default search action
Santu Rana
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c101]Tuan Hoang, Hung Tran, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Revisiting Sample Weights Based Method for Noisy-Label Detection and Classification. ACCV (1) 2024: 95-110 - [c100]Kishan R. Nagiredla, Buddhika Laknath Semage, Arun Kumar Anjanapura Venkatesh, Thommen George Karimpanal, Santu Rana:
ECoDe: A Sample-Efficient Method for Co-design of Robotic Agents. AI (2) 2024: 3-15 - [c99]Kiran Purohit, Soumi Das, Sourangshu Bhattacharya, Santu Rana:
A Data-Driven Defense Against Edge-Case Model Poisoning Attacks on Federated Learning. ECAI 2024: 2162-2169 - [c98]Kien Do, Dung Nguyen, Hung Le, Thao Le, Dang Nguyen, Haripriya Harikumar, Truyen Tran, Santu Rana, Svetha Venkatesh:
Revisiting the Dataset Bias Problem from a Statistical Perspective. ECAI 2024: 3120-3127 - [c97]Ajsal Shereef Palattuparambil, Thommen Karimpanal George, Santu Rana:
Personalisation via Dynamic Policy Fusion. HAI 2024: 459-461 - [c96]Banibrata Ghosh, Haripriya Harikumar, Khoa D. Doan, Svetha Venkatesh, Santu Rana:
Composite Concept Extraction Through Backdooring. ICPR (29) 2024: 276-290 - [c95]Manisha Senadeera, Thommen Karimpanal George, Stephan Jacobs, Sunil Gupta, Santu Rana:
EMOTE: An Explainable Architecture for Modelling the Other through Empathy. IJCAI 2024: 4876-4884 - [c94]A. V. Arun Kumar, Alistair Shilton, Sunil Gupta, Santu Rana, Stewart Greenhill, Svetha Venkatesh:
Enhanced Bayesian Optimization via Preferential Modeling of Abstract Properties. ECML/PKDD (6) 2024: 234-250 - [c93]Tuan Hoang, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning Interference with Gradient Projection. WACV 2024: 4807-4816 - [i60]Kien Do, Dung Nguyen, Hung Le, Thao Le, Dang Nguyen, Haripriya Harikumar, Truyen Tran, Santu Rana, Svetha Venkatesh:
Revisiting the Dataset Bias Problem from a Statistical Perspective. CoRR abs/2402.03577 (2024) - [i59]A. V. Arun Kumar, Alistair Shilton, Sunil Gupta, Santu Rana, Stewart Greenhill, Svetha Venkatesh:
Enhanced Bayesian Optimization via Preferential Modeling of Abstract Properties. CoRR abs/2402.17343 (2024) - [i58]Aly M. Kassem, Omar Mahmoud, Niloofar Mireshghallah, Hyunwoo Kim, Yulia Tsvetkov, Yejin Choi, Sherif Saad, Santu Rana:
Alpaca against Vicuna: Using LLMs to Uncover Memorization of LLMs. CoRR abs/2403.04801 (2024) - [i57]Alistair Shilton, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime. CoRR abs/2405.15254 (2024) - [i56]Banibrata Ghosh, Haripriya Harikumar, Khoa D. Doan, Svetha Venkatesh, Santu Rana:
Composite Concept Extraction through Backdooring. CoRR abs/2406.13411 (2024) - [i55]Ajsal Shereef Palattuparambil, Thommen George Karimpanal, Santu Rana:
Personalisation via Dynamic Policy Fusion. CoRR abs/2409.20016 (2024) - [i54]Tri Minh Nguyen, Sherif Abdulkader Tawfik, Truyen Tran, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks. CoRR abs/2411.04323 (2024) - 2023
- [j22]Thommen George Karimpanal, Hung Le, Majid Abdolshah, Santu Rana, Sunil Gupta, Truyen Tran, Svetha Venkatesh:
Balanced Q-learning: Combining the influence of optimistic and pessimistic targets. Artif. Intell. 325: 104021 (2023) - [c92]Maxence Hussonnois, Thommen George Karimpanal, Santu Rana:
Controlled Diversity with Preference : Towards Learning a Diverse Set of Desired Skills. AAMAS 2023: 1135-1143 - [c91]Prashant W. Patil, Sunil Gupta, Santu Rana, Svetha Venkatesh, Subrahmanyam Murala:
Multi-weather Image Restoration via Domain Translation. ICCV 2023: 21639-21648 - [c90]Alistair Shilton, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Gradient Descent in Neural Networks as Sequential Learning in Reproducing Kernel Banach Space. ICML 2023: 31435-31488 - [i53]Alistair Shilton, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Gradient Descent in Neural Networks as Sequential Learning in RKBS. CoRR abs/2302.00205 (2023) - [i52]Buddhika Laknath Semage, Thommen George Karimpanal, Santu Rana, Svetha Venkatesh:
Zero-shot Sim2Real Adaptation Across Environments. CoRR abs/2302.04013 (2023) - [i51]Sunil Gupta, Alistair Shilton, Arun Kumar A. V., Shannon Ryan, Majid Abdolshah, Hung Le, Santu Rana, Julian Berk, Mahad Rashid, Svetha Venkatesh:
BO-Muse: A human expert and AI teaming framework for accelerated experimental design. CoRR abs/2303.01684 (2023) - [i50]Maxence Hussonnois, Thommen George Karimpanal, Santu Rana:
Controlled Diversity with Preference : Towards Learning a Diverse Set of Desired Skills. CoRR abs/2303.04592 (2023) - [i49]Kiran Purohit, Soumi Das, Sourangshu Bhattacharya, Santu Rana:
LearnDefend: Learning to Defend against Targeted Model-Poisoning Attacks on Federated Learning. CoRR abs/2305.02022 (2023) - [i48]Manisha Senadeera, Thommen Karimpanal George, Sunil Gupta, Stephan Jacobs, Santu Rana:
EMOTE: An Explainable architecture for Modelling the Other Through Empathy. CoRR abs/2306.00295 (2023) - [i47]Manisha Senadeera, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Predictive Modeling through Hyper-Bayesian Optimization. CoRR abs/2308.00285 (2023) - [i46]Thommen George Karimpanal, Buddhika Laknath Semage, Santu Rana, Hung Le, Truyen Tran, Sunil Gupta, Svetha Venkatesh:
LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient Querying. CoRR abs/2308.13542 (2023) - [i45]Kishan R. Nagiredla, Buddhika Laknath Semage, Thommen George Karimpanal, Arun Kumar A. V., Santu Rana:
Sample-Efficient Co-Design of Robotic Agents Using Multi-fidelity Training on Universal Policy Network. CoRR abs/2309.04085 (2023) - [i44]Tuan Hoang, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning Interference with Gradient Projection. CoRR abs/2312.04095 (2023) - 2022
- [j21]Haripriya Harikumar, Santu Rana, Sunil Gupta, Thin Nguyen, Ramachandra Kaimal, Svetha Venkatesh:
Prescriptive analytics with differential privacy. Int. J. Data Sci. Anal. 13(2): 123-138 (2022) - [j20]Deepthi Praveenlal Kuttichira, Sunil Gupta, Dang Nguyen, Santu Rana, Svetha Venkatesh:
Verification of integrity of deployed deep learning models using Bayesian Optimization. Knowl. Based Syst. 241: 108238 (2022) - [j19]Prashant W. Patil, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Dual-frame spatio-temporal feature modulation for video enhancement. Pattern Recognit. 130: 108822 (2022) - [c89]Alistair Shilton, Sunil Gupta, Santu Rana, Arun Kumar Anjanapura Venkatesh, Svetha Venkatesh:
TRF: Learning Kernels with Tuned Random Features. AAAI 2022: 8286-8294 - [c88]Hung Tran-The, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Regret Bounds for Expected Improvement Algorithms in Gaussian Process Bandit Optimization. AISTATS 2022: 8715-8737 - [c87]Manisha Senadeera, Thommen George Karimpanal, Sunil Gupta, Santu Rana:
Sympathy-based Reinforcement Learning Agents. AAMAS 2022: 1164-1172 - [c86]Prashant W. Patil, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Video Restoration Framework and Its Meta-adaptations to Data-Poor Conditions. ECCV (28) 2022: 143-160 - [c85]Kien Do, Haripriya Harikumar, Hung Le, Dung Nguyen, Truyen Tran, Santu Rana, Dang Nguyen, Willy Susilo, Svetha Venkatesh:
Towards Effective and Robust Neural Trojan Defenses via Input Filtering. ECCV (5) 2022: 283-300 - [c84]Buddhika Laknath Semage, Thommen George Karimpanal, Santu Rana, Svetha Venkatesh:
Intuitive Physics Guided Exploration for Sample Efficient Sim2real Transfer. ICPR Workshops (2) 2022: 674-686 - [c83]Buddhika Laknath Semage, Thommen George Karimpanal, Santu Rana, Svetha Venkatesh:
Fast Model-based Policy Search for Universal Policy Networks. ICPR 2022: 2314-2320 - [c82]Buddhika Laknath Semage, Thommen George Karimpanal, Santu Rana, Svetha Venkatesh:
Uncertainty Aware System Identification with Universal Policies. ICPR 2022: 2321-2327 - [c81]Kien Do, Hung Le, Dung Nguyen, Dang Nguyen, Haripriya Harikumar, Truyen Tran, Santu Rana, Svetha Venkatesh:
Momentum Adversarial Distillation: Handling Large Distribution Shifts in Data-Free Knowledge Distillation. NeurIPS 2022 - [c80]Hung Tran-The, Sunil Gupta, Santu Rana, Tuan Truong, Long Tran-Thanh, Svetha Venkatesh:
Expected Improvement for Contextual Bandits. NeurIPS 2022 - [c79]Arun Kumar A. V., Santu Rana, Alistair Shilton, Svetha Venkatesh:
Human-AI Collaborative Bayesian Optimisation. NeurIPS 2022 - [c78]Preeti Gopal, Sunil Gupta, Santu Rana, Vuong Le, Trong Nguyen, Svetha Venkatesh:
Real-Time Skill Discovery in Intelligent Virtual Assistants. PAKDD (1) 2022: 315-327 - [i43]Buddhika Laknath Semage, Thommen George Karimpanal, Santu Rana, Svetha Venkatesh:
Fast Model-based Policy Search for Universal Policy Networks. CoRR abs/2202.05843 (2022) - [i42]Buddhika Laknath Semage, Thommen George Karimpanal, Santu Rana, Svetha Venkatesh:
Uncertainty Aware System Identification with Universal Policies. CoRR abs/2202.05844 (2022) - [i41]Kien Do, Haripriya Harikumar, Hung Le, Dung Nguyen, Truyen Tran, Santu Rana, Dang Nguyen, Willy Susilo, Svetha Venkatesh:
Towards Effective and Robust Neural Trojan Defenses via Input Filtering. CoRR abs/2202.12154 (2022) - [i40]Hung Tran-The, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Regret Bounds for Expected Improvement Algorithms in Gaussian Process Bandit Optimization. CoRR abs/2203.07875 (2022) - [i39]Phuoc Nguyen, Truyen Tran, Ky Le, Sunil Gupta, Santu Rana, Dang Nguyen, Trong Nguyen, Shannon Ryan, Svetha Venkatesh:
Fast Conditional Network Compression Using Bayesian HyperNetworks. CoRR abs/2205.06404 (2022) - [i38]Haripriya Harikumar, Santu Rana, Kien Do, Sunil Gupta, Wei Zong, Willy Susilo, Svetha Venkatesh:
Defense Against Multi-target Trojan Attacks. CoRR abs/2207.03895 (2022) - [i37]Kien Do, Hung Le, Dung Nguyen, Dang Nguyen, Haripriya Harikumar, Truyen Tran, Santu Rana, Svetha Venkatesh:
Momentum Adversarial Distillation: Handling Large Distribution Shifts in Data-Free Knowledge Distillation. CoRR abs/2209.10359 (2022) - 2021
- [j18]Haripriya Harikumar, Thomas P. Quinn, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Personalized single-cell networks: a framework to predict the response of any gene to any drug for any patient. BioData Min. 14(1) (2021) - [j17]Dang Nguyen, Sunil Gupta, Santu Rana, Alistair Shilton, Svetha Venkatesh:
Fairness improvement for black-box classifiers with Gaussian process. Inf. Sci. 576: 542-556 (2021) - [j16]Phuc Luong, Dang Nguyen, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Adaptive cost-aware Bayesian optimization. Knowl. Based Syst. 232: 107481 (2021) - [c77]Huong Ha, Sunil Gupta, Santu Rana, Svetha Venkatesh:
High Dimensional Level Set Estimation with Bayesian Neural Network. AAAI 2021: 12095-12103 - [c76]Majid Abdolshah, Hung Le, Thommen George Karimpanal, Sunil Gupta, Santu Rana, Svetha Venkatesh:
A New Representation of Successor Features for Transfer across Dissimilar Environments. ICML 2021: 1-9 - [c75]Hung Tran-The, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Bayesian Optimistic Optimisation with Exponentially Decaying Regret. ICML 2021: 10390-10400 - [c74]Wei Zong, Yang-Wai Chow, Willy Susilo, Santu Rana, Svetha Venkatesh:
Targeted Universal Adversarial Perturbations for Automatic Speech Recognition. ISC 2021: 358-373 - [c73]Arun Kumar Anjanapura Venkatesh, Alistair Shilton, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Kernel Functional Optimisation. NeurIPS 2021: 4725-4737 - [c72]Ang Yang, Cheng Li, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Sparse Spectrum Gaussian Process for Bayesian Optimization. PAKDD (2) 2021: 257-268 - [c71]Phuoc Nguyen, Truyen Tran, Sunil Gupta, Santu Rana, Hieu-Chi Dam, Svetha Venkatesh:
Variational Hyper-encoding Networks. ECML/PKDD (2) 2021: 100-115 - [c70]Dang Nguyen, Sunil Gupta, Trong Nguyen, Santu Rana, Phuoc Nguyen, Truyen Tran, Ky Le, Shannon Ryan, Svetha Venkatesh:
Knowledge Distillation with Distribution Mismatch. ECML/PKDD (2) 2021: 250-265 - [c69]Phuoc Nguyen, Truyen Tran, Ky Le, Sunil Gupta, Santu Rana, Dang Nguyen, Trong Nguyen, Shannon Ryan, Svetha Venkatesh:
Fast Conditional Network Compression Using Bayesian HyperNetworks. ECML/PKDD (3) 2021: 330-345 - [i36]Huong Ha, Sunil Gupta, Santu Rana, Svetha Venkatesh:
ALT-MAS: A Data-Efficient Framework for Active Testing of Machine Learning Algorithms. CoRR abs/2104.04999 (2021) - [i35]Buddhika Laknath Semage, Thommen George Karimpanal, Santu Rana, Svetha Venkatesh:
Intuitive Physics Guided Exploration for Sample Efficient Sim2real Transfer. CoRR abs/2104.08795 (2021) - [i34]Hung Tran-The, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Bayesian Optimistic Optimisation with Exponentially Decaying Regret. CoRR abs/2105.04332 (2021) - [i33]Majid Abdolshah, Hung Le, Thommen George Karimpanal, Sunil Gupta, Santu Rana, Svetha Venkatesh:
A New Representation of Successor Features for Transfer across Dissimilar Environments. CoRR abs/2107.08426 (2021) - [i32]Hung Tran-The, Sunil Gupta, Thanh Nguyen-Tang, Santu Rana, Svetha Venkatesh:
Combining Online Learning and Offline Learning for Contextual Bandits with Deficient Support. CoRR abs/2107.11533 (2021) - [i31]Majid Abdolshah, Hung Le, Thommen George Karimpanal, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Plug and Play, Model-Based Reinforcement Learning. CoRR abs/2108.08960 (2021) - [i30]Haripriya Harikumar, Kien Do, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Semantic Host-free Trojan Attack. CoRR abs/2110.13414 (2021) - [i29]Thommen George Karimpanal, Hung Le, Majid Abdolshah, Santu Rana, Sunil Gupta, Truyen Tran, Svetha Venkatesh:
Balanced Q-learning: Combining the Influence of Optimistic and Pessimistic Targets. CoRR abs/2111.02787 (2021) - 2020
- [j15]Stewart Greenhill, Santu Rana, Sunil Gupta, Pratibha Vellanki, Svetha Venkatesh:
Bayesian Optimization for Adaptive Experimental Design: A Review. IEEE Access 8: 13937-13948 (2020) - [j14]Tinu Theckel Joy, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Batch Bayesian optimization using multi-scale search. Knowl. Based Syst. 187 (2020) - [j13]Julian Berk, Sunil Gupta, Santu Rana, Vu Nguyen, Svetha Venkatesh:
Bayesian optimisation in unknown bounded search domains. Knowl. Based Syst. 195: 105645 (2020) - [j12]Anil Ramachandran, Sunil Gupta, Santu Rana, Cheng Li, Svetha Venkatesh:
Incorporating expert prior in Bayesian optimisation via space warping. Knowl. Based Syst. 195: 105663 (2020) - [j11]Tinu Theckel Joy, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Fast hyperparameter tuning using Bayesian optimization with directional derivatives. Knowl. Based Syst. 205: 106247 (2020) - [j10]Steven Allender, Joshua Hayward, Sunil Gupta, A. Sanigorski, Santu Rana, Hugh Seward, Stephan Jacobs, Svetha Venkatesh:
Bayesian strategy selection identifies optimal solutions to complex problems using an example from GP prescribing. npj Digit. Medicine 3 (2020) - [c68]Hung Tran-The, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Trading Convergence Rate with Computational Budget in High Dimensional Bayesian Optimization. AAAI 2020: 2425-2432 - [c67]Dang Nguyen, Sunil Gupta, Santu Rana, Alistair Shilton, Svetha Venkatesh:
Bayesian Optimization for Categorical and Category-Specific Continuous Inputs. AAAI 2020: 5256-5263 - [c66]Alistair Shilton, Sunil Gupta, Santu Rana, Pratibha Vellanki, Cheng Li, Svetha Venkatesh, Laurence Park, Alessandra Sutti, David Rubin, Thomas Dorin, Alireza Vahid, Murray Height, Teo Slezak:
Accelerated Bayesian Optimisation through Weight-Prior Tuning. AISTATS 2020: 635-645 - [c65]Thanh Tang Nguyen, Sunil Gupta, Huong Ha, Santu Rana, Svetha Venkatesh:
Distributionally Robust Bayesian Quadrature Optimization. AISTATS 2020: 1921-1931 - [c64]Thomas P. Quinn, Dang Nguyen, Santu Rana, Sunil Gupta, Svetha Venkatesh:
DeepCoDA: personalized interpretability for compositional health data. ICML 2020: 7877-7886 - [c63]Cheng Li, Santu Rana, Andrew Gill, Dang Nguyen, Sunil Gupta, Svetha Venkatesh:
Factor Screening using Bayesian Active Learning and Gaussian Process Meta-Modelling. ICPR 2020: 3288-3295 - [c62]Julian Berk, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Randomised Gaussian Process Upper Confidence Bound for Bayesian Optimisation. IJCAI 2020: 2284-2290 - [c61]Thommen George Karimpanal, Santu Rana, Sunil Gupta, Truyen Tran, Svetha Venkatesh:
Learning Transferable Domain Priors for Safe Exploration in Reinforcement Learning. IJCNN 2020: 1-10 - [c60]Hung Tran-The, Sunil Gupta, Santu Rana, Huong Ha, Svetha Venkatesh:
Sub-linear Regret Bounds for Bayesian Optimisation in Unknown Search Spaces. NeurIPS 2020 - [c59]Manisha Senadeera, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Level Set Estimation with Search Space Warping. PAKDD (2) 2020: 827-839 - [c58]Haripriya Harikumar, Vuong Le, Santu Rana, Sourangshu Bhattacharya, Sunil Gupta, Svetha Venkatesh:
Scalable Backdoor Detection in Neural Networks. ECML/PKDD (2) 2020: 289-304 - [c57]Phuc Luong, Dang Nguyen, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Bayesian Optimization with Missing Inputs. ECML/PKDD (2) 2020: 691-706 - [c56]Duc Nguyen, Phuoc Nguyen, Kien Do, Santu Rana, Sunil Gupta, Truyen Tran:
Unsupervised Anomaly Detection on Temporal Multiway Data. SSCI 2020: 1059-1066 - [i28]Thanh Tang Nguyen, Sunil Gupta, Huong Ha, Santu Rana, Svetha Venkatesh:
Distributionally Robust Bayesian Quadrature Optimization. CoRR abs/2001.06814 (2020) - [i27]Cheng Li, Sunil Gupta, Santu Rana, Vu Nguyen, Antonio Robles-Kelly, Svetha Venkatesh:
Incorporating Expert Prior Knowledge into Experimental Design via Posterior Sampling. CoRR abs/2002.11256 (2020) - [i26]Anil Ramachandran, Sunil Gupta, Santu Rana, Cheng Li, Svetha Venkatesh:
Incorporating Expert Prior in Bayesian Optimisation via Space Warping. CoRR abs/2003.12250 (2020) - [i25]Phuoc Nguyen, Truyen Tran, Sunil Gupta, Santu Rana, Hieu-Chi Dam, Svetha Venkatesh:
HyperVAE: A Minimum Description Length Variational Hyper-Encoding Network. CoRR abs/2005.08482 (2020) - [i24]Thomas P. Quinn, Dang Nguyen, Santu Rana, Sunil Gupta, Svetha Venkatesh:
DeepCoDA: personalized interpretability for compositional health data. CoRR abs/2006.01392 (2020) - [i23]Julian Berk, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Randomised Gaussian Process Upper Confidence Bound for Bayesian Optimisation. CoRR abs/2006.04296 (2020) - [i22]Haripriya Harikumar, Vuong Le, Santu Rana, Sourangshu Bhattacharya, Sunil Gupta, Svetha Venkatesh:
Scalable Backdoor Detection in Neural Networks. CoRR abs/2006.05646 (2020) - [i21]Phuc Luong, Dang Nguyen, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Bayesian Optimization with Missing Inputs. CoRR abs/2006.10948 (2020) - [i20]Hung Tran-The, Sunil Gupta, Santu Rana, Huong Ha, Svetha Venkatesh:
Sub-linear Regret Bounds for Bayesian Optimisation in Unknown Search Spaces. CoRR abs/2009.02539 (2020) - [i19]Alistair Shilton, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Sequential Subspace Search for Functional Bayesian Optimization Incorporating Experimenter Intuition. CoRR abs/2009.03543 (2020) - [i18]Duc Nguyen, Phuoc Nguyen, Kien Do, Santu Rana, Sunil Gupta, Truyen Tran:
Unsupervised Anomaly Detection on Temporal Multiway Data. CoRR abs/2009.09443 (2020) - [i17]Anh-Cat Le-Ngo, Truyen Tran, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Logically Consistent Loss for Visual Question Answering. CoRR abs/2011.10094 (2020) - [i16]Huong Ha, Sunil Gupta, Santu Rana, Svetha Venkatesh:
High Dimensional Level Set Estimation with Bayesian Neural Network. CoRR abs/2012.09973 (2020)
2010 – 2019
- 2019
- [j9]Tinu Theckel Joy, Santu Rana, Sunil Gupta, Svetha Venkatesh:
A flexible transfer learning framework for Bayesian optimization with convergence guarantee. Expert Syst. Appl. 115: 656-672 (2019) - [j8]Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, Svetha Venkatesh:
Filtering Bayesian optimization approach in weakly specified search space. Knowl. Inf. Syst. 60(1): 385-413 (2019) - [c55]Pratibha Vellanki, Santu Rana, Sunil Gupta, David Rubin de Celis Leal, Alessandra Sutti, Murray Height, Svetha Venkatesh:
Bayesian Functional Optimisation with Shape Prior. AAAI 2019: 1617-1624 - [c54]A. V. Arun Kumar, Santu Rana, Cheng Li, Sunil Gupta, Alistair Shilton, Svetha Venkatesh:
Bayesian Optimisation for Objective Functions with Varying Smoothness. Australasian Conference on Artificial Intelligence 2019: 460-472 - [c53]Phuc Luong, Sunil Gupta, Dang Nguyen, Santu Rana, Svetha Venkatesh:
Bayesian Optimization with Discrete Variables. Australasian Conference on Artificial Intelligence 2019: 473-484 - [c52]Deepthi Praveenlal Kuttichira, Sunil Gupta, Dang Nguyen, Santu Rana, Svetha Venkatesh:
Detection of Compromised Models Using Bayesian Optimization. Australasian Conference on Artificial Intelligence 2019: 485-496 - [c51]Anil Ramachandran, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Information-Theoretic Multi-task Learning Framework for Bayesian Optimisation. Australasian Conference on Artificial Intelligence 2019: 497-509 - [c50]Vu Nguyen, Sunil Gupta, Santu Rana, My T. Thai, Cheng Li, Svetha Venkatesh:
Efficient Bayesian Optimization for Uncertainty Reduction Over Perceived Optima Locations. ICDM 2019: 1270-1275 - [c49]Huong Ha, Santu Rana, Sunil Gupta, Thanh Tang Nguyen, Hung Tran-The, Svetha Venkatesh:
Bayesian Optimization with Unknown Search Space. NeurIPS 2019: 11772-11781 - [c48]Majid Abdolshah, Alistair Shilton, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Multi-objective Bayesian optimisation with preferences over objectives. NeurIPS 2019: 12214-12224 - [c47]Deepthi Praveenlal Kuttichira, Sunil Gupta, Cheng Li, Santu Rana, Svetha Venkatesh:
Explaining Black-Box Models Using Interpretable Surrogates. PRICAI (1) 2019: 3-15 - [c46]Phuoc Nguyen, Truyen Tran, Sunil Gupta, Santu Rana, Matthew Barnett, Svetha Venkatesh:
Incomplete Conditional Density Estimation for Fast Materials Discovery. SDM 2019: 549-557 - [i15]Tinu Theckel Joy, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Fast Hyperparameter Tuning using Bayesian Optimization with Directional Derivatives. CoRR abs/1902.02416 (2019) - [i14]Majid Abdolshah, Alistair Shilton, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Multi-objective Bayesian optimisation with preferences over objectives. CoRR abs/1902.04228 (2019) - [i13]Alistair Shilton, Sunil Gupta, Santu Rana, Svetha Venkatesh, Majid Abdolshah, Dang Nguyen:
Stable Bayesian Optimisation via Direct Stability Quantification. CoRR abs/1902.07846 (2019) - [i12]Ang Yang, Cheng Li, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Sparse Spectrum Gaussian Process for Bayesian Optimisation. CoRR abs/1906.08898 (2019) - [i11]Cheng Li, Santu Rana, Sunil Gupta, Vu Nguyen, Svetha Venkatesh, Alessandra Sutti, David Rubin de Celis Leal, Teo Slezak, Murray Height, Mazher Mohammed, Ian Gibson:
Accelerating Experimental Design by Incorporating Experimenter Hunches. CoRR abs/1907.09065 (2019) - [i10]Majid Abdolshah, Alistair Shilton, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Cost-aware Multi-objective Bayesian optimisation. CoRR abs/1909.03600 (2019) - [i9]Thommen George Karimpanal, Santu Rana, Sunil Gupta, Truyen Tran, Svetha Venkatesh:
Learning Transferable Domain Priors for Safe Exploration in Reinforcement Learning. CoRR abs/1909.04307 (2019) - [i8]Huong Ha, Santu Rana, Sunil Gupta, Thanh Tang Nguyen, Hung Tran-The, Svetha Venkatesh:
Bayesian Optimization with Unknown Search Space. CoRR abs/1910.13092 (2019) - [i7]Hung Tran-The, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Trading Convergence Rate with Computational Budget in High Dimensional Bayesian Optimization. CoRR abs/1911.11950 (2019) - [i6]Dang Nguyen, Sunil Gupta, Santu Rana, Alistair Shilton, Svetha Venkatesh:
Bayesian Optimization for Categorical and Category-Specific Continuous Inputs. CoRR abs/1911.12473 (2019) - 2018
- [j7]Thanh Dai Nguyen, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Stable Bayesian optimization. Int. J. Data Sci. Anal. 6(4): 327-339 (2018) - [c45]Sunil Gupta, Alistair Shilton, Santu Rana, Svetha Venkatesh:
Exploiting Strategy-Space Diversity for Batch Bayesian Optimization. AISTATS 2018: 538-547 - [c44]Ang Yang, Cheng Li, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Sparse Approximation for Gaussian Process with Derivative Observations. Australasian Conference on Artificial Intelligence 2018: 507-518 - [c43]Cheng Li, Santu Rana, Sunil Gupta, Vu Nguyen, Svetha Venkatesh, Alessandra Sutti, David Rubin de Celis Leal, Teo Slezak, Murray Height, Mazher Mohammed, Ian Gibson:
Accelerating Experimental Design by Incorporating Experimenter Hunches. ICDM 2018: 257-266 - [c42]Haripriya Harikumar, Santu Rana, Sunil Gupta, Thin Nguyen, Ramachandra Kaimal, Svetha Venkatesh:
Differentially Private Prescriptive Analytics. ICDM 2018: 995-1000 - [c41]Majid Abdolshah, Alistair Shilton, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Expected Hypervolume Improvement with Constraints. ICPR 2018: 3238-3243 - [c40]Shivapratap Gopakumar, Sunil Gupta, Santu Rana, Vu Nguyen, Svetha Venkatesh:
Algorithmic Assurance: An Active Approach to Algorithmic Testing using Bayesian Optimisation. NeurIPS 2018: 5470-5478 - [c39]Haripriya Harikumar, Santu Rana, Sunil Gupta, Thin Nguyen, Ramachandra Kaimal, Svetha Venkatesh:
Prescriptive Analytics Through Constrained Bayesian Optimization. PAKDD (1) 2018: 335-347 - [c38]Thanh Dai Nguyen, Sunil Gupta, Santu Rana, Svetha Venkatesh:
A Privacy Preserving Bayesian Optimization with High Efficiency. PAKDD (3) 2018: 543-555 - [c37]Julian Berk, Vu Nguyen, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Exploration Enhanced Expected Improvement for Bayesian Optimization. ECML/PKDD (2) 2018: 621-637 - [c36]Anil Ramachandran, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Information-Theoretic Transfer Learning Framework for Bayesian Optimisation. ECML/PKDD (2) 2018: 827-842 - [c35]Anil Ramachandran, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Selecting Optimal Source for Transfer Learning in Bayesian Optimisation. PRICAI (1) 2018: 42-56 - [c34]Ang Yang, Cheng Li, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Efficient Bayesian Optimisation Using Derivative Meta-model. PRICAI 2018: 256-264 - [c33]Alistair Shilton, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Multi-Target Optimisation via Bayesian Optimisation and Linear Programming. UAI 2018: 145-155 - [i5]Alistair Shilton, Sunil Gupta, Santu Rana, Pratibha Vellanki, Cheng Li, Svetha Venkatesh, Laurence Park, Alessandra Sutti, David Rubin, Thomas Dorin, Alireza Vahid, Murray Height, Teo Slezak:
Kernel Pre-Training in Feature Space via m-Kernels. CoRR abs/1805.07852 (2018) - [i4]Pratibha Vellanki, Santu Rana, Sunil Gupta, David Rubin de Celis Leal, Alessandra Sutti, Murray Height, Svetha Venkatesh:
Bayesian functional optimisation with shape prior. CoRR abs/1809.07260 (2018) - [i3]Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, Svetha Venkatesh:
Practical Batch Bayesian Optimization for Less Expensive Functions. CoRR abs/1811.01466 (2018) - [i2]Phuoc Nguyen, Truyen Tran, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Hybrid Generative-Discriminative Models for Inverse Materials Design. CoRR abs/1811.06060 (2018) - 2017
- [c32]Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, Svetha Venkatesh:
Regret for Expected Improvement over the Best-Observed Value and Stopping Condition. ACML 2017: 279-294 - [c31]Alistair Shilton, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Regret Bounds for Transfer Learning in Bayesian Optimisation. AISTATS 2017: 307-315 - [c30]Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, Svetha Venkatesh:
Bayesian Optimization in Weakly Specified Search Space. ICDM 2017: 347-356 - [c29]Santu Rana, Cheng Li, Sunil Gupta, Vu Nguyen, Svetha Venkatesh:
High Dimensional Bayesian Optimization with Elastic Gaussian Process. ICML 2017: 2883-2891 - [c28]Cheng Li, Sunil Gupta, Santu Rana, Vu Nguyen, Svetha Venkatesh, Alistair Shilton:
High Dimensional Bayesian Optimization using Dropout. IJCAI 2017: 2096-2102 - [c27]Pratibha Vellanki, Santu Rana, Sunil Gupta, David Rubin, Alessandra Sutti, Thomas Dorin, Murray Height, Paul G. Sanders, Svetha Venkatesh:
Process-constrained batch Bayesian optimisation. NIPS 2017: 3414-3423 - [c26]Thanh Dai Nguyen, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Stable Bayesian Optimization. PAKDD (2) 2017: 578-591 - [i1]Vu Nguyen, Santu Rana, Sunil Gupta, Cheng Li, Svetha Venkatesh:
Budgeted Batch Bayesian Optimization With Unknown Batch Sizes. CoRR abs/1703.04842 (2017) - 2016
- [j6]Cheng Li, Santu Rana, Dinh Q. Phung, Svetha Venkatesh:
Data clustering using side information dependent Chinese restaurant processes. Knowl. Inf. Syst. 47(2): 463-488 (2016) - [j5]Sunil Gupta, Santu Rana, Budhaditya Saha, Dinh Q. Phung, Svetha Venkatesh:
A new transfer learning framework with application to model-agnostic multi-task learning. Knowl. Inf. Syst. 49(3): 933-973 (2016) - [j4]Cheng Li, Santu Rana, Dinh Q. Phung, Svetha Venkatesh:
Hierarchical Bayesian nonparametric models for knowledge discovery from electronic medical records. Knowl. Based Syst. 99: 168-182 (2016) - [c25]Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, Svetha Venkatesh:
A Bayesian Nonparametric Approach for Multi-label Classification. ACML 2016: 254-269 - [c24]Haripriya Harikumar, Thin Nguyen, Santu Rana, Sunil Gupta, Ramachandra Kaimal, Svetha Venkatesh:
Extracting Key Challenges in Achieving Sobriety Through Shared Subspace Learning. ADMA 2016: 420-433 - [c23]Haripriya Harikumar, Thin Nguyen, Sunil Gupta, Santu Rana, Ramachandra Kaimal, Svetha Venkatesh:
Understanding Behavioral Differences Between Short and Long-Term Drinking Abstainers from Social Media. ADMA 2016: 520-533 - [c22]Thanh Dai Nguyen, Sunil Gupta, Santu Rana, Vu Nguyen, Svetha Venkatesh, Kyle J. Deane, Paul G. Sanders:
Cascade Bayesian Optimization. Australasian Conference on Artificial Intelligence 2016: 268-280 - [c21]Vu Nguyen, Santu Rana, Sunil Kumar Gupta, Cheng Li, Svetha Venkatesh:
Budgeted Batch Bayesian Optimization. ICDM 2016: 1107-1112 - [c20]Tinu Theckel Joy, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Hyperparameter tuning for big data using Bayesian optimisation. ICPR 2016: 2574-2579 - [c19]Cheng Li, Sunil Gupta, Santu Rana, Vu Nguyen, Svetha Venkatesh, David Ashely, Trish Livingston:
Multiple adverse effects prediction in longitudinal cancer treatment. ICPR 2016: 3156-3161 - [c18]Saravanan Subramanian, Santu Rana, Sunil Gupta, Palaniappan Bagavathi Sivakumar, C. Shunmuga Velayutham, Svetha Venkatesh:
Bayesian nonparametric Multiple Instance Regression. ICPR 2016: 3661-3666 - [c17]Sunil Kumar Gupta, Santu Rana, Svetha Venkatesh:
Differentially Private Multi-task Learning. PAISI 2016: 101-113 - [c16]Tinu Theckel Joy, Santu Rana, Sunil Kumar Gupta, Svetha Venkatesh:
Flexible Transfer Learning Framework for Bayesian Optimisation. PAKDD (1) 2016: 102-114 - [c15]Cheng Li, Sunil Gupta, Santu Rana, Wei Luo, Svetha Venkatesh, David Ashely, Dinh Q. Phung:
Toxicity Prediction in Cancer Using Multiple Instance Learning in a Multi-task Framework. PAKDD (1) 2016: 152-164 - [c14]Thanh Dai Nguyen, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Privacy Aware K-Means Clustering with High Utility. PAKDD (2) 2016: 388-400 - 2015
- [j3]Santu Rana, Sunil Gupta, Dinh Q. Phung, Svetha Venkatesh:
A predictive framework for modeling healthcare data with evolving clinical interventions. Stat. Anal. Data Min. 8(3): 162-182 (2015) - [c13]Santu Rana, Sunil Kumar Gupta, Svetha Venkatesh:
Differentially Private Random Forest with High Utility. ICDM 2015: 955-960 - [c12]Cheng Li, Santu Rana, Dinh Q. Phung, Svetha Venkatesh:
Small-Variance Asymptotics for Bayesian Nonparametric Models with Constraints. PAKDD (2) 2015: 92-105 - [c11]Sunil Kumar Gupta, Santu Rana, Dinh Q. Phung, Svetha Venkatesh:
Collaborating Differently on Different Topics: A Multi-Relational Approach to Multi-Task Learning. PAKDD (1) 2015: 303-316 - [c10]Sunil Gupta, Santu Rana, Dinh Q. Phung, Svetha Venkatesh:
What shall I share and with Whom? - A Multi-Task Learning Formulation using Multi-Faceted Task Relationships. SDM 2015: 703-711 - 2014
- [j2]Truyen Tran, Wei Luo, Dinh Q. Phung, Sunil Gupta, Santu Rana, Richard Kennedy, Ann Larkins, Svetha Venkatesh:
A framework for feature extraction from hospital medical data with applications in risk prediction. BMC Bioinform. 15: 6596 (2014) - [c9]Cheng Li, Santu Rana, Dinh Q. Phung, Svetha Venkatesh:
Regularizing Topic Discovery in EMRs with Side Information by Using Hierarchical Bayesian Models. ICPR 2014: 1307-1312 - [c8]Santu Rana, Sunil Kumar Gupta, Dinh Q. Phung, Svetha Venkatesh:
Intervention-Driven Predictive Framework for Modeling Healthcare Data. PAKDD (1) 2014: 497-508 - [c7]Sunil Kumar Gupta, Santu Rana, Dinh Q. Phung, Svetha Venkatesh:
Keeping up with Innovation: A Predictive Framework for Modeling Healthcare Data with Evolving Clinical Interventions. SDM 2014: 235-243 - 2013
- [c6]Cheng Li, Dinh Q. Phung, Santu Rana, Svetha Venkatesh:
Exploiting side information in distance dependent Chinese restaurant processes for data clustering. ICME 2013: 1-6 - [c5]Santu Rana, Dinh Q. Phung, Svetha Venkatesh:
Split-Merge Augmented Gibbs Sampling for Hierarchical Dirichlet Processes. PAKDD (2) 2013: 546-557 - 2012
- [c4]Tien-Vu Nguyen, Dinh Q. Phung, Santu Rana, Duc-Son Pham, Svetha Venkatesh:
Multi-modal abnormality detection in video with unknown data segmentation. ICPR 2012: 1322-1325 - [c3]Santu Rana, Dinh Q. Phung, Sonny Pham, Svetha Venkatesh:
Large-scale statistical modeling of motion patterns: a Bayesian nonparametric approach. ICVGIP 2012: 7
2000 – 2009
- 2009
- [j1]Santu Rana, Wanquan Liu, Mihai M. Lazarescu, Svetha Venkatesh:
A unified tensor framework for face recognition. Pattern Recognit. 42(11): 2850-2862 (2009) - 2008
- [c2]Santu Rana, Wanquan Liu, Mihai M. Lazarescu, Svetha Venkatesh:
Recognising faces in unseen modes: A tensor based approach. CVPR 2008 - [c1]Santu Rana, Wanquan Liu, Mihai M. Lazarescu, Svetha Venkatesh:
Efficient tensor based face recognition. ICPR 2008: 1-4
Coauthor Index
aka: Thommen Karimpanal George
aka: Tien-Vu Nguyen
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-21 00:18 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint