaron C. Courville, Yoshua Bengio:
On the Challenges of Physical Implementations of RBMs. CoRR abs/1312.5258 (2013) - 2012
- [j59]Yoshua Bengio, Nicolas Chapados, Olivier Delalleau, Hugo Larochelle, Xavier Saint-Mleux, Christian Hudon, Jérôme Louradour:
Detonation Classification from acoustic Signature with the Restricted Boltzmann Machine. Comput. Intell. 28(2): 261-288 (2012) - [j58]James Bergstra, Yoshua Bengio:
Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 13: 281-305 (2012) - [j57]Hugo Larochelle, Michael I. Mandel, Razvan Pascanu, Yoshua Bengio:
Learning Algorithms for the Classification Restricted Boltzmann Machine. J. Mach. Learn. Res. 13: 643-669 (2012) - [j56]Olivier Delalleau, Emile Contal, Eric Thibodeau-Laufer, Raul Chandias Ferrari, Yoshua Bengio, Frank Zhang:
Beyond Skill Rating: Advanced Matchmaking in Ghost Recon Online. IEEE Trans. Comput. Intell. AI Games 4(3): 167-177 (2012) - [c119]Richard Socher, Yoshua Bengio, Christopher D. Manning:
Deep Learning for NLP (without Magic). ACL (Tutorial Abstracts) 2012: 5 - [c118]Salah Rifai, Yoshua Bengio, Aaron C. Courville, Pascal Vincent, Mehdi Mirza:
Disentangling Factors of Variation for Facial Expression Recognition. ECCV (6) 2012: 808-822 - [c117]Nicolas Boulanger-Lewandowski, Yoshua Bengio, Pascal Vincent:
Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription. ICML 2012 - [c116]Ian J. Goodfellow, Aaron C. Courville, Yoshua Bengio:
Large-Scale Feature Learning With Spike-and-Slab Sparse Coding. ICML 2012 - [c115]Salah Rifai, Yann N. Dauphin, Pascal Vincent, Yoshua Bengio:
A Generative Process for Contractive Auto-Encoders. ICML 2012 - [c114]Nicolas Boulanger-Lewandowski, Yoshua Bengio, Pascal Vincent:
Discriminative Non-negative Matrix Factorization for Multiple Pitch Estimation. ISMIR 2012: 205-210 - [c113]Philippe Hamel, Yoshua Bengio, Douglas Eck:
Building Musically-relevant Audio Features through Multiple Timescale Representations. ISMIR 2012: 553-558 - [c112]Yoshua Bengio:
Deep Learning of Representations for Unsupervised and Transfer Learning. ICML Unsupervised and Transfer Learning 2012: 17-36 - [c111]Grégoire Mesnil, Yann N. Dauphin, Xavier Glorot, Salah Rifai, Yoshua Bengio, Ian J. Goodfellow, Erick Lavoie, Xavier Muller, Guillaume Desjardins, David Warde-Farley, Pascal Vincent, Aaron C. Courville, James Bergstra:
Unsupervised and Transfer Learning Challenge: a Deep Learning Approach. ICML Unsupervised and Transfer Learning 2012: 97-110 - [c110]Antoine Bordes, Xavier Glorot, Jason Weston, Yoshua Bengio:
Joint Learning of Words and Meaning Representations for Open-Text Semantic Parsing. AISTATS 2012: 127-135 - [p5]Yoshua Bengio:
Practical Recommendations for Gradient-Based Training of Deep Architectures. Neural Networks: Tricks of the Trade (2nd ed.) 2012: 437-478 - [i23]Ian J. Goodfellow, Aaron C. Courville, Yoshua Bengio:
Spike-and-Slab Sparse Coding for Unsupervised Feature Discovery. CoRR abs/1201.3382 (2012) - [i22]Yoshua Bengio:
Evolving Culture vs Local Minima. CoRR abs/1203.2990 (2012) - [i21]Guillaume Desjardins, Aaron C. Courville, Yoshua Bengio:
On Training Deep Boltzmann Machines. CoRR abs/1203.4416 (2012) - [i20]Yoshua Bengio:
Practical recommendations for gradient-based training of deep architectures. CoRR abs/1206.5533 (2012) - [i19]Yoshua Bengio, Aaron C. Courville, Pascal Vincent:
Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives. CoRR abs/1206.5538 (2012) - [i18]Yoshua Bengio, Guillaume Alain, Salah Rifai:
Implicit Density Estimation by Local Moment Matching to Sample from Auto-Encoders. CoRR abs/1207.0057 (2012) - [i17]Yoshua Bengio, Grégoire Mesnil, Yann N. Dauphin, Salah Rifai:
Better Mixing via Deep Representations. CoRR abs/1207.4404 (2012) - [i16]Olivier Delalleau, Aaron C. Courville, Yoshua Bengio:
Efficient EM Training of Gaussian Mixtures with Missing Data. CoRR abs/1209.0521 (2012) - [i15]Guillaume Desjardins, Aaron C. Courville, Yoshua Bengio:
Disentangling Factors of Variation via Generative Entangling. CoRR abs/1210.5474 (2012) - [i14]Razvan Pascanu, Tomás Mikolov, Yoshua Bengio:
Understanding the exploding gradient problem. CoRR abs/1211.5063 (2012) - [i13]Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J. Goodfellow, Arnaud Bergeron, Nicolas Bouchard, David Warde-Farley, Yoshua Bengio:
Theano: new features and speed improvements. CoRR abs/1211.5590 (2012) - [i12]Heng Luo, Pierre Luc Carrier, Aaron C. Courville, Yoshua Bengio:
Texture Modeling with Convolutional Spike-and-Slab RBMs and Deep Extensions. CoRR abs/1211.5687 (2012) - [i11]Yoshua Bengio, Nicolas Boulanger-Lewandowski, Razvan Pascanu:
Advances in Optimizing Recurrent Networks. CoRR abs/1212.0901 (2012) - [i10]Nicolas Boulanger-Lewandowski, Yoshua Bengio, Pascal Vincent:
High-dimensional sequence transduction. CoRR abs/1212.1936 (2012) - [i9]Ian J. Goodfellow, Aaron C. Courville, Yoshua Bengio:
Joint Training of Deep Boltzmann Machines. CoRR abs/1212.2686 (2012) - 2011
- [j55]James Bergstra, Yoshua Bengio, Jérôme Louradour:
Suitability of V1 Energy Models for Object Classification. Neural Comput. 23(3): 774-790 (2011) - [j54]Olivier Breuleux, Yoshua Bengio, Pascal Vincent:
Quickly Generating Representative Samples from an RBM-Derived Process. Neural Comput. 23(8): 2058-2073 (2011) - [j53]Michael I. Mandel, Razvan Pascanu, Douglas Eck, Yoshua Bengio, Luca Maria Aiello, Rossano Schifanella, Filippo Menczer:
Contextual tag inference. ACM Trans. Multim. Comput. Commun. Appl. 7(Supplement): 32 (2011) - [c109]Antoine Bordes, Jason Weston, Ronan Collobert, Yoshua Bengio:
Learning Structured Embeddings of Knowledge Bases. AAAI 2011: 301-306 - [c108]Yoshua Bengio, Olivier Delalleau:
On the Expressive Power of Deep Architectures. ALT 2011: 18-36 - [c107]Yoshua Bengio, Olivier Delalleau:
On the Expressive Power of Deep Architectures. Discovery Science 2011: 1 - [c106]Xavier Glorot, Antoine Bordes, Yoshua Bengio:
Domain Adaptation for Large-Scale Sentiment Classification: A Deep Learning Approach. ICML 2011: 513-520 - [c105]Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, Yoshua Bengio:
Contractive Auto-Encoders: Explicit Invariance During Feature Extraction. ICML 2011: 833-840 - [c104]Yann N. Dauphin, Xavier Glorot, Yoshua Bengio:
Large-Scale Learning of Embeddings with Reconstruction Sampling. ICML 2011: 945-952 - [c103]Aaron C. Courville, James Bergstra, Yoshua Bengio:
Unsupervised Models of Images by Spikeand-Slab RBMs. ICML 2011: 1145-1152 - [c102]Philippe Hamel, Simon Lemieux, Yoshua Bengio, Douglas Eck:
Temporal Pooling and Multiscale Learning for Automatic Annotation and Ranking of Music Audio. ISMIR 2011: 729-734 - [c101]Yoshua Bengio:
On learning distributed representations of semantics. MLSLP 2011 - [c100]Olivier Delalleau, Yoshua Bengio:
Shallow vs. Deep Sum-Product Networks. NIPS 2011: 666-674 - [c99]Salah Rifai, Yann N. Dauphin, Pascal Vincent, Yoshua Bengio, Xavier Muller:
The Manifold Tangent Classifier. NIPS 2011: 2294-2302 - [c98]Guillaume Desjardins, Aaron C. Courville, Yoshua Bengio:
On Tracking The Partition Function. NIPS 2011: 2501-2509 - [c97]James Bergstra, Rémi Bardenet, Yoshua Bengio, Balázs Kégl:
Algorithms for Hyper-Parameter Optimization. NIPS 2011: 2546-2554 - [c96]Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller, Yoshua Bengio, Yann N. Dauphin, Xavier Glorot:
Higher Order Contractive Auto-Encoder. ECML/PKDD (2) 2011: 645-660 - [c95]Yoshua Bengio:
Discussion of "The Neural Autoregressive Distribution Estimator". AISTATS 2011: 38-39 - [c94]Yoshua Bengio, Frédéric Bastien, Arnaud Bergeron, Nicolas Boulanger-Lewandowski, Thomas M. Breuel, Youssouf Chherawala, Moustapha Cissé, Myriam Côté, Dumitru Erhan, Jeremy Eustache, Xavier Glorot, Xavier Muller, Sylvain Pannetier Lebeuf, Razvan Pascanu, Salah Rifai, François Savard, Guillaume Sicard:
Deep Learners Benefit More from Out-of-Distribution Examples. AISTATS 2011: 164-172 - [c93]Aaron C. Courville, James Bergstra, Yoshua Bengio:
A Spike and Slab Restricted Boltzmann Machine. AISTATS 2011: 233-241 - [c92]Xavier Glorot, Antoine Bordes, Yoshua Bengio:
Deep Sparse Rectifier Neural Networks. AISTATS 2011: 315-323 - [i8]Michael I. Mandel, Razvan Pascanu, Hugo Larochelle, Yoshua Bengio:
Autotagging music with conditional restricted Boltzmann machines. CoRR abs/1103.2832 (2011) - [i7]Salah Rifai, Xavier Glorot, Yoshua Bengio, Pascal Vincent:
Adding noise to the input of a model trained with a regularized objective. CoRR abs/1104.3250 (2011) - [i6]Salah Rifai, Xavier Muller, Xavier Glorot, Grégoire Mesnil, Yoshua Bengio, Pascal Vincent:
Learning invariant features through local space contraction. CoRR abs/1104.4153 (2011) - [i5]Antoine Bordes, Xavier Glorot, Jason Weston, Yoshua Bengio:
Towards Open-Text Semantic Parsing via Multi-Task Learning of Structured Embeddings. CoRR abs/1107.3663 (2011) - [i4]James Bergstra, Aaron C. Courville, Yoshua Bengio:
The Statistical Inefficiency of Sparse Coding for Images (or, One Gabor to Rule them All). CoRR abs/1109.6638 (2011) - 2010
- [j52]Yoshua Bengio, Olivier Delalleau, Clarence Simard:
Decision trees do not generalize to new variations. Comput. Intell. 26(4): 449-467 (2010) - [j51]François Rivest, John Kalaska, Yoshua Bengio:
Alternative time representation in dopamine models. J. Comput. Neurosci. 28(1): 107-130 (2010) - [j50]Dumitru Erhan, Yoshua Bengio, Aaron C. Courville, Pierre-Antoine Manzagol, Pascal Vincent, Samy Bengio:
Why Does Unsupervised Pre-training Help Deep Learning? J. Mach. Learn. Res. 11: 625-660 (2010) - [j49]Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol:
Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 11: 3371-3408 (2010) - [j48]Nicolas Le Roux, Yoshua Bengio:
Deep Belief Networks Are Compact Universal Approximators. Neural Comput. 22(8): 2192-2207 (2010) - [j47]Hugo Larochelle, Yoshua Bengio, Joseph P. Turian:
Tractable Multivariate Binary Density Estimation and the Restricted Boltzmann Forest. Neural Comput. 22(9): 2285-2307 (2010) - [c91]Joseph P. Turian, Lev-Arie Ratinov, Yoshua Bengio:
Word Representations: A Simple and General Method for Semi-Supervised Learning. ACL 2010: 384-394 - [c90]Michael I. Mandel, Douglas Eck, Yoshua Bengio:
Learning Tags that Vary Within a Song. ISMIR 2010: 399-404 - [c89]James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume Desjardins, Joseph P. Turian, David Warde-Farley, Yoshua Bengio:
Theano: A CPU and GPU Math Compiler in Python. SciPy 2010: 18-24 - [c88]Guillaume Desjardins, Aaron C. Courville, Yoshua Bengio, Pascal Vincent, Olivier Delalleau:
Tempered Markov Chain Monte Carlo for training of Restricted Boltzmann Machines. AISTATS 2010: 145-152 - [c87]Dumitru Erhan, Aaron C. Courville, Yoshua Bengio, Pascal Vincent:
Why Does Unsupervised Pre-training Help Deep Learning? AISTATS 2010: 201-208 - [c86]Xavier Glorot, Yoshua Bengio:
Understanding the difficulty of training deep feedforward neural networks. AISTATS 2010: 249-256 - [i3]Frédéric Bastien, Yoshua Bengio, Arnaud Bergeron, Nicolas Boulanger-Lewandowski, Thomas M. Breuel, Youssouf Chherawala, Moustapha Cissé, Myriam Côté, Dumitru Erhan, Jeremy Eustache, Xavier Glorot, Xavier Muller, Sylvain Pannetier Lebeuf, Razvan Pascanu, Salah Rifai, François Savard, Guillaume Sicard:
Deep Self-Taught Learning for Handwritten Character Recognition. CoRR abs/1009.3589 (2010) - [i2]Guillaume Desjardins, Aaron C. Courville, Yoshua Bengio:
Adaptive Parallel Tempering for Stochastic Maximum Likelihood Learning of RBMs. CoRR abs/1012.3476 (2010)
2000 – 2009
- 2009
- [j46]Yoshua Bengio:
Learning Deep Architectures for AI. Found. Trends Mach. Learn. 2(1): 1-127 (2009) - [j45]Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, Pascal Lamblin:
Exploring Strategies for Training Deep Neural Networks. J. Mach. Learn. Res. 10: 1-40 (2009) - [j44]Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, René Garcia:
Incorporating Functional Knowledge in Neural Networks. J. Mach. Learn. Res. 10: 1239-1262 (2009) - [j43]Yoshua Bengio, Olivier Delalleau:
Justifying and Generalizing Contrastive Divergence. Neural Comput. 21(6): 1601-1621 (2009) - [j42]Julie Carreau, Yoshua Bengio:
A Hybrid Pareto Mixture for Conditional Asymmetric Fat-Tailed Distributions. IEEE Trans. Neural Networks 20(7): 1087-1101 (2009) - [c85]Kai Yu, Ruslan Salakhutdinov, Yann LeCun, Geoffrey E. Hinton, Yoshua Bengio:
Workshop summary: Workshop on learning feature hierarchies. ICML 2009: 5 - [c84]Yoshua Bengio, Jérôme Louradour, Ronan Collobert, Jason Weston:
Curriculum learning. ICML 2009: 41-48 - [c83]Joseph P. Turian, James Bergstra, Yoshua Bengio:
Quadratic Features and Deep Architectures for Chunking. HLT-NAACL (Short Papers) 2009: 245-248 - [c82]James Bergstra, Yoshua Bengio:
Slow, Decorrelated Features for Pretraining Complex Cell-like Networks. NIPS 2009: 99-107 - [c81]Aaron C. Courville, Douglas Eck, Yoshua Bengio:
An Infinite Factor Model Hierarchy Via a Noisy-Or Mechanism. NIPS 2009: 405-413 - [c80]Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Bengio, Samy Bengio, Pascal Vincent:
The Difficulty of Training Deep Architectures and the Effect of Unsupervised Pre-Training. AISTATS 2009: 153-160 - [e2]Daphne Koller, Dale Schuurmans, Yoshua Bengio, Léon Bottou:
Advances in Neural Information Processing Systems 21, Proceedings of the Twenty-Second Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 8-11, 2008. Curran Associates, Inc. 2009 [contents] - [e1]Yoshua Bengio, Dale Schuurmans, John D. Lafferty, Christopher K. I. Williams, Aron Culotta:
Advances in Neural Information Processing Systems 22: 23rd Annual Conference on Neural Information Processing Systems 2009. Proceedings of a meeting held 7-10 December 2009, Vancouver, British Columbia, Canada. Curran Associates, Inc. 2009, ISBN 9781615679119 [contents] - 2008
- [j41]Nicolas Le Roux, Yoshua Bengio:
Representational Power of Restricted Boltzmann Machines and Deep Belief Networks. Neural Comput. 20(6): 1631-1649 (2008) - [j40]Yoshua Bengio:
Neural net language models. Scholarpedia 3(1): 3881 (2008) - [j39]Yoshua Bengio, Jean-Sébastien Senecal:
Adaptive Importance Sampling to Accelerate Training of a Neural Probabilistic Language Model. IEEE Trans. Neural Networks 19(4): 713-722 (2008) - [c79]Hugo Larochelle, Dumitru Erhan, Yoshua Bengio:
Zero-data Learning of New Tasks. AAAI 2008: 646-651 - [c78]Hugo Larochelle, Yoshua Bengio:
Classification using discriminative restricted Boltzmann machines. ICML 2008: 536-543 - [c77]Pascal Vincent, Hugo Larochelle, Yoshua Bengio, Pierre-Antoine Manzagol:
Extracting and composing robust features with denoising autoencoders. ICML 2008: 1096-1103 - 2007
- [j38]Nicolas Chapados, Yoshua Bengio:
Noisy K Best-Paths for Approximate Dynamic Programming with Application to Portfolio Optimization. J. Comput. 2(1): 12-19 (2007) - [c76]Hugo Larochelle, Dumitru Erhan, Aaron C. Courville, James Bergstra, Yoshua Bengio:
An empirical evaluation of deep architectures on problems with many factors of variation. ICML 2007: 473-480 - [c75]Nicolas Chapados, Yoshua Bengio:
Augmented Functional Time Series Representation and Forecasting with Gaussian Processes. NIPS 2007: 265-272 - [c74]Nicolas Le Roux, Yoshua Bengio, Pascal Lamblin, Marc Joliveau, Balázs Kégl:
Learning the 2-D Topology of Images. NIPS 2007: 841-848 - [c73]Nicolas Le Roux, Pierre-Antoine Manzagol, Yoshua Bengio:
Topmoumoute Online Natural Gradient Algorithm. NIPS 2007: 849-856 - [c72]Julie Carreau, Yoshua Bengio:
A Hybrid Pareto Model for Conditional Density Estimation of Asymmetric Fat-Tail Data. AISTATS 2007: 51-58 - [c71]Nicolas Le Roux, Yoshua Bengio:
Continuous Neural Networks. AISTATS 2007: 404-411 - 2006
- [j37]Dumitru Erhan, Pierre-Jean L'Heureux, Shi Yi Yue, Yoshua Bengio:
Collaborative Filtering on a Family of Biological Targets. J. Chem. Inf. Model. 46(2): 626-635 (2006) - [j36]Yoshua Bengio, Martin Monperrus, Hugo Larochelle:
Nonlocal Estimation of Manifold Structure. Neural Comput. 18(10): 2509-2528 (2006) - [c70]Nicolas Chapados, Yoshua Bengio:
The K Best-Paths Approach to Approximate Dynamic Programming with Application to Portfolio Optimization. Canadian AI 2006: 491-502 - [c69]Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle:
Greedy Layer-Wise Training of Deep Networks. NIPS 2006: 153-160 - [p4]Yves Grandvalet, Yoshua Bengio:
Entropy Regularization. Semi-Supervised Learning 2006: 151-168 - [p3]Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux:
Label Propagation and Quadratic Criterion. Semi-Supervised Learning 2006: 192-216 - [p2]Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux:
Large-Scale Algorithms. Semi-Supervised Learning 2006: 332-341 - [p1]Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux, Jean-François Paiement, Pascal Vincent, Marie Ouimet:
Spectral Dimensionality Reduction. Feature Extraction 2006: 519-550 - 2005
- [c68]Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux:
Efficient Non-Parametric Function Induction in Semi-Supervised Learning. AISTATS 2005: 96-103 - [c67]Frederic Morin, Yoshua Bengio:
Hierarchical Probabilistic Neural Network Language Model. AISTATS 2005: 246-252 - [c66]Marie Ouimet, Yoshua Bengio:
Greedy Spectral Embedding. AISTATS 2005: 253-260 - [c65]Yves Grandvalet, Yoshua Bengio:
Semi-supervised Learning by Entropy Minimization. CAP 2005: 281-296 - [c64]Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux:
The Curse of Highly Variable Functions for Local Kernel Machines. NIPS 2005: 107-114 - [c63]Yoshua Bengio, Hugo Larochelle, Pascal Vincent:
Non-Local Manifold Parzen Windows. NIPS 2005: 115-122 - [c62]Yoshua Bengio, Nicolas Le Roux, Pascal Vincent, Olivier Delalleau, Patrice Marcotte:
Convex Neural Networks. NIPS 2005: 123-130 - 2004
- [j35]Pierre-Jean L'Heureux, Julie Carreau, Yoshua Bengio, Olivier Delalleau, Shi Yi Yue:
Locally Linear Embedding for dimensionality reduction in QSAR. J. Comput. Aided Mol. Des. 18(7): 475-482 (2004) - [j34]Yoshua Bengio, Yves Grandvalet:
No Unbiased Estimator of the Variance of K-Fold Cross-Validation. J. Mach. Learn. Res. 5: 1089-1105 (2004) - [j33]Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux, Jean-François Paiement, Pascal Vincent, Marie Ouimet:
Learning Eigenfunctions Links Spectral Embedding and Kernel PCA. Neural Comput. 16(10): 2197-2219 (2004) - [c61]Indrajit Bhattacharya, Lise Getoor, Yoshua Bengio:
Unsupervised Sense Disambiguation Using Bilingual Probabilistic Models. ACL 2004: 287-294 - [c60]Yoshua Bengio, Martin Monperrus:
Non-Local Manifold Tangent Learning. NIPS 2004: 129-136 - [c59]Yves Grandvalet, Yoshua Bengio:
Semi-supervised Learning by Entropy Minimization. NIPS 2004: 529-536 - [c58]François Rivest, Yoshua Bengio, John Kalaska:
Brain Inspired Reinforcement Learning. NIPS 2004: 1129-1136 - [c57]Narjès Boufaden, Yoshua Bengio, Guy Lapalme:
Approche statistique pour le repérage de mots informatifs dans les textes oraux. TALN (Articles longs) 2004: 249-258 - 2003
- [j32]Ronan Collobert, Yoshua Bengio, Samy Bengio:
Scaling Large Learning Problems with Hard Parallel Mixtures. Int. J. Pattern Recognit. Artif. Intell. 17(3): 349-365 (2003) - [j31]Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Janvin:
A Neural Probabilistic Language Model. J. Mach. Learn. Res. 3: 1137-1155 (2003) - [j30]Yoshua Bengio, Nicolas Chapados:
Extensions to Metric-Based Model Selection. J. Mach. Learn. Res. 3: 1209-1227 (2003) - [j29]Claude Nadeau, Yoshua Bengio:
Inference for the Generalization Error. Mach. Learn. 52(3): 239-281 (2003) - [j28]Joumana Ghosn, Yoshua Bengio:
Bias learning, knowledge sharing. IEEE Trans. Neural Networks 14(4): 748-765 (2003) - [c56]Yoshua Bengio, Jean-Sébastien Senecal:
Quick Training of Probabilistic Neural Nets by Importance Sampling. AISTATS 2003: 17-24 - [c55]Yoshua Bengio, Jean-François Paiement, Pascal Vincent, Olivier Delalleau, Nicolas Le Roux, Marie Ouimet:
Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering. NIPS 2003: 177-184 - [c54]Yoshua Bengio, Yves Grandvalet:
No Unbiased Estimator of the Variance of K-Fold Cross-Validation. NIPS 2003: 513-520 - 2002
- [j27]Yoshua Bengio, Dale Schuurmans:
Guest Introduction: Special Issue on New Methods for Model Selection and Model Combination. Mach. Learn. 48(1-3): 5-7 (2002) - [j26]Olivier Chapelle, Vladimir Vapnik, Yoshua Bengio:
Model Selection for Small Sample Regression. Mach. Learn. 48(1-3): 9-23 (2002) - [j25]Pascal Vincent, Yoshua Bengio:
Kernel Matching Pursuit. Mach. Learn. 48(1-3): 165-187 (2002) - [j24]Ronan Collobert, Samy Bengio, Yoshua Bengio:
A Parallel Mixture of SVMs for Very Large Scale Problems. Neural Comput. 14(5): 1105-1114 (2002) - [j23]Ichiro Takeuchi, Yoshua Bengio, Takafumi Kanamori:
Robust Regression with Asymmetric Heavy-Tail Noise Distributions. Neural Comput. 14(10): 2469-2496 (2002) - [c53]Pascal Vincent, Yoshua Bengio:
Manifold Parzen Windows. NIPS 2002: 825-832 - [c52]Yoshua Bengio, Nicolas Chapados:
Metric-based model selection for time-series forecasting. NNSP 2002: 13-22 - [c51]Ronan Collobert, Yoshua Bengio, Samy Bengio:
Scaling Large Learning Problems with Hard Parallel Mixtures. SVM 2002: 8-23 - [c50]Narjès Boufaden, Guy Lapalme, Yoshua Bengio:
Segmentation en thèmes de conversations téléphoniques : traitement en amont pour l'extraction d'information. TALN (Posters) 2002: 376-381 - 2001
- [j22]Yoshua Bengio, Vincent-Philippe Lauzon, Réjean Ducharme:
Experiments on the application of IOHMMs to model financial returns series. IEEE Trans. Neural Networks 12(1): 113-123 (2001) - [j21]Nicolas Chapados, Yoshua Bengio:
Cost functions and model combination for VaR-based asset allocation using neural networks. IEEE Trans. Neural Networks 12(4): 890-906 (2001) - [c49]Ronan Collobert, Samy Bengio, Yoshua Bengio:
A Parallel Mixture of SVMs for Very Large Scale Problems. NIPS 2001: 633-640 - [c48]Pascal Vincent, Yoshua Bengio:
K-Local Hyperplane and Convex Distance Nearest Neighbor Algorithms. NIPS 2001: 985-992 - [c47]Nicolas Chapados, Yoshua Bengio, Pascal Vincent, Joumana Ghosn, Charles Dugas, Ichiro Takeuchi, Linyan Meng:
Estimating Car Insurance Premia: a Case Study in High-Dimensional Data Inference. NIPS 2001: 1369-1376 - [c46]Narjès Boufaden, Guy Lapalme, Yoshua Bengio:
Topic Segmentation : A First Stage to Dialog-Based Information Extraction. NLPRS 2001: 273-279 - 2000
- [j20]Holger Schwenk, Yoshua Bengio:
Boosting Neural Networks. Neural Comput. 12(8): 1869-1887 (2000) - [j19]Yoshua Bengio:
Gradient-Based Optimization of Hyperparameters. Neural Comput. 12(8): 1889-1900 (2000) - [j18]Samy Bengio, Yoshua Bengio:
Taking on the curse of dimensionality in joint distributions using neural networks. IEEE Trans. Neural Networks Learn. Syst. 11(3): 550-557 (2000) - [c45]Joumana Ghosn, Yoshua Bengio:
Bias Learning, Knowledge Sharing. IJCNN (1) 2000: 9-14 - [c44]Yoshua Bengio:
Probabilistic Neural Network Models for Sequential Data. IJCNN (5) 2000: 79-84 - [c43]Pascal Vincent, Yoshua Bengio:
A Neural Support Vector Network Architecture with Adaptive Kernels. IJCNN (5) 2000: 187-192 - [c42]Yoshua Bengio:
Continuous Optimization of Hyper-Parameters. IJCNN (1) 2000: 305-310 - [c41]Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, René Garcia:
Incorporating Second-Order Functional Knowledge for Better Option Pricing. NIPS 2000: 472-478 - [c40]Yoshua Bengio, Réjean Ducharme, Pascal Vincent:
A Neural Probabilistic Language Model. NIPS 2000: 932-938
1990 – 1999
- 1999
- [j17]Samy Bengio, Yoshua Bengio, Jacques Robert, Gilles Bélanger:
Stochastic Learning of Strategic Equilibria for Auctions. Neural Comput. 11(5): 1199-1209 (1999) - [c39]Steven Pigeon, Yoshua Bengio:
Binary Pseudowavelets and Applications to Bilevel Image Processing. Data Compression Conference 1999: 364-373 - [c38]Claude Nadeau, Yoshua Bengio:
Inference for the Generalization Error. NIPS 1999: 307-313 - [c37]Yoshua Bengio, Samy Bengio:
Modeling High-Dimensional Discrete Data with Multi-Layer Neural Networks. NIPS 1999: 400-406 - [c36]Yann LeCun, Patrick Haffner, Léon Bottou, Yoshua Bengio:
Object Recognition with Gradient-Based Learning. Shape, Contour and Grouping in Computer Vision 1999: 319- - 1998
- [j16]Yoshua Bengio, Francois Gingras, Bernard Goulard, Jean-Marc Lina, Keith Scott:
Gaussian Mixture Densities for Classification of Nuclear Power Plant Data. Comput. Artif. Intell. 17(2-3): 189-209 (1998) - [j15]Léon Bottou, Patrick Haffner, Paul G. Howard, Patrice Y. Simard, Yoshua Bengio, Yann LeCun:
High quality document image compression with "DjVu". J. Electronic Imaging 7(3): 410-425 (1998) - [j14]Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner:
Gradient-based learning applied to document recognition. Proc. IEEE 86(11): 2278-2324 (1998) - [c35]Patrick Haffner, Léon Bottou, Paul G. Howard, Patrice Y. Simard, Yoshua Bengio, Yann LeCun:
Browsing through High Quality Document Images with DjVu. ADL 1998: 309-318 - [c34]Léon Bottou, Paul G. Howard, Yoshua Bengio:
The Z-Coder Adaptive Binary Coder. Data Compression Conference 1998: 13-22 - [c33]Steven Pigeon, Yoshua Bengio:
A Memory-Efficient Adaptive Huffman Coding Algorthm for Very Large Sets of Symbols. Data Compression Conference 1998: 568 - [c32]Martin Bonneville, Jean Meunier, Yoshua Bengio, Jean-Paul Soucy:
Support vector machines for improving the classification of brain PET images. Medical Imaging: Image Processing 1998 - 1997
- [j13]Yoshua Bengio:
Using a Financial Training Criterion Rather than a Prediction Criterion. Int. J. Neural Syst. 8(4): 433-443 (1997) - [c31]Léon Bottou, Yoshua Bengio, Yann LeCun:
Global Training of Document Processing Systems Using Graph Transformer Networks. CVPR 1997: 489-494 - [c30]Holger Schwenk, Yoshua Bengio:
AdaBoosting Neural Networks: Application to on-line Character Recognition. ICANN 1997: 967-972 - [c29]Yann LeCun, Léon Bottou, Yoshua Bengio:
Reading checks with multilayer graph transformer networks. ICASSP 1997: 151-154 - [c28]Mazin Rahim, Yoshua Bengio, Yann LeCun:
Discriminative feature and model design for automatic speech recognition. EUROSPEECH 1997: 75-78 - [c27]Yoshua Bengio, Samy Bengio, Jean-Franc Isabelle, Yoram Singer:
Shared Context Probabilistic Transducers. NIPS 1997: 409-415 - [c26]Holger Schwenk, Yoshua Bengio:
Training Methods for Adaptive Boosting of Neural Networks. NIPS 1997: 647-653 - 1996
- [j12]Yoshua Bengio, Paolo Frasconi:
Input-output HMMs for sequence processing. IEEE Trans. Neural Networks 7(5): 1231-1249 (1996) - [c25]Joumana Ghosn, Yoshua Bengio:
Multi-Task Learning for Stock Selection. NIPS 1996: 946-952 - 1995
- [j11]Yoshua Bengio, Paolo Frasconi:
Diffusion of Context and Credit Information in Markovian Models. J. Artif. Intell. Res. 3: 249-270 (1995) - [j10]Yoshua Bengio, Yann LeCun, Craig R. Nohl, Christopher J. C. Burges:
LeRec: a NN/HMM hybrid for on-line handwriting recognition. Neural Comput. 7(6): 1289-1303 (1995) - [j9]Samy Bengio, Yoshua Bengio, Jocelyn Cloutier:
On the search for new learning rules for ANNs. Neural Process. Lett. 2(4): 26-30 (1995) - [c24]Yoshua Bengio, Francois Gingras:
Recurrent Neural Networks for Missing or Asynchronous Data. NIPS 1995: 395-401 - [c23]Salah El Hihi, Yoshua Bengio:
Hierarchical Recurrent Neural Networks for Long-Term Dependencies. NIPS 1995: 493-499 - [i1]Yoshua Bengio, Paolo Frasconi:
Diffusion of Context and Credit Information in Markovian Models. CoRR abs/cs/9510101 (1995) - 1994
- [j8]Yoshua Bengio, Patrice Y. Simard, Paolo Frasconi:
Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks 5(2): 157-166 (1994) - [c22]Samy Bengio, Yoshua Bengio, Jocelyn Cloutier:
Use of Genetic Programming for the Search of a New Learning Rule for Neural Networks. International Conference on Evolutionary Computation 1994: 324-327 - [c21]Yann LeCun, Yoshua Bengio:
Word-level training of a handwritten word recognizer based on convolutional neural networks. ICPR (2) 1994: 88-92 - [c20]Paolo Frasconi, Yoshua Bengio:
An EM approach to grammatical inference: input/output HMMs. ICPR (2) 1994: 289-294 - [c19]Yoshua Bengio, Yann LeCun:
Word normalization for online handwritten word recognition. ICPR (2) 1994: 409-413 - [c18]Yoshua Bengio, Paolo Frasconi:
An Input Output HMM Architecture. NIPS 1994: 427-434 - [c17]Yoshua Bengio, Paolo Frasconi:
Diffusion of Credit in Markovian Models. NIPS 1994: 553-560 - [c16]Léon Bottou, Yoshua Bengio:
Convergence Properties of the K-Means Algorithms. NIPS 1994: 585-592 - 1993
- [j7]Yoshua Bengio:
A Connectionist Approach to Speech Recognition. Int. J. Pattern Recognit. Artif. Intell. 7(4): 647-667 (1993) - [c15]Yoshua Bengio, Paolo Frasconi, Patrice Y. Simard:
The problem of learning long-term dependencies in recurrent networks. ICNN 1993: 1183-1188 - [c14]Yoshua Bengio, Paolo Frasconi:
Credit Assignment through Time: Alternatives to Backpropagation. NIPS 1993: 75-82 - [c13]Yoshua Bengio, Yann LeCun, Donnie Henderson:
Globally Trained Handwritten Word Recognizer Using Spatial Representation, Convolutional Neural Networks, and Hidden Markov Models. NIPS 1993: 937-944 - 1992
- [j6]Yoshua Bengio, Renato de Mori, Marco Gori:
Learning the dynamic nature of speech with back-propagation for sequences. Pattern Recognit. Lett. 13(5): 375-385 (1992) - [j5]Yoshua Bengio, Renato de Mori, Giovanni Flammia, Ralf Kompe:
Phonetically motivated acoustic parameters for continuous speech recognition using artificial neural networks. Speech Commun. 11(2-3): 261-271 (1992) - [j4]Yoshua Bengio, Renato De Mori, Giovanni Flammia, Ralf Kompe:
Global optimization of a neural network-hidden Markov model hybrid. IEEE Trans. Neural Networks 3(2): 252-259 (1992) - 1991
- [c12]Yoshua Bengio, Renato de Mori, Giovanni Flammia, Ralf Kompe:
Phonetically motivated acoustic parameters for continuous speech recognition using artificial neural networks. EUROSPEECH 1991: 551-554 - [c11]Yoshua Bengio, Renato de Mori, Giovanni Flammia, Ralf Kompe:
A comparative study on hybrid acoustic phonetic decoders based on artificial neural networks. EUROSPEECH 1991: 1007-1010 - [c10]Yoshua Bengio, Renato de Mori, Giovanni Flammia, Ralf Kompe:
Neural Network - Gaussian Mixture Hybrid for Speech Recognition or Density Estimation. NIPS 1991: 175-182 - 1990
- [j3]Yoshua Bengio, Yannick Pouliot:
Efficient recognition of immunoglobulin domains from amino acid sequences using a neural network. Comput. Appl. Biosci. 6(4): 319-324 (1990) - [j2]Piero Cosi, Yoshua Bengio, Renato de Mori:
Phonetically-based multi-layered neural networks for vowel classification. Speech Commun. 9(1): 15-29 (1990) - [c9]Yoshua Bengio, Régis Cardin, Renato De Mori, Yves Normandin:
A hybrid coder for hidden Markov models using a recurrent neural network. ICASSP 1990: 537-540
1980 – 1989
- 1989
- [j1]Yoshua Bengio, Régis Cardin, Renato de Mori, Ettore Merlo:
Programmable Execution of Multi-Layered Networks for Automatic Speech Recognition. Commun. ACM 32(2): 195-199 (1989) - [c8]Yoshua Bengio, Régis Cardin, Piero Cosi, Renato De Mori:
Speech coding with multi-layer networks. ICASSP 1989: 164-167 - [c7]Renato de Mori, Yoshua Bengio, Piero Cosi:
On the Generalization Capability of Multi-Layered Networks in the Extraction of Speech Properties. IJCAI 1989: 1531-1536 - [c6]Yoshua Bengio, Régis Cardin, Piero Cosi, Renato De Mori, Ettore Merlo:
Speech coding with multilayer networks. NATO Neurocomputing 1989: 207-216 - [c5]Yoshua Bengio, Renato de Mori, Régis Cardin:
Speaker Independent Speech Recognition with Neural Networks and Speech Knowledge. NIPS 1989: 218-225 - [c4]Yoshua Bengio, Samy Bengio, Yannick Pouliot, Patrick Agin:
A Neural Network to Detect Homologies in Proteins. NIPS 1989: 423-430 - 1988
- [c3]Renato de Mori, Yoshua Bengio, Régis Cardin:
Data-Driven Execution of Multi-Layered Networks for Automatic Speech Recognition. AAAI 1988: 734-738 - [c2]Yoshua Bengio, Renato De Mori:
Use of neural networks for the recognition of place of articulation. ICASSP 1988: 103-106 - [c1]Yoshua Bengio, Régis Cardin, Renato de Mori, Piero Cosi:
Use of Multi-Layered Networks for Coding Speech with Phonetic Features. NIPS 1988: 224-231
Coauthor Index
aka: Philémon Brakel
aka: KyungHyun Cho
aka: Aniket Rajiv Didolkar
aka: Çaglar Gülçehre
aka: Stanislaw Kamil Jastrzebski
aka: Bart van Merriënboer
aka: Renato de Mori
aka: Iulian Vlad Serban
aka: Jose M. R. Sotelo
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-08 21:32 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint