default search action
Christian Borgelt
Person information
- affiliation: Otto von Guericke University of Magdeburg, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c81]Felix Petersen, Aashwin Ananda Mishra, Hilde Kuehne, Christian Borgelt, Oliver Deussen, Mikhail Yurochkin:
Uncertainty Quantification via Stable Distribution Propagation. ICLR 2024 - [i14]Felix Petersen, Aashwin Ananda Mishra, Hilde Kuehne, Christian Borgelt, Oliver Deussen, Mikhail Yurochkin:
Uncertainty Quantification via Stable Distribution Propagation. CoRR abs/2402.08324 (2024) - [i13]Felix Petersen, Christian Borgelt, Aashwin Ananda Mishra, Stefano Ermon:
Generalizing Stochastic Smoothing for Differentiation and Gradient Estimation. CoRR abs/2410.08125 (2024) - [i12]Felix Petersen, Christian Borgelt, Tobias Sutter, Hilde Kuehne, Oliver Deussen, Stefano Ermon:
Newton Losses: Using Curvature Information for Learning with Differentiable Algorithms. CoRR abs/2410.19055 (2024) - [i11]Felix Petersen, Christian Borgelt, Stefano Ermon:
TrAct: Making First-layer Pre-Activations Trainable. CoRR abs/2410.23970 (2024) - [i10]Felix Petersen, Hilde Kuehne, Christian Borgelt, Julian Welzel, Stefano Ermon:
Convolutional Differentiable Logic Gate Networks. CoRR abs/2411.04732 (2024) - 2023
- [c80]Fabian Berns, Georg Zimmermann, Christian Borgelt, Niclas Heilig, Jan Kirchhoff, Florian Stumpe:
Trustworthy Medical Operational AI: Marrying AI and Regulatory Requirements. IEEE Big Data 2023: 2700-2704 - [c79]Felix Petersen, Tobias Sutter, Christian Borgelt, Dongsung Huh, Hilde Kuehne, Yuekai Sun, Oliver Deussen:
ISAAC Newton: Input-based Approximate Curvature for Newton's Method. ICLR 2023 - [i9]Felix Petersen, Tobias Sutter, Christian Borgelt, Dongsung Huh, Hilde Kuehne, Yuekai Sun, Oliver Deussen:
ISAAC Newton: Input-based Approximate Curvature for Newton's Method. CoRR abs/2305.00604 (2023) - 2022
- [b8]Rudolf Kruse, Sanaz Mostaghim, Christian Borgelt, Christian Braune, Matthias Steinbrecher:
Computational Intelligence - A Methodological Introduction, Third Edition. Texts in Computer Science, Springer 2022, ISBN 978-3-030-42226-4, pp. 1-625 - [c78]Felix Petersen, Bastian Goldluecke, Christian Borgelt, Oliver Deussen:
GenDR: A Generalized Differentiable Renderer. CVPR 2022: 3992-4001 - [c77]Felix Petersen, Christian Borgelt, Hilde Kuehne, Oliver Deussen:
Monotonic Differentiable Sorting Networks. ICLR 2022 - [c76]Felix Petersen, Hilde Kuehne, Christian Borgelt, Oliver Deussen:
Differentiable Top-k Classification Learning. ICML 2022: 17656-17668 - [c75]Felix Petersen, Christian Borgelt, Hilde Kuehne, Oliver Deussen:
Deep Differentiable Logic Gate Networks. NeurIPS 2022 - [i8]Felix Petersen, Christian Borgelt, Hilde Kuehne, Oliver Deussen:
Monotonic Differentiable Sorting Networks. CoRR abs/2203.09630 (2022) - [i7]Felix Petersen, Bastian Goldluecke, Christian Borgelt, Oliver Deussen:
GenDR: A Generalized Differentiable Renderer. CoRR abs/2204.13845 (2022) - [i6]Felix Petersen, Hilde Kuehne, Christian Borgelt, Oliver Deussen:
Differentiable Top-k Classification Learning. CoRR abs/2206.07290 (2022) - [i5]Felix Petersen, Christian Borgelt, Hilde Kuehne, Oliver Deussen:
Deep Differentiable Logic Gate Networks. CoRR abs/2210.08277 (2022) - [i4]Michele Coscia, Christian Borgelt, Michael Szell:
Fast Multiplex Graph Association Rules for Link Prediction. CoRR abs/2211.12094 (2022) - 2021
- [c74]Felix Petersen, Christian Borgelt, Hilde Kuehne, Oliver Deussen:
Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision. ICML 2021: 8546-8555 - [c73]Victoria Racher, Christian Borgelt:
Gradient Ascent for Best Response Regression. IDA 2021: 141-154 - [c72]Felix Petersen, Christian Borgelt, Hilde Kuehne, Oliver Deussen:
Learning with Algorithmic Supervision via Continuous Relaxations. NeurIPS 2021: 16520-16531 - [i3]Felix Petersen, Christian Borgelt, Hilde Kuehne, Oliver Deussen:
Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision. CoRR abs/2105.04019 (2021) - [i2]Felix Petersen, Christian Borgelt, Hilde Kuehne, Oliver Deussen:
Learning with Algorithmic Supervision via Continuous Relaxations. CoRR abs/2110.05651 (2021) - 2020
- [b7]Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn, Rosaria Silipo:
Guide to Intelligent Data Science - How to Intelligently Make Use of Real Data, Second Edition. Texts in Computer Science, Springer 2020, ISBN 978-3-030-45573-6, pp. 1-328 - [c71]Christian Borgelt, Olha Yarikova:
Initializing k-means Clustering. DATA 2020: 260-267 - [c70]Christian Borgelt:
Even Faster Exact k-Means Clustering. IDA 2020: 93-105 - [p15]Christian Borgelt, Christian Braune, Rudolf Kruse:
Unsicheres, impräzises und unscharfes Wissen. Handbuch der Künstlichen Intelligenz 2020: 279-342
2010 – 2019
- 2019
- [j26]Inés Couso, Christian Borgelt, Eyke Hüllermeier, Rudolf Kruse:
Fuzzy Sets in Data Analysis: From Statistical Foundations to Machine Learning. IEEE Comput. Intell. Mag. 14(1): 31-44 (2019) - [c69]Juan M. Montoya, Christian Borgelt:
Wide and Deep Reinforcement Learning for Grid-based Action Games. ICAART (2) 2019: 50-59 - [c68]Juan M. Montoya, Christoph Doell, Christian Borgelt:
Wide and Deep Reinforcement Learning Extended for Grid-Based Action Games. ICAART (Revised Selected Papers) 2019: 224-245 - [c67]Iuliia Gavriushina, Oliver Sampson, Michael R. Berthold, Winfried Pohlmeier, Christian Borgelt:
Widened Learning of Index Tracking Portfolios. ICMLA 2019: 1800-1805 - [c66]Christoph Doell, Christian Borgelt:
Aggregation of Subclassifications: Methods, Tools and Experiments. SSCI 2019: 3124-3131 - [i1]Felix Petersen, Christian Borgelt, Oliver Deussen:
AlgoNet: C∞ Smooth Algorithmic Neural Networks. CoRR abs/1905.06886 (2019) - 2018
- [j25]Salatiel Ezennaya-Gomez, Christian Borgelt:
Mining Frequent Synchronous Patterns based on Item Cover Similarity. Int. J. Comput. Intell. Syst. 11(1): 526-539 (2018) - [c65]Christoph Doell, Sarah E. Donohue, Cedrik Pätz, Christian Borgelt:
Training Neural Networks to Distinguish Craving Smokers, Non-craving Smokers, and Non-smokers. IDA 2018: 75-86 - [c64]Oliver R. Sampson, Christian Borgelt, Michael R. Berthold:
Communication-Free Widened Learning of Bayesian Network Classifiers Using Hashed Fiedler Vectors. IDA 2018: 264-277 - [c63]Patrick Winter, Christian Borgelt, Michael R. Berthold:
Learned Feature Generation for Molecules. IDA 2018: 380-391 - [c62]Christoph Doell, Sarah E. Donohue, Christian Borgelt:
Residual Neural Networks to Distinguish Craving Smokers, Non-craving Smokers and Non-smokers by their EEG signals. SSCI 2018: 510-517 - 2016
- [b6]Rudolf Kruse, Christian Borgelt, Christian Braune, Sanaz Mostaghim, Matthias Steinbrecher:
Computational Intelligence - A Methodological Introduction, Second Edition. Texts in Computer Science, Springer 2016, ISBN 978-1-4471-7294-9, pp. 1-551 - [j24]Kristian Loewe, Sarah E. Donohue, Mircea Ariel Schoenfeld, Rudolf Kruse, Christian Borgelt:
Memory-Efficient Analysis of Dense Functional Connectomes. Frontiers Neuroinformatics 10: 50 (2016) - [c61]Christian Borgelt, Rudolf Kruse:
Agglomerative Fuzzy Clustering. SMPS 2016: 69-77 - [p14]Christian Borgelt, David Picado-Muiño:
Significant Frequent Item Sets Via Pattern Spectrum Filtering. Fuzzy Technology 2016: 73-84 - 2015
- [j23]David Picado-Muiño, Christian Borgelt:
Test Statistics for the Identification of Assembly Neurons in Parallel Spike Trains. Comput. Intell. Neurosci. 2015: 427829:1-427829:12 (2015) - [j22]Christian Borgelt, Rudolf Kruse:
Bedeutung von Zugehörigkeitsgraden in der Fuzzy-Technologie. Inform. Spektrum 38(6): 490-499 (2015) - [c60]Christian Borgelt, Christian Braune, Kristian Loewe, Rudolf Kruse:
Mining Frequent Parallel Episodes with Selective Participation. IFSA-EUSFLAT 2015 - [c59]Salatiel Ezennaya-Gomez, Christian Borgelt:
Mining Frequent Synchronous Patterns with a Graded Notion of Synchrony. IFSA-EUSFLAT 2015 - [c58]David Picado-Muiño, Christian Borgelt:
Automatic learning of synchrony in neuronal electrode recordings. IFSA-EUSFLAT 2015 - [c57]Salatiel Ezennaya-Gomez, Christian Borgelt:
Mining Significant Frequent Patterns in Parallel Episodes with a Graded Notion of Synchrony and Selective Participation. IJCCI (NCTA) 2015: 39-48 - [c56]Salatiel Ezennaya-Gomez, Christian Borgelt, Christian Braune, Kristian Loewe, Rudolf Kruse:
Handling Selective Participation in Neuron Assembly Detection. IJCCI (Selected Papers) 2015: 386-406 - [p13]Christian Borgelt, Christian Braune, Marie-Jeanne Lesot, Rudolf Kruse:
Handling Noise and Outliers in Fuzzy Clustering. Fifty Years of Fuzzy Logic and its Applications 2015: 315-335 - 2014
- [j21]David Picado-Muiño, Christian Borgelt:
Frequent item set mining for sequential data: Synchrony in neuronal spike trains. Intell. Data Anal. 18(6): 997-1012 (2014) - [j20]David Picado-Muiño, Iván Castro León, Christian Borgelt:
Fuzzy characterization of spike synchrony in parallel spike trains. Soft Comput. 18(1): 71-83 (2014) - [c55]Christian Borgelt, David Picado-Muiño:
Simple Pattern Spectrum Estimation for Fast Pattern Filtering with CoCoNAD. IDA 2014: 37-48 - 2013
- [b5]Rudolf Kruse, Christian Borgelt, Frank Klawonn, Christian Moewes, Matthias Steinbrecher, Pascal Held:
Computational Intelligence - A Methodological Introduction. Texts in Computer Science, Springer 2013, ISBN 978-1-4471-5012-1, pp. I-XI, 1-490 - [j19]Emiliano Torre, David Picado-Muiño, Michael Denker, Christian Borgelt, Sonja Grün:
Statistical evaluation of synchronous spike patterns extracted by frequent item set mining. Frontiers Comput. Neurosci. 7: 132 (2013) - [j18]David Picado-Muiño, Christian Borgelt, Denise Berger, George L. Gerstein, Sonja Grün:
Finding neural assemblies with frequent item set mining. Frontiers Neuroinformatics 7: 9 (2013) - [c54]Christian Borgelt, Christian Braune:
Prototype Construction for Clustering of Point Processes based on Imprecise Synchrony. EUSFLAT Conf. 2013 - [c53]Anja Bachmann, Christian Borgelt, Gyözö Gidófalvi:
Incremental Frequent Route Based Trajectory Prediction. CTS@SIGSPATIAL 2013: 49 - [c52]Christian Borgelt, David Picado-Muiño:
Finding Frequent Patterns in Parallel Point Processes. IDA 2013: 116-126 - [c51]Christian Braune, Christian Borgelt, Rudolf Kruse:
Behavioral Clustering for Point Processes. IDA 2013: 127-137 - [p12]Christian Borgelt, Christian Braune, Heiko Timm, Rudolf Kruse:
Unsicheres und vages Wissen. Handbuch der Künstlichen Intelligenz 2013: 235-296 - 2012
- [j17]Christian Borgelt, Christian Braune, Tobias Kötter, Sonja Grün:
New algorithms for finding approximate frequent item sets. Soft Comput. 16(5): 903-917 (2012) - [j16]Christian Borgelt:
Frequent item set mining. WIREs Data Mining Knowl. Discov. 2(6): 437-456 (2012) - [c50]Christian Braune, Christian Borgelt, Sonja Grün:
Assembly Detection in Continuous Neural Spike Train Data. IDA 2012: 78-89 - [c49]David Picado-Muiño, Iván Castro León, Christian Borgelt:
Fuzzy Frequent Pattern Mining in Spike Trains. IDA 2012: 289-300 - [c48]Christian Borgelt:
Soft Pattern Mining in Neuroscience. SMPS 2012: 3-10 - [p11]Christian Borgelt:
Network Creation: Overview. Bisociative Knowledge Discovery 2012: 51-53 - [p10]Marc Segond, Christian Borgelt:
Selecting the Links in BisoNets Generated from Document Collections. Bisociative Knowledge Discovery 2012: 54-65 - [p9]Marc Segond, Christian Borgelt:
Cover Similarity Based Item Set Mining. Bisociative Knowledge Discovery 2012: 104-121 - 2011
- [c47]Christian Borgelt, Xiaoyuan Yang, Rubén Nogales-Cadenas, Pedro Carmona-Saez, Alberto D. Pascual-Montano:
Finding closed frequent item sets by intersecting transactions. EDBT 2011: 367-376 - [c46]Gyözö Gidófalvi, Manohar Kaul, Christian Borgelt, Torben Bach Pedersen:
Frequent route based continuous moving object location- and density prediction on road networks. GIS 2011: 381-384 - [c45]Christian Borgelt, Tobias Kötter:
Mining Fault-Tolerant Item Sets Using Subset Size Occurrence Distributions. IDA 2011: 43-54 - [c44]Christian Braune, Christian Borgelt, Sonja Grün:
Finding Ensembles of Neurons in Spike Trains by Non-linear Mapping and Statistical Testing. IDA 2011: 55-66 - [c43]Marc Segond, Christian Borgelt:
Item Set Mining Based on Cover Similarity. PAKDD (2) 2011: 493-505 - 2010
- [b4]Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn:
Guide to Intelligent Data Analysis - How to Intelligently Make Sense of Real Data. Texts in Computer Science 42, Springer 2010, ISBN 978-1-84882-259-7, pp. I-XIII, 1-394 - [j15]Denise Berger, Christian Borgelt, Sebastien Louis, Abigail Morrison, Sonja Grün:
Efficient Identification of Assembly Neurons within Massively Parallel Spike Trains. Comput. Intell. Neurosci. 2010: 439648:1-439648:18 (2010) - [j14]Christian Borgelt:
A conditional independence algorithm for learning undirected graphical models. J. Comput. Syst. Sci. 76(1): 21-33 (2010) - [j13]Sebastien Louis, Christian Borgelt, Sonja Grün:
Complexity distribution as a measure for assembly size and temporal precision. Neural Networks 23(6): 705-712 (2010) - [c42]Marc Segond, Christian Borgelt:
Selecting the Links in BisoNets Generated from Document Collections. IDA 2010: 196-207 - [p8]Christian Borgelt:
Simple Algorithms for Frequent Item Set Mining. Advances in Machine Learning II 2010: 351-369 - [e3]Christian Borgelt, Gil González-Rodríguez, Wolfgang Trutschnig, María Asunción Lubiano, María Ángeles Gil, Przemyslaw Grzegorzewski, Olgierd Hryniewicz:
Combining Soft Computing and Statistical Methods in Data Analysis, SMPS 2010, Oviedo, Spain, September 29 - October 1, 2010. Advances in Intelligent and Soft Computing 77, Springer 2010, ISBN 978-3-642-14745-6 [contents]
2000 – 2009
- 2009
- [j12]Christian Borgelt:
Accelerating fuzzy clustering. Inf. Sci. 179(23): 3985-3997 (2009) - [c41]Christian Borgelt, Xiaomeng Wang:
SaM: A Split and Merge Algorithm for Fuzzy Frequent Item Set Mining. IFSA/EUSFLAT Conf. 2009: 968-973 - [c40]Sonja Grün, Denise Berger, Christian Borgelt:
Identification of neurons participating in cell assemblies. ICASSP 2009: 3493-3496 - [p7]Christian Borgelt, Xiaomeng Wang:
(Approximate) Frequent Item Set Mining Made Simple with a Split and Merge Algorithm. Scalable Fuzzy Algorithms for Data Management and Analysis 2009: 254-272 - [p6]Christian Borgelt, Thorsten Meinl:
Full Perfect Extension Pruning for Frequent Subgraph Mining. Mining Complex Data 2009: 189-205 - 2008
- [j11]Magdalene G. Borgelt, Christian Borgelt, Christos Levcopoulos:
Fixed Parameter Algorithms for the Minimum Weight Triangulation Problem. Int. J. Comput. Geom. Appl. 18(3): 185-220 (2008) - [c39]Christian Borgelt:
Feature weighting and feature selection in fuzzy clustering. FUZZ-IEEE 2008: 838-844 - [c38]Christian Borgelt:
Fuzzy Subspace Clustering. GfKl 2008: 93-103 - 2007
- [j10]Christian Borgelt:
Resampling for Fuzzy Clustering. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 15(5): 595-614 (2007) - [c37]Christian Borgelt:
Prototype-less Fuzzy Clustering. FUZZ-IEEE 2007: 1-6 - [c36]Christian Borgelt:
Learning Undirected Possibilistic Networks with Conditional Independence Tests. FUZZ-IEEE 2007: 1-6 - [c35]Christian Borgelt, Gil Gonzáles-Rodríguez:
FrIDA - A Free Intelligent Data Analysis Toolbox. FUZZ-IEEE 2007: 1-5 - [c34]Christian Borgelt, Mathias Fiedler:
Graph Mining: Repository vs. Canonical Form. GfKl 2007: 229-236 - [c33]Mathias Fiedler, Christian Borgelt:
Subgraph Support in a Single Large Graph. ICDM Workshops 2007: 399-404 - [c32]Mathias Fiedler, Christian Borgelt:
Support Computation for Mining Frequent Subgraphs in a Single Graph. MLG 2007 - 2006
- [c31]Christian Borgelt, Rudolf Kruse:
Finding the Number of Fuzzy Clusters by Resampling. FUZZ-IEEE 2006: 48-54 - [c30]Christian Borgelt:
Canonical Forms for Frequent Graph Mining. GfKl 2006: 337-349 - [c29]Christian Borgelt, Thorsten Meinl:
Full Perfect Extension Pruning for Frequent Graph Mining. ICDM Workshops 2006: 263-268 - [e2]Myra Spiliopoulou, Rudolf Kruse, Christian Borgelt, Andreas Nürnberger, Wolfgang Gaul:
From Data and Information Analysis to Knowledge Engineering, Proceedings of the 29th Annual Conference of the Gesellschaft für Klassifikation e.V., University of Magdeburg, March 9-11, 2005. Studies in Classification, Data Analysis, and Knowledge Organization, Springer 2006, ISBN 978-3-540-31313-7 [contents] - 2005
- [c28]Christian Borgelt, Rudolf Kruse:
Probabilistic Graphical Models for the Diagnosis of Analog Electrical Circuits. ECSQARU 2005: 100-110 - [c27]Christian Borgelt, Michael R. Berthold, David E. Patterson:
Molecular Fragment Mining for Drug Discovery. ECSQARU 2005: 1002-1013 - [c26]Christian Borgelt, Andreas Nürnberger, Rudolf Kruse:
Fuzzy Learning Vector Quantization with Size and Shape Parameters. FUZZ-IEEE 2005: 195-200 - [c25]Christian Döring, Christian Borgelt, Rudolf Kruse:
Effects of Irrelevant Attributes in Fuzzy Clustering. FUZZ-IEEE 2005: 862-866 - [c24]Xiaomeng Wang, Christian Borgelt, Rudolf Kruse:
Fuzzy frequent pattern discovering based on recursive elimination. ICMLA 2005 - [c23]Magdalene Grantson, Christian Borgelt, Christos Levcopoulos:
Minimum Weight Triangulation by Cutting Out Triangles. ISAAC 2005: 984-994 - 2004
- [j9]Christian Borgelt, Rudolf Kruse:
Probabilistische grafische Modellle und ihre Anwendung in der Automobilindustrie. Datenbank-Spektrum 9: 18-23 (2004) - [j8]Heiko Timm, Christian Borgelt, Christian Döring, Rudolf Kruse:
An extension to possibilistic fuzzy cluster analysis. Fuzzy Sets Syst. 147(1): 3-16 (2004) - [j7]Heiko Hofer, Christian Borgelt, Michael R. Berthold:
Large scale mining of molecular fragments with wildcards. Intell. Data Anal. 8(5): 495-504 (2004) - [c22]Christian Borgelt:
Recursion Pruning for the Apriori Algorithm. FIMI 2004 - [c21]Xiaomeng Wang, Christian Borgelt:
Information measures in fuzzy decision trees. FUZZ-IEEE 2004: 85-90 - [c20]Christian Borgelt, Daniela Girimonte, Giuseppe Acciani:
Modeling and diagnosis of analog circuits with probabilistic graphical models. ISCAS (4) 2004: 485-488 - [c19]Christian Borgelt, Daniela Girimonte, Giuseppe Acciani:
Learning vector quantization: cluster size and cluster number. ISCAS (5) 2004: 808-811 - [c18]Christian Borgelt, Andreas Nürnberger:
Experiments in Term Weighting and Keyword Extraction in Document Clustering. LWA 2004: 123-130 - [c17]Christian Borgelt, Rudolf Kruse:
Shape and Size Regularization in Expectation Maximization and Fuzzy Clustering. PKDD 2004: 52-62 - [c16]Christian Borgelt, Thorsten Meinl, Michael R. Berthold:
Advanced pruning strategies to speed up mining closed molecular fragments. SMC (5) 2004: 4565-4570 - 2003
- [b3]Christian Borgelt, Frank Klawonn, Rudolf Kruse, Detlef D. Nauck:
Neuro-Fuzzy-Systeme. Vieweg 2003, ISBN 978-3-528-25265-6, pp. 1-396 - [j6]Christian Borgelt, Rudolf Kruse:
Operations and evaluation measures for learning possibilistic graphical models. Artif. Intell. 148(1-2): 385-418 (2003) - [j5]Rudolf Kruse, Christian Borgelt:
Information mining. Int. J. Approx. Reason. 32(2-3): 63-65 (2003) - [j4]Christian Borgelt, Rudolf Kruse:
Learning possibilistic graphical models from data. IEEE Trans. Fuzzy Syst. 11(2): 159-172 (2003) - [c15]Christian Borgelt, Rudolf Kruse:
Speeding up fuzzy clustering with neural network techniques. FUZZ-IEEE 2003: 852-856 - [c14]Heiko Hofer, Christian Borgelt, Michael R. Berthold:
Large Scale Mining of Molecular Fragments with Wildcards. IDA 2003: 376-385 - [c13]Christian Borgelt:
On Identifying Tree-Structured Perfect Maps. KI 2003: 385-395 - [p5]Christian Borgelt, Heiko Timm, Rudolf Kruse:
Unsicheres und vages Wissens. Handbuch der Künstlichen Intelligenz 2003: 290-347 - [p4]Christian Borgelt, Rudolf Kruse:
Local Structure Learning in Graphical Models. Planning Based on Decision Theory 2003: 99-118 - [e1]Michael R. Berthold, Hans-Joachim Lenz, Elizabeth Bradley, Rudolf Kruse, Christian Borgelt:
Advances in Intelligent Data Analysis V, 5th International Symposium on Intelligent Data Analysis, IDA 2003, Berlin, Germany, August 28-30, 2003, Proceedings. Lecture Notes in Computer Science 2810, Springer 2003, ISBN 3-540-40813-4 [contents] - 2002
- [b2]Christian Borgelt, Rudolf Kruse:
Graphical models - methods for data analysis and mining. Wiley 2002, ISBN 978-0-470-84337-6, pp. I-VIII, 1-358 - [c12]Rudolf Kruse, Christian Borgelt:
Data Mining with Graphical Models. ALT 2002: 22 - [c11]Christian Borgelt, Rudolf Kruse:
Induction of Association Rules: Apriori Implementation. COMPSTAT 2002: 395-400 - [c10]Rudolf Kruse, Christian Borgelt:
Data Mining with Graphical Models. Discovery Science 2002: 2-11 - [c9]Christian Borgelt, Michael R. Berthold:
Mining Molecular Fragments: Finding Relevant Substructures of Molecules. ICDM 2002: 51-58 - 2001
- [j3]Christian Borgelt, Rudolf Kruse:
Unsicherheit und Vagheit: Begriffe, Methoden, Forschungsthemen. Künstliche Intell. 15(3): 5-8 (2001) - [j2]Christian Borgelt, Rudolf Kruse:
Unsicherheit und Vagheit - Serviceteil. Künstliche Intell. 15(3): 48 (2001) - [c8]Christian Borgelt, Rudolf Kruse:
An Empirical Investigation of the K2 Metric. ECSQARU 2001: 240-251 - [c7]Christian Borgelt, Rudolf Kruse:
Learning Graphical Models With Hypertree Structure Using a Simulated Annealing Approach. FUZZ-IEEE 2001: 135-138 - 2000
- [b1]Christian Borgelt:
Data mining with graphical models. Otto-von-Guericke University Magdeburg, Germany, 2000, pp. 1-366 - [c6]Christian Borgelt, Heiko Timm, Rudolf Kruse:
Using fuzzy clustering to improve naive Bayes classifiers and probabilistic networks. FUZZ-IEEE 2000: 53-58 - [c5]Rudolf Kruse, Christian Borgelt, Detlef D. Nauck:
Problems and Prospects in Fuzzy Data Analysis. Intelligent Systems and Soft Computing 2000: 95-109 - [c4]Christian Borgelt, Heiko Timm:
Advanced Fuzzy Clustering and Decision Tree Plug-Ins for Data EngineTM. Intelligent Systems and Soft Computing 2000: 188-212 - [p3]Christian Borgelt, Jörg Gebhardt, Rudolf Kruse:
Possibilistic Graphical Models. Computational Intelligence in Data Mining 2000: 51-67 - [p2]Christian Borgelt:
Data mining with graphical models. Ausgezeichnete Informatikdissertationen 2000: 21-30
1990 – 1999
- 1999
- [c3]Christian Borgelt, Rudolf Kruse:
A Critique of Inductive Causation. ESCQARU 1999: 68-79 - [p1]Christian Borgelt, Jörg Gebhardt, Rudolf Kruse:
Fuzzy Methoden in der Datenanalyse. Fuzzy Theorie und Stochastik 1999: 370-386 - 1998
- [j1]Christian Borgelt, Rudolf Kruse, Guido Lindner:
Lernen probabilistischer und possibilistischer Netze aus Daten: Theorie und Anwendung. Künstliche Intell. 12(1): 11-17 (1998) - [c2]Rudolf Kruse, Christian Borgelt:
Data Mining with Graphical Models. KI 1998: 3-16 - 1997
- [c1]Christian Borgelt, Rudolf Kruse:
Some Experimental Results on Learning Probabilistic and Possibilistic Networks with Different Evaluation Measures. ECSQARU-FAPR 1997: 71-85
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-20 22:56 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint