


default search action
Loucas Pillaud-Vivien
Person information
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c14]Alex Damian, Loucas Pillaud-Vivien, Jason D. Lee, Joan Bruna:
Computational-Statistical Gaps in Gaussian Single-Index Models (Extended Abstract). COLT 2024: 1262 - [c13]Diana Cai, Chirag Modi, Loucas Pillaud-Vivien, Charles Margossian, Robert M. Gower, David M. Blei, Lawrence K. Saul:
Batch and match: black-box variational inference with a score-based divergence. ICML 2024 - [i14]Diana Cai, Chirag Modi, Loucas Pillaud-Vivien, Charles C. Margossian, Robert M. Gower, David M. Blei, Lawrence K. Saul:
Batch and match: black-box variational inference with a score-based divergence. CoRR abs/2402.14758 (2024) - [i13]Alex Damian, Loucas Pillaud-Vivien, Jason D. Lee, Joan Bruna:
Computational-Statistical Gaps in Gaussian Single-Index Models. CoRR abs/2403.05529 (2024) - [i12]Charles C. Margossian, Loucas Pillaud-Vivien, Lawrence K. Saul:
An Ordering of Divergences for Variational Inference with Factorized Gaussian Approximations. CoRR abs/2403.13748 (2024) - [i11]Adrien Schertzer, Loucas Pillaud-Vivien:
Stochastic Differential Equations models for Least-Squares Stochastic Gradient Descent. CoRR abs/2407.02322 (2024) - 2023
- [c12]Loucas Pillaud-Vivien, Francis R. Bach:
Kernelized Diffusion Maps. COLT 2023: 5236-5259 - [c11]Maksym Andriushchenko, Aditya Vardhan Varre, Loucas Pillaud-Vivien, Nicolas Flammarion:
SGD with Large Step Sizes Learns Sparse Features. ICML 2023: 903-925 - [c10]Aditya Vardhan Varre, Maria-Luiza Vladarean, Loucas Pillaud-Vivien, Nicolas Flammarion:
On the spectral bias of two-layer linear networks. NeurIPS 2023 - [c9]Aaron Zweig, Loucas Pillaud-Vivien, Joan Bruna:
On Single-Index Models beyond Gaussian Data. NeurIPS 2023 - [i10]Loucas Pillaud-Vivien, Francis R. Bach:
Kernelized Diffusion maps. CoRR abs/2302.06757 (2023) - [i9]Joan Bruna, Loucas Pillaud-Vivien, Aaron Zweig:
On Single Index Models beyond Gaussian Data. CoRR abs/2307.15804 (2023) - [i8]Alberto Bietti, Joan Bruna, Loucas Pillaud-Vivien:
On Learning Gaussian Multi-index Models with Gradient Flow. CoRR abs/2310.19793 (2023) - 2022
- [c8]Loucas Pillaud-Vivien, Julien Reygner, Nicolas Flammarion:
Label noise (stochastic) gradient descent implicitly solves the Lasso for quadratic parametrisation. COLT 2022: 2127-2159 - [c7]Etienne Boursier, Loucas Pillaud-Vivien, Nicolas Flammarion:
Gradient flow dynamics of shallow ReLU networks for square loss and orthogonal inputs. NeurIPS 2022 - [i7]Etienne Boursier, Loucas Pillaud-Vivien, Nicolas Flammarion:
Gradient flow dynamics of shallow ReLU networks for square loss and orthogonal inputs. CoRR abs/2206.00939 (2022) - [i6]Loucas Pillaud-Vivien, Julien Reygner
, Nicolas Flammarion:
Label noise (stochastic) gradient descent implicitly solves the Lasso for quadratic parametrisation. CoRR abs/2206.09841 (2022) - [i5]Maksym Andriushchenko, Aditya Varre, Loucas Pillaud-Vivien, Nicolas Flammarion:
SGD with large step sizes learns sparse features. CoRR abs/2210.05337 (2022) - 2021
- [c6]Aditya Vardhan Varre, Loucas Pillaud-Vivien, Nicolas Flammarion:
Last iterate convergence of SGD for Least-Squares in the Interpolation regime. NeurIPS 2021: 21581-21591 - [c5]Scott Pesme, Loucas Pillaud-Vivien, Nicolas Flammarion:
Implicit Bias of SGD for Diagonal Linear Networks: a Provable Benefit of Stochasticity. NeurIPS 2021: 29218-29230 - [c4]Vivien Cabannes, Loucas Pillaud-Vivien, Francis R. Bach, Alessandro Rudi:
Overcoming the curse of dimensionality with Laplacian regularization in semi-supervised learning. NeurIPS 2021: 30439-30451 - [i4]Aditya Varre, Loucas Pillaud-Vivien, Nicolas Flammarion:
Last iterate convergence of SGD for Least-Squares in the Interpolation regime. CoRR abs/2102.03183 (2021) - [i3]Scott Pesme, Loucas Pillaud-Vivien, Nicolas Flammarion:
Implicit Bias of SGD for Diagonal Linear Networks: a Provable Benefit of Stochasticity. CoRR abs/2106.09524 (2021) - 2020
- [c3]Loucas Pillaud-Vivien, Francis R. Bach, Tony Lelièvre, Alessandro Rudi, Gabriel Stoltz:
Statistical Estimation of the Poincaré constant and Application to Sampling Multimodal Distributions. AISTATS 2020: 2753-2763
2010 – 2019
- 2018
- [c2]Loucas Pillaud-Vivien, Alessandro Rudi, Francis R. Bach:
Exponential Convergence of Testing Error for Stochastic Gradient Methods. COLT 2018: 250-296 - [c1]Loucas Pillaud-Vivien, Alessandro Rudi, Francis R. Bach:
Statistical Optimality of Stochastic Gradient Descent on Hard Learning Problems through Multiple Passes. NeurIPS 2018: 8125-8135 - [i2]Loucas Pillaud-Vivien, Alessandro Rudi, Francis R. Bach:
Statistical Optimality of Stochastic Gradient Descent on Hard Learning Problems through Multiple Passes. CoRR abs/1805.10074 (2018) - 2017
- [i1]Loucas Pillaud-Vivien, Alessandro Rudi, Francis R. Bach:
Exponential convergence of testing error for stochastic gradient methods. CoRR abs/1712.04755 (2017)
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-03-04 22:31 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint