


default search action
Hong Li 0006
Person information
- affiliation: Inner Mongolia University, School of Mathematical Sciences, Hohhot, China
Other persons with the same name
- Hong Li — disambiguation page
- Hong Li 0001 — DFKI, Language Technology Lab, Saarbrücken, Germany
- Hong Li 0002
— Beijing Jiaotong University, School of Electrical Engineering, China (and 1 more)
- Hong Li 0003
— Tsinghua University, Department of Electronic Engineering, Beijing, China
- Hong Li 0004
— Chinese Academy of Sciences, Institute of Information Engineering, Beijing Key Laboratory of IOT Information Security, China
- Hong Li 0005
— Xianyang Normal University, School of Computer Science, China (and 1 more)
- Hong Li 0007
— Xidian University, School of Mathematics and Statistics, National Key Laboratory of Antennas and Microwave Technology, Xi'an, China
- Hong Li 0008
— University of Lapland, Rovaniemi, Finland
- Hong Li 0009
— Huazhong University of Science and Technology, School of Mathematics and Statistics, Wuhan, China
- Hong Li 0010
— Nanjing University of Aeronautics and Astronautics, College of Automation Engineering, China
- Hong Li 0011 — New Jersey Institute of Technology, Center for Wireless Communication and Signal Processing Research, Newark, NJ, USA
- Hong Li 0012
— NXP Semiconductors, Eindhoven, The Netherlands (and 3 more)
- Hong Li 0013 — Chinese Academy of Sciences, Shanghai Institutes for Biological Sciences, Key Laboratory of Computational Biology, China
- Hong Li 0014 — East Carolina University, Department of Information Management Systems, Greenville, NC, USA
- Hong Li 0015
— Shanghai Jiao Tong University, Shanghai, China (and 2 more)
- Hong Li 0016 — Beihang University, Beijing, China
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j52]Yan Wang, Baoli Yin, Yang Liu, Hong Li:
Modified L1 Crank-Nicolson finite element methods with unconditional convergence for nonlinear time-fractional Schrödinger equations. Commun. Nonlinear Sci. Numer. Simul. 143: 108623 (2025) - 2024
- [j51]Xuehui Ren
, Hong Li
:
A Reduced-Dimension Weighted Explicit Finite Difference Method Based on the Proper Orthogonal Decomposition Technique for the Space-Fractional Diffusion Equation. Axioms 13(7): 461 (2024) - [j50]Xiaohui Chang
, Hong Li
:
The Reduced-Dimension Method for Crank-Nicolson Mixed Finite Element Solution Coefficient Vectors of the Extended Fisher-Kolmogorov Equation. Axioms 13(10): 710 (2024) - [j49]Yan Wang, Yining Yang, Jinfeng Wang, Hong Li
, Yang Liu
:
Unconditional analysis of the linearized second-order time-stepping scheme combined with a mixed element method for a nonlinear time fractional fourth-order wave equation. Comput. Math. Appl. 157: 74-91 (2024) - [j48]Xinyuan Liu, Nan Liu, Yang Liu
, Hong Li
:
Analysis of variable-time-step BDF2 combined with the fast two-grid finite element algorithm for the FitzHugh-Nagumo model. Comput. Math. Appl. 170: 186-203 (2024) - 2023
- [j47]Siqin Tang, Hong Li
:
A Space-Time Legendre-Petrov-Galerkin Method for Third-Order Differential Equations. Axioms 12(3): 281 (2023) - [j46]Li Chai, Yang Liu
, Hong Li
, Wei Gao:
Fast TT-M fourth-order compact difference schemes for a two-dimensional space fractional Gray-Scott model. Comput. Math. Appl. 141: 191-206 (2023) - [j45]Zhihui Zhao, Hong Li:
Numerical study of two-dimensional Burgers' equation by using a continuous Galerkin method. Comput. Math. Appl. 149: 38-48 (2023) - [j44]Yuxuan Niu, Yang Liu
, Hong Li, Fawang Liu:
Fast high-order compact difference scheme for the nonlinear distributed-order fractional Sobolev model appearing in porous media. Math. Comput. Simul. 203: 387-407 (2023) - [j43]Zhichao Fang, Jie Zhao, Hong Li, Yang Liu:
A fast time two-mesh finite volume element algorithm for the nonlinear time-fractional coupled diffusion model. Numer. Algorithms 93(2): 863-898 (2023) - [j42]Yaxin Hou, Cao Wen, Yang Liu, Hong Li:
A two-grid ADI finite element approximation for a nonlinear distributed-order fractional sub-diffusion equation. Networks Heterog. Media 18(2): 855-876 (2023) - 2022
- [j41]Jiale Tian, Ziyu Sun, Yang Liu
, Hong Li
:
TT-M Finite Element Algorithm for the Coupled Schrödinger-Boussinesq Equations. Axioms 11(7): 314 (2022) - [j40]Ziyu Sun, Yang Liu
, Baoli Yin, Hong Li:
Fast structure-preserving difference algorithm for 2D nonlinear space-fractional wave models. Comput. Math. Appl. 123: 40-58 (2022) - [j39]Siriguleng He, Yang Liu
, Hong Li
:
A Time Two-Mesh Compact Difference Method for the One-Dimensional Nonlinear Schrödinger Equation. Entropy 24(6): 806 (2022) - [j38]Ruihan Feng, Yang Liu
, Yaxin Hou, Hong Li, Zhichao Fang:
Mixed element algorithm based on a second-order time approximation scheme for a two-dimensional nonlinear time fractional coupled sub-diffusion model. Eng. Comput. 38(1): 51-68 (2022) - [j37]Minghui Song
, Jinfeng Wang
, Yang Liu
, Hong Li:
Local discontinuous Galerkin method combined with the L2 formula for the time fractional Cable model. J. Appl. Math. Comput. 68(6): 4457-4478 (2022) - 2021
- [j36]Ziming Dong, Hong Li:
A space-time finite element method based on local projection stabilization in space and discontinuous Galerkin method in time for convection-diffusion-reaction equations. Appl. Math. Comput. 397: 125937 (2021) - [j35]Li Chai, Yang Liu
, Hong Li:
Fourth-order compact difference schemes for the two-dimensional nonlinear fractional mobile/immobile transport models. Comput. Math. Appl. 100: 1-10 (2021) - [j34]Baoli Yin, Jinfeng Wang
, Yang Liu
, Hong Li:
A structure preserving difference scheme with fast algorithms for high dimensional nonlinear space-fractional Schrödinger equations. J. Comput. Phys. 425: 109869 (2021) - [j33]Yang Liu
, Baoli Yin, Hong Li, Zhimin Zhang:
The Unified Theory of Shifted Convolution Quadrature for Fractional Calculus. J. Sci. Comput. 89(1): 18 (2021) - [j32]Xinghua Gao, Baoli Yin, Hong Li, Yang Liu
:
TT-M FE method for a 2D nonlinear time distributed-order and space fractional diffusion equation. Math. Comput. Simul. 181: 117-137 (2021) - [j31]Jinfeng Wang
, Baoli Yin, Yang Liu
, Hong Li, Zhichao Fang:
Mixed finite element algorithm for a nonlinear time fractional wave model. Math. Comput. Simul. 188: 60-76 (2021) - [j30]Cao Wen, Yang Liu
, Baoli Yin, Hong Li, Jinfeng Wang
:
Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model. Numer. Algorithms 88(2): 523-553 (2021) - [i5]Zhichao Fang, Jie Zhao, Hong Li, Yang Liu:
Finite Volume Element Methods for Two-Dimensional Time Fractional Reaction-Diffusion Equations on Triangular Grids. CoRR abs/2101.12541 (2021) - 2020
- [j29]Baoli Yin, Yang Liu
, Hong Li:
A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations. Appl. Math. Comput. 368 (2020) - [j28]Baoli Yin, Yang Liu
, Hong Li:
Necessity of introducing non-integer shifted parameters by constructing high accuracy finite difference algorithms for a two-sided space-fractional advection-diffusion model. Appl. Math. Lett. 105: 106347 (2020) - [j27]Zhihui Zhao, Hong Li, Yang Liu
:
Analysis of a continuous Galerkin method with mesh modification for two-dimensional telegraph equation. Comput. Math. Appl. 79(3): 588-602 (2020) - [j26]Xinghua Gao, Fawang Liu
, Hong Li, Yang Liu
, Ian W. Turner, Baoli Yin:
A novel finite element method for the distributed-order time fractional Cable equation in two dimensions. Comput. Math. Appl. 80(5): 923-939 (2020) - [j25]Yang Liu
, Enyu Fan, Baoli Yin, Hong Li, Jinfeng Wang:
TT-M finite element algorithm for a two-dimensional space fractional Gray-Scott model. Comput. Math. Appl. 80(7): 1793-1809 (2020) - [j24]Baoli Yin, Yang Liu
, Hong Li, Zhimin Zhang:
Finite Element Methods Based on Two Families of Second-Order Numerical Formulas for the Fractional Cable Model with Smooth Solutions. J. Sci. Comput. 84(1): 2 (2020) - [i4]Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang:
Efficient shifted fractional trapezoidal rule for subdiffusion problems with nonsmooth solutions on uniform meshes. CoRR abs/2010.12242 (2020)
2010 – 2019
- 2019
- [j23]Baoli Yin, Yang Liu
, Hong Li, Siriguleng He:
Fast algorithm based on TT-M FE system for space fractional Allen-Cahn equations with smooth and non-smooth solutions. J. Comput. Phys. 379: 351-372 (2019) - [j22]Yang Liu, Yanwei Du, Hong Li, Fawang Liu
, Yajun Wang:
Some second-order ϴ schemes combined with finite element method for nonlinear fractional cable equation. Numer. Algorithms 80(2): 533-555 (2019) - [i3]Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang:
Two families of novel second-order fractional numerical formulas and their applications to fractional differential equations. CoRR abs/1906.01242 (2019) - [i2]Yang Liu, Baoli Yin, Hong Li, Zhimin Zhang:
The unified theory of shifted convolution quadrature for fractional calculus. CoRR abs/1908.01136 (2019) - [i1]Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang:
Finite element methods based on two families of novel second-order numerical formulas for the fractional Cable model. CoRR abs/1911.08166 (2019) - 2018
- [j21]Nan Liu, Yang Liu, Hong Li, Jinfeng Wang
:
Time second-order finite difference/finite element algorithm for nonlinear time-fractional diffusion problem with fourth-order derivative term. Comput. Math. Appl. 75(10): 3521-3536 (2018) - 2017
- [j20]Jinfeng Wang
, Tianqi Liu, Hong Li, Yang Liu, Siriguleng He:
Second-order approximation scheme combined with H1-Galerkin MFE method for nonlinear time fractional convection-diffusion equation. Comput. Math. Appl. 73(6): 1182-1196 (2017) - [j19]Yang Liu, Min Zhang, Hong Li, Jichun Li
:
High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation. Comput. Math. Appl. 73(6): 1298-1314 (2017) - [j18]Zhihui Zhao, Hong Li, Zhendong Luo:
Analysis of a space-time continuous Galerkin method for convection-dominated Sobolev equations. Comput. Math. Appl. 73(8): 1643-1656 (2017) - [j17]Yaxin Hou, Ruihan Feng, Yang Liu, Hong Li, Wei Gao:
A MFE method combined with L1-approximation for a nonlinear time-fractional coupled diffusion system. Int. J. Model. Simul. Sci. Comput. 8(1): 1750012:1-1750012:21 (2017) - [j16]Yanwei Du, Yang Liu, Hong Li, Zhichao Fang, Siriguleng He:
Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation. J. Comput. Phys. 344: 108-126 (2017) - 2015
- [j15]Yang Liu, Zhichao Fang, Hong Li, Siriguleng He, Wei Gao:
A new expanded mixed method for parabolic integro-differential equations. Appl. Math. Comput. 259: 600-613 (2015) - [j14]Yang Liu, Yanwei Du, Hong Li, Siriguleng He, Wei Gao:
Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem. Comput. Math. Appl. 70(4): 573-591 (2015) - [j13]Yang Liu, Yanwei Du, Hong Li, Jichun Li
, Siriguleng He:
A two-grid mixed finite element method for a nonlinear fourth-order reaction-diffusion problem with time-fractional derivative. Comput. Math. Appl. 70(10): 2474-2492 (2015) - 2014
- [j12]Yang Liu, Zhichao Fang
, Hong Li, Siriguleng He:
A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 243: 703-717 (2014) - [j11]Yang Liu, Hong Li, Siriguleng He, Zhichao Fang, Jinfeng Wang:
A New Characteristic Expanded mixed method for Sobolev equation with convection Term. Int. J. Model. Simul. Sci. Comput. 5(1): 1350015 (2014) - [j10]Meng Zhao, Yang Liu, Hong Li:
Fully discrete two-step mixed element method for the symmetric regularized long wave equation. Int. J. Model. Simul. Sci. Comput. 5(3): 1450007 (2014) - [j9]Jincun Liu, Hong Li, Zhichao Fang, Yang Liu:
Application of low-dimensional finite element method to fractional diffusion equation. Int. J. Model. Simul. Sci. Comput. 5(4): 1450022 (2014) - 2013
- [j8]Zhendong Luo, Hong Li, Ping Sun:
A reduced-order Crank-Nicolson finite volume element formulation based on POD method for parabolic equations. Appl. Math. Comput. 219(11): 5887-5900 (2013) - [j7]Siriguleng He, Hong Li, Yang Liu:
Analysis of mixed finite element methods for fourth-order wave equations. Comput. Math. Appl. 65(1): 1-16 (2013) - [j6]Yang Liu
, Hong Li, Wei Gao, Siriguleng He, Zhichao Fang:
A Novel Characteristic Expanded Mixed Method for Reaction-Convection-Diffusion Problems. J. Appl. Math. 2013: 683205:1-683205:11 (2013) - [j5]Zhendong Luo, Hong Li, Ping Sun, Jing An, Ionel Michael Navon
:
A reduced-order finite volume element formulation based on POD method and numerical simulation for two-dimensional solute transport problems. Math. Comput. Simul. 89: 50-68 (2013) - 2012
- [j4]Yang Liu, Hong Li:
Corrigendum to "H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations" [Appl. Math. Comput. 212 (2009) 446-457]. Appl. Math. Comput. 218(19): 10008 (2012) - [j3]Yang Liu
, Hong Li, Jinfeng Wang
, Wei Gao:
A New Positive Definite Expanded Mixed Finite Element Method for Parabolic Integrodifferential Equations. J. Appl. Math. 2012: 391372:1-391372:24 (2012) - [j2]Wei Gao, Hong Li, Yang Liu
, Yong-Jun Jian:
An oscillation-free high order TVD/CBC-based upwind scheme for convection discretization. Numer. Algorithms 59(1): 29-50 (2012)
2000 – 2009
- 2009
- [j1]Yang Liu
, Hong Li:
H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations. Appl. Math. Comput. 212(2): 446-457 (2009)
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-02-21 20:33 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint