![](https://dblp.uni-trier.de/img/logo.320x120.png)
![search dblp search dblp](https://dblp.uni-trier.de/img/search.dark.16x16.png)
![search dblp](https://dblp.uni-trier.de/img/search.dark.16x16.png)
default search action
GRADES/NDA@SIGMOD 2023: Seattle, WA, USA
- Olaf Hartig, Yuichi Yoshida:
Proceedings of the 6th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA), Seattle, WA, USA, 18 June 2023. ACM 2023 - Amy E. Hodler
:
The Commercial Side of Graph Analytics: Big Uses, Big Mistakes, Big Opportunities. 1:1 - James Cheng
:
Graph Feature Management: Impact, Challenges and Opportunities. 2:1 - Tomás Faltín
, Vasileios Trigonakis
, Ayoub Berdai
, Luigi Fusco
, Calin Iorgulescu
, Sungpack Hong
, Hassan Chafi
:
Better Distributed Graph Query Planning With Scouting Queries. 3:1-3:9 - Andrew Chai
, Alireza Vezvaei
, Lukasz Golab
, Mehdi Kargar
, Divesh Srivastava
, Jaroslaw Szlichta
, Morteza Zihayat
:
EAGER: Explainable Question Answering Using Knowledge Graphs. 4:1-4:5 - Juntong Luo
, Scott Sallinen
, Matei Ripeanu
:
Going with the Flow: Real-Time Max-Flow on Asynchronous Dynamic Graphs. 5:1-5:11 - Christos Gkartzios
, Evaggelia Pitoura
:
Future-Time Temporal Path Queries. 6:1-6:5 - Giacomo Bergami
:
Fast Synthetic Data-Aware Log Generation for Temporal Declarative Models. 7:1-7:9 - Jeroen Bollen
, Jasper Steegmans
, Jan Van den Bussche
, Stijn Vansummeren
:
Learning Graph Neural Networks using Exact Compression. 8:1-8:9 - Ehsan Bonabi Mobaraki
, Arijit Khan
:
A Demonstration of Interpretability Methods for Graph Neural Networks. 9:1-9:5
![](https://dblp.uni-trier.de/img/cog.dark.24x24.png)
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.