default search action
Cristiano Cervellera
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j39]Cristiano Cervellera, Danilo Macciò, Francesco Rebora:
Model Predictive Control of Port-City Traffic Interactions Over Shared Urban Infrastructure. IEEE Trans. Control. Syst. Technol. 32(2): 688-695 (2024) - [c21]Cristiano Cervellera, Danilo Macciò, Francesco Rebora:
Simulation and Neural Models for Traffic Light Importance Analysis in Urban Networks. MESA 2024: 1-8 - 2023
- [j38]Cristiano Cervellera:
Optimized ensemble value function approximation for dynamic programming. Eur. J. Oper. Res. 309(2): 719-730 (2023) - [j37]Fabio Bonsignorio, Cristiano Cervellera, Danilo Macciò, Enrica Zereik:
An imitation learning approach for the control of a low-cost low-accuracy robotic arm for unstructured environments. Int. J. Intell. Robotics Appl. 7(1): 13-30 (2023) - 2022
- [j36]Cristiano Cervellera, Danilo Macciò, Francesco Rebora:
Copula-based scenario generation for urban traffic models. Expert Syst. Appl. 210: 118389 (2022) - [j35]Cristiano Cervellera, Danilo Macciò, Francesco Rebora:
Improving the variability of urban traffic microsimulation through the calibration of generative parameter models. J. Intell. Transp. Syst. 26(5): 544-556 (2022) - [c20]Cristiano Cervellera, Danilo Macciò, Francesco Rebora:
Echo state network ensembles for surrogate models with an application to urban mobility. IJCNN 2022: 1-8 - 2021
- [c19]Cristiano Cervellera, Mauro Gaggero, Danilo Macciò:
Policy Optimization for Berth Allocation Problems. IJCNN 2021: 1-6 - [c18]Cristiano Cervellera, Danilo Macciò, Francesco Rebora:
Deep Learning and Low-discrepancy Sampling for Surrogate Modeling with an Application to Urban Traffic Simulation. IJCNN 2021: 1-8 - 2020
- [j34]Cristiano Cervellera, Danilo Macciò, Thomas Parisini:
Learning Robustly Stabilizing Explicit Model Predictive Controllers: A Non-Regular Sampling Approach. IEEE Control. Syst. Lett. 4(3): 737-742 (2020) - [j33]Cristiano Cervellera, Danilo Macciò:
Voronoi tree models for distribution-preserving sampling and generation. Pattern Recognit. 97 (2020)
2010 – 2019
- 2019
- [j32]Antonio Cataliotti, Cristiano Cervellera, Valentina Cosentino, Dario Di Cara, Mauro Gaggero, Danilo Macciò, Giuseppe Marsala, Antonella Ragusa, Giovanni Tinè:
An Improved Load Flow Method for MV Networks Based on LV Load Measurements and Estimations. IEEE Trans. Instrum. Meas. 68(2): 430-438 (2019) - 2018
- [j31]Cristiano Cervellera, Danilo Macciò:
Distribution-Preserving Stratified Sampling for Learning Problems. IEEE Trans. Neural Networks Learn. Syst. 29(7): 2886-2895 (2018) - [c17]Giacomo Boracchi, Diego Carrera, Cristiano Cervellera, Danilo Macciò:
QuantTree: Histograms for Change Detection in Multivariate Data Streams. ICML 2018: 638-647 - 2017
- [j30]Cristiano Cervellera, Danilo Macciò:
An Extreme Learning Machine Approach to Density Estimation Problems. IEEE Trans. Cybern. 47(10): 3254-3265 (2017) - [j29]Cristiano Cervellera, Danilo Macciò:
A Novel Approach for Sampling in Approximate Dynamic Programming Based on F-Discrepancy. IEEE Trans. Cybern. 47(10): 3355-3366 (2017) - [c16]Giacomo Boracchi, Cristiano Cervellera, Danilo Macciò:
Uniform histograms for change detection in multivariate data. IJCNN 2017: 1732-1739 - 2016
- [j28]Cristiano Cervellera, Danilo Macciò:
F-Discrepancy for Efficient Sampling in Approximate Dynamic Programming. IEEE Trans. Cybern. 46(7): 1628-1639 (2016) - [j27]Cristiano Cervellera, Danilo Macciò:
Low-Discrepancy Points for Deterministic Assignment of Hidden Weights in Extreme Learning Machines. IEEE Trans. Neural Networks Learn. Syst. 27(4): 891-896 (2016) - 2015
- [c15]Cristiano Cervellera, Mauro Gaggero, Danilo Macciò, Roberto Marcialis:
Lattice point sets for efficient kernel smoothing models. IJCNN 2015: 1-8 - [c14]Cristiano Cervellera, Mauro Gaggero, Danilo Macciò, Roberto Marcialis:
Efficient use of Nadaraya-Watson models and low-discrepancy sequences for approximate dynamic programming. IJCNN 2015: 1-8 - 2014
- [j26]Cristiano Cervellera, Mauro Gaggero, Danilo Macciò:
Low-discrepancy sampling for approximate dynamic programming with local approximators. Comput. Oper. Res. 43: 108-115 (2014) - [j25]Diana Flaccadoro, Cristiano Cervellera, Giorgio Bosia, Eva Riccomagno:
Modelling of Fault Detection and Diagnostics for Hybrid Bus Using Chain Graph Models. Qual. Reliab. Eng. Int. 30(7): 975-983 (2014) - [j24]Cristiano Cervellera, Danilo Macciò:
Local Linear Regression for Function Learning: An Analysis Based on Sample Discrepancy. IEEE Trans. Neural Networks Learn. Syst. 25(11): 2086-2098 (2014) - [c13]Cristiano Cervellera, Mauro Gaggero, Danilo Macciò:
An analysis based on F-discrepancy for sampling in regression tree learning. IJCNN 2014: 1115-1121 - [c12]Cristiano Cervellera, Mauro Gaggero, Danilo Macciò, Roberto Marcialis:
An approach to exploit non-optimized data for efficient control of unknown systems through neural and kernel models. IJCNN 2014: 1856-1863 - [c11]Cristiano Cervellera, Mauro Gaggero, Danilo Macciò, Roberto Marcialis:
Lattice sampling for efficient learning with Nadaraya-Watson local models. IJCNN 2014: 1915-1922 - 2013
- [j23]Angelo Alessandri, Cristiano Cervellera, Mauro Gaggero:
Predictive Control of Container Flows in Maritime Intermodal Terminals. IEEE Trans. Control. Syst. Technol. 21(4): 1423-1431 (2013) - [j22]Derong Liu, Charles Anderson, Ahmad Taher Azar, Giorgio Battistelli, Eduardo Bayro-Corrochano, Cristiano Cervellera, David A. Elizondo, Maurizio Filippone, Giorgio Gnecco, Xiaolin Hu, Tingwen Huang, Weifeng Liu, Wenlian Lu, Ana Maria Madureira, Igor Skrjanc, Thomas Villmann, Q. M. Jonathan Wu, Shengli Xie, Dong Xu:
Editorial A Successful Change From TNN to TNNLS and a Very Successful Year. IEEE Trans. Neural Networks Learn. Syst. 24(1): 1-7 (2013) - [j21]Cristiano Cervellera, Danilo Macciò:
Learning With Kernel Smoothing Models and Low-Discrepancy Sampling. IEEE Trans. Neural Networks Learn. Syst. 24(3): 504-509 (2013) - [c10]Cristiano Cervellera, Mauro Gaggero, Danilo Macciò, Roberto Marcialis:
Quasi-random sampling for approximate dynamic programming. IJCNN 2013: 1-8 - [c9]Cristiano Cervellera, Danilo Macciò, Roberto Marcialis:
Function learning with local linear regression models: An analysis based on discrepancy. IJCNN 2013: 1-8 - 2012
- [j20]Danilo Macciò, Cristiano Cervellera:
Local Models for data-driven learning of control policies for complex systems. Expert Syst. Appl. 39(18): 13399-13408 (2012) - [j19]Cristiano Cervellera, Mauro Gaggero, Danilo Macciò:
Efficient kernel models for learning and approximate minimization problems. Neurocomputing 97: 74-85 (2012) - 2011
- [j18]Luca Caviglione, Cristiano Cervellera:
Design, optimization and performance evaluation of a content distribution overlay for streaming. Comput. Commun. 34(12): 1497-1509 (2011) - [j17]Cristiano Cervellera, Danilo Macciò:
A comparison of global and semi-local approximation in T-stage stochastic optimization. Eur. J. Oper. Res. 208(2): 109-118 (2011) - [j16]Luca Caviglione, Cristiano Cervellera:
An Optimized Content Replication and Distribution Framework for Vehicular Networks. J. Intell. Transp. Syst. 15(4): 179-192 (2011) - [j15]Cristiano Cervellera, Danilo Macciò:
A numerical method for minimum distance estimation problems. J. Multivar. Anal. 102(4): 789-800 (2011) - 2010
- [j14]Marco Baglietto, Cristiano Cervellera, Marcello Sanguineti, Riccardo Zoppoli:
Management of water resource systems in the presence of uncertainties by nonlinear approximation techniques and deterministic sampling. Comput. Optim. Appl. 47(2): 349-376 (2010) - [j13]Cristiano Cervellera, Danilo Macciò, Marco Muselli:
Functional Optimization Through Semilocal Approximate Minimization. Oper. Res. 58(5): 1491-1504 (2010) - [j12]Cristiano Cervellera, Danilo Macciò, Marco Muselli:
Efficient global maximum likelihood estimation through kernel methods. Neural Networks 23(7): 917-925 (2010) - [j11]Cristiano Cervellera:
Lattice point sets for deterministic learning and approximate optimization problems. IEEE Trans. Neural Networks 21(4): 687-692 (2010)
2000 – 2009
- 2009
- [j10]Cristiano Cervellera, Luca Caviglione:
Optimization of a peer-to-peer system for efficient content replication. Eur. J. Oper. Res. 196(2): 423-433 (2009) - 2008
- [j9]Luca Caviglione, Cristiano Cervellera, Franco Davoli, Filippo Aldo Grassia:
Optimization of an eMule-like modifier strategy. Comput. Commun. 31(16): 3876-3882 (2008) - [j8]Angelo Alessandri, Cristiano Cervellera, Marta Cuneo, Mauro Gaggero, G. Soncin:
Modeling and Feedback Control for Resource Allocation and Performance Analysis in Container Terminals. IEEE Trans. Intell. Transp. Syst. 9(4): 601-614 (2008) - [j7]Cristiano Cervellera, Danilo Macciò, Marco Muselli:
Deterministic Learning for Maximum-Likelihood Estimation Through Neural Networks. IEEE Trans. Neural Networks 19(8): 1456-1467 (2008) - [c8]Angelo Alessandri, Cristiano Cervellera, Marta Cuneo, Mauro Gaggero:
Nonlinear predictive control for the management of container flows in maritime intermodal terminals. CDC 2008: 2800-2805 - 2007
- [j6]Cristiano Cervellera, Marco Muselli:
Efficient sampling in approximate dynamic programming algorithms. Comput. Optim. Appl. 38(3): 417-443 (2007) - [j5]Luca Caviglione, Cristiano Cervellera:
Design of a peer-to-peer system for optimized content replication. Comput. Commun. 30(16): 3107-3116 (2007) - [j4]Cristiano Cervellera, Aihong Wen, Victoria C. P. Chen:
Neural network and regression spline value function approximations for stochastic dynamic programming. Comput. Oper. Res. 34(1): 70-90 (2007) - [j3]Angelo Alessandri, Cristiano Cervellera, Marcello Sanguineti:
Design of Asymptotic Estimators: An Approach Based on Neural Networks and Nonlinear Programming. IEEE Trans. Neural Networks 18(1): 86-96 (2007) - 2006
- [j2]Cristiano Cervellera, Victoria C. P. Chen, Aihong Wen:
Optimization of a large-scale water reservoir network by stochastic dynamic programming with efficient state space discretization. Eur. J. Oper. Res. 171(3): 1139-1151 (2006) - [c7]Angelo Alessandri, Cristiano Cervellera, Danilo Macciò, Marcello Sanguineti:
Design of Parameterized State Observers and Controllers for a Class of Nonlinear Continuous-Time Systems. CDC 2006: 5388-5393 - 2005
- [c6]Angelo Alessandri, Cristiano Cervellera, Filippo Aldo Grassia, Marcello Sanguineti:
An approximate solution to optimal Lp state estimation problems. ACC 2005: 4204-4209 - 2004
- [j1]Cristiano Cervellera, Marco Muselli:
Deterministic design for neural network learning: an approach based on discrepancy. IEEE Trans. Neural Networks 15(3): 533-544 (2004) - [c5]Angelo Alessandri, Cristiano Cervellera, Filippo Aldo Grassia, Marcello Sanguineti:
Design of observers for continuous-time nonlinear systems using neural networks. ACC 2004: 2433-2438 - 2003
- [c4]Angelo Alessandri, Cristiano Cervellera, Filippo Aldo Grassia:
Application of neural control to economic growth problems. CIFEr 2003: 151-157 - [c3]Cristiano Cervellera, Marco Muselli:
A Deterministic Learning Approch Based on Discrepancy. WIRN 2003: 53-60 - 2002
- [c2]Angelo Alessandri, Cristiano Cervellera, Filippo Aldo Grassia:
Optimal neural feedback control applied to a problem of economic growth in freight transport market. CDC 2002: 1141-1146 - 2000
- [c1]Marco Baglietto, Cristiano Cervellera, Thomas Parisini, Marcello Sanguineti, N. Zoppoli:
Approximating networks, dynamic programming and stochastic approximation. ACC 2000: 3304-3308
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-20 23:59 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint