default search action
Hongseok Yang
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j28]Nathanael L. Ackerman, Cameron E. Freer, Younesse Kaddar, Jacek Karwowski, Sean K. Moss, Daniel M. Roy, Sam Staton, Hongseok Yang:
Probabilistic Programming Interfaces for Random Graphs: Markov Categories, Graphons, and Nominal Sets. Proc. ACM Program. Lang. 8(POPL): 1819-1849 (2024) - [c87]Hyunsu Kim, Yegon Kim, Hongseok Yang, Juho Lee:
Variational Partial Group Convolutions for Input-Aware Partial Equivariance of Rotations and Color-Shifts. ICML 2024 - [c86]Taeyoung Kim, Hongseok Yang:
An Infinite-Width Analysis on the Jacobian-Regularised Training of a Neural Network. ICML 2024 - [i36]Hyunsu Kim, Yegon Kim, Hongseok Yang, Juho Lee:
Variational Partial Group Convolutions for Input-Aware Partial Equivariance of Rotations and Color-Shifts. CoRR abs/2407.04271 (2024) - 2023
- [j27]Hoil Lee, Fadhel Ayed, Paul Jung, Juho Lee, Hongseok Yang, Francois Caron:
Deep Neural Networks with Dependent Weights: Gaussian Process Mixture Limit, Heavy Tails, Sparsity and Compressibility. J. Mach. Learn. Res. 24: 289:1-289:78 (2023) - [j26]Wonyeol Lee, Xavier Rival, Hongseok Yang:
Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference. Proc. ACM Program. Lang. 7(POPL): 335-366 (2023) - [c85]Hyunsu Kim, Hyungi Lee, Hongseok Yang, Juho Lee:
Regularizing Towards Soft Equivariance Under Mixed Symmetries. ICML 2023: 16712-16727 - [c84]Seokin Seo, HyeongJoo Hwang, Hongseok Yang, Kee-Eung Kim:
Regularized Behavior Cloning for Blocking the Leakage of Past Action Information. NeurIPS 2023 - [i35]Francois Caron, Fadhel Ayed, Paul Jung, Hoil Lee, Juho Lee, Hongseok Yang:
Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning. CoRR abs/2302.01002 (2023) - [i34]Hyunsu Kim, Hyungi Lee, Hongseok Yang, Juho Lee:
Regularizing Towards Soft Equivariance Under Mixed Symmetries. CoRR abs/2306.00356 (2023) - [i33]Tien Dat Nguyen, Jinwoo Kim, Hongseok Yang, Seunghoon Hong:
Learning Symmetrization for Equivariance with Orbit Distance Minimization. CoRR abs/2311.07143 (2023) - [i32]Taeyoung Kim, Hongseok Yang:
An Infinite-Width Analysis on the Jacobian-Regularised Training of a Neural Network. CoRR abs/2312.03386 (2023) - [i31]Nathanael L. Ackerman, Cameron E. Freer, Younesse Kaddar, Jacek Karwowski, Sean K. Moss, Daniel M. Roy, Sam Staton, Hongseok Yang:
Probabilistic programming interfaces for random graphs: Markov categories, graphons, and nominal sets. CoRR abs/2312.17127 (2023) - 2022
- [c83]Geon-Hyeong Kim, Seokin Seo, Jongmin Lee, Wonseok Jeon, HyeongJoo Hwang, Hongseok Yang, Kee-Eung Kim:
DemoDICE: Offline Imitation Learning with Supplementary Imperfect Demonstrations. ICLR 2022 - [c82]Hyungi Lee, Eunggu Yun, Hongseok Yang, Juho Lee:
Scale Mixtures of Neural Network Gaussian Processes. ICLR 2022 - [c81]Geon-Hyeong Kim, Jongmin Lee, Youngsoo Jang, Hongseok Yang, Kee-Eung Kim:
LobsDICE: Offline Learning from Observation via Stationary Distribution Correction Estimation. NeurIPS 2022 - [c80]Sangho Lim, Eun-Gyeol Oh, Hongseok Yang:
Learning Symmetric Rules with SATNet. NeurIPS 2022 - [i30]Geon-Hyeong Kim, Jongmin Lee, Youngsoo Jang, Hongseok Yang, Kee-Eung Kim:
LobsDICE: Offline Imitation Learning from Observation via Stationary Distribution Correction Estimation. CoRR abs/2202.13536 (2022) - [i29]Hoil Lee, Fadhel Ayed, Paul Jung, Juho Lee, Hongseok Yang, François Caron:
Deep neural networks with dependent weights: Gaussian Process mixture limit, heavy tails, sparsity and compressibility. CoRR abs/2205.08187 (2022) - [i28]Sangho Lim, Eun-Gyeol Oh, Hongseok Yang:
Learning Symmetric Rules with SATNet. CoRR abs/2206.13998 (2022) - [i27]Wonyeol Lee, Xavier Rival, Hongseok Yang:
Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference. CoRR abs/2208.10530 (2022) - 2021
- [j25]Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morrison, Hongseok Yang, Marek Zawirski:
Specification and space complexity of collaborative text editing. Theor. Comput. Sci. 855: 141-160 (2021) - [c79]David Tolpin, Yuan Zhou, Tom Rainforth, Hongseok Yang:
Probabilistic Programs with Stochastic Conditioning. ICML 2021: 10312-10323 - [i26]Gwonsoo Che, Hongseok Yang:
Meta-Learning an Inference Algorithm for Probabilistic Programs. CoRR abs/2103.00737 (2021) - [i25]Paul Jung, Hoil Lee, Jiho Lee, Hongseok Yang:
α-Stable convergence of heavy-tailed infinitely-wide neural networks. CoRR abs/2106.11064 (2021) - [i24]Hyungi Lee, Eunggu Yun, Hongseok Yang, Juho Lee:
Scale Mixtures of Neural Network Gaussian Processes. CoRR abs/2107.01408 (2021) - 2020
- [j24]Wonyeol Lee, Hangyeol Yu, Xavier Rival, Hongseok Yang:
Towards verified stochastic variational inference for probabilistic programs. Proc. ACM Program. Lang. 4(POPL): 16:1-16:33 (2020) - [c78]Hyoungjin Lim, Gwonsoo Che, Wonyeol Lee, Hongseok Yang:
Differentiable Algorithm for Marginalising Changepoints. AAAI 2020: 4828-4835 - [c77]Geon-Hyeong Kim, Youngsoo Jang, Hongseok Yang, Kee-Eung Kim:
Variational Inference for Sequential Data with Future Likelihood Estimates. ICML 2020: 5296-5305 - [c76]Yuan Zhou, Hongseok Yang, Yee Whye Teh, Tom Rainforth:
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support. ICML 2020: 11534-11545 - [c75]Wonyeol Lee, Hangyeol Yu, Xavier Rival, Hongseok Yang:
On Correctness of Automatic Differentiation for Non-Differentiable Functions. NeurIPS 2020 - [i23]David Tolpin, Yuan Zhou, Hongseok Yang:
Stochastically Differentiable Probabilistic Programs. CoRR abs/2003.00704 (2020) - [i22]Wonyeol Lee, Hangyeol Yu, Xavier Rival, Hongseok Yang:
On Correctness of Automatic Differentiation for Non-Differentiable Functions. CoRR abs/2006.06903 (2020) - [i21]David Tolpin, Yuan Zhou, Hongseok Yang:
Probabilistic Programs with Stochastic Conditioning. CoRR abs/2010.00282 (2020) - [i20]David Tolpin, Yuan Zhou, Hongseok Yang:
Bayesian Policy Search for Stochastic Domains. CoRR abs/2010.00284 (2020)
2010 – 2019
- 2019
- [c74]Geon-hyeong Kim, Youngsoo Jang, Jongmin Lee, Wonseok Jeon, Hongseok Yang, Kee-Eung Kim:
Trust Region Sequential Variational Inference. ACML 2019: 1033-1048 - [c73]Yuan Zhou, Bradley J. Gram-Hansen, Tobias Kohn, Tom Rainforth, Hongseok Yang, Frank Wood:
LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models. AISTATS 2019: 148-157 - [c72]Kihong Heo, Hakjoo Oh, Hongseok Yang:
Resource-aware program analysis via online abstraction coarsening. ICSE 2019: 94-104 - [c71]Hongseok Yang:
Some Semantic Issues in Probabilistic Programming Languages (Invited Talk). FSCD 2019: 4:1-4:6 - [i19]Yuan Zhou, Bradley J. Gram-Hansen, Tobias Kohn, Tom Rainforth, Hongseok Yang, Frank Wood:
LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models. CoRR abs/1903.02482 (2019) - [i18]Wonyeol Lee, Hangyeol Yu, Xavier Rival, Hongseok Yang:
Towards Verified Stochastic Variational Inference for Probabilistic Programs. CoRR abs/1907.08827 (2019) - [i17]Yuan Zhou, Hongseok Yang, Yee Whye Teh, Tom Rainforth:
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support. CoRR abs/1910.13324 (2019) - [i16]Hyoungjin Lim, Gwonsoo Che, Wonyeol Lee, Hongseok Yang:
Differentiable Algorithm for Marginalising Changepoints. CoRR abs/1911.09839 (2019) - 2018
- [j23]Kihong Heo, Hakjoo Oh, Hongseok Yang:
Learning analysis strategies for octagon and context sensitivity from labeled data generated by static analyses. Formal Methods Syst. Des. 53(2): 189-220 (2018) - [j22]Adam Scibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang, Yufei Cai, Klaus Ostermann, Sean K. Moss, Chris Heunen, Zoubin Ghahramani:
Denotational validation of higher-order Bayesian inference. Proc. ACM Program. Lang. 2(POPL): 60:1-60:29 (2018) - [j21]Kihong Heo, Hakjoo Oh, Hongseok Yang, Kwangkeun Yi:
Adaptive Static Analysis via Learning with Bayesian Optimization. ACM Trans. Program. Lang. Syst. 40(4): 14:1-14:37 (2018) - [c70]Sam Staton, Dario Stein, Hongseok Yang, Nathanael L. Ackerman, Cameron E. Freer, Daniel M. Roy:
The Beta-Bernoulli process and algebraic effects. ICALP 2018: 141:1-141:15 - [c69]Tom Rainforth, Robert Cornish, Hongseok Yang, Andrew Warrington:
On Nesting Monte Carlo Estimators. ICML 2018: 4264-4273 - [c68]Wonyeol Lee, Hangyeol Yu, Hongseok Yang:
Reparameterization Gradient for Non-differentiable Models. NeurIPS 2018: 5558-5568 - [i15]Sam Staton, Dario Stein, Hongseok Yang, Nathanael L. Ackerman, Cameron E. Freer, Daniel M. Roy:
The Beta-Bernoulli process and algebraic effects. CoRR abs/1802.09598 (2018) - [i14]Bradley Gram-Hansen, Yuan Zhou, Tobias Kohn, Hongseok Yang, Frank D. Wood:
Discontinuous Hamiltonian Monte Carlo for Probabilistic Programs. CoRR abs/1804.03523 (2018) - [i13]Wonyeol Lee, Hangyeol Yu, Hongseok Yang:
Reparameterization Gradient for Non-differentiable Models. CoRR abs/1806.00176 (2018) - [i12]Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, Frank Wood:
An Introduction to Probabilistic Programming. CoRR abs/1809.10756 (2018) - 2017
- [j20]Kwonsoo Chae, Hakjoo Oh, Kihong Heo, Hongseok Yang:
Automatically generating features for learning program analysis heuristics for C-like languages. Proc. ACM Program. Lang. 1(OOPSLA): 101:1-101:25 (2017) - [c67]Hongseok Yang:
Probabilistic Programming (Invited Talk). CONCUR 2017: 3:1-3:1 - [c66]Andrea Cerone, Alexey Gotsman, Hongseok Yang:
Algebraic Laws for Weak Consistency. CONCUR 2017: 26:1-26:18 - [c65]Chris Heunen, Ohad Kammar, Sam Staton, Hongseok Yang:
A convenient category for higher-order probability theory. LICS 2017: 1-12 - [e2]Hongseok Yang:
Programming Languages and Systems - 26th European Symposium on Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings. Lecture Notes in Computer Science 10201, Springer 2017, ISBN 978-3-662-54433-4 [contents] - [i11]Chris Heunen, Ohad Kammar, Sam Staton, Hongseok Yang:
A Convenient Category for Higher-Order Probability Theory. CoRR abs/1701.02547 (2017) - [i10]Andrea Cerone, Alexey Gotsman, Hongseok Yang:
Algebraic Laws for Weak Consistency. CoRR abs/1702.06028 (2017) - [i9]Adam Scibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang, Yufei Cai, Klaus Ostermann, Sean K. Moss, Chris Heunen, Zoubin Ghahramani:
Denotational validation of higher-order Bayesian inference. CoRR abs/1711.03219 (2017) - 2016
- [j19]Hila Peleg, Sharon Shoham, Eran Yahav, Hongseok Yang:
Symbolic automata for representing big code. Acta Informatica 53(4): 327-356 (2016) - [j18]Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, Kwangkeun Yi:
Selective X-Sensitive Analysis Guided by Impact Pre-Analysis. ACM Trans. Program. Lang. Syst. 38(2): 6:1-6:45 (2016) - [c64]Mahsa Najafzadeh, Alexey Gotsman, Hongseok Yang, Carla Ferreira, Marc Shapiro:
The CISE tool: proving weakly-consistent applications correct. PaPoC@EuroSys 2016: 2:1-2:3 - [c63]David Tolpin, Jan-Willem van de Meent, Hongseok Yang, Frank D. Wood:
Design and Implementation of Probabilistic Programming Language Anglican. IFL 2016: 6:1-6:12 - [c62]Sam Staton, Hongseok Yang, Frank D. Wood, Chris Heunen, Ohad Kammar:
Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints. LICS 2016: 525-534 - [c61]Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morrison, Hongseok Yang, Marek Zawirski:
Specification and Complexity of Collaborative Text Editing. PODC 2016: 259-268 - [c60]Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, Marc Shapiro:
'Cause I'm strong enough: reasoning about consistency choices in distributed systems. POPL 2016: 371-384 - [c59]Radu Grigore, Hongseok Yang:
Abstraction refinement guided by a learnt probabilistic model. POPL 2016: 485-498 - [c58]Kihong Heo, Hakjoo Oh, Hongseok Yang:
Learning a Variable-Clustering Strategy for Octagon from Labeled Data Generated by a Static Analysis. SAS 2016: 237-256 - [i8]Sam Staton, Hongseok Yang, Chris Heunen, Ohad Kammar, Frank D. Wood:
Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints. CoRR abs/1601.04943 (2016) - [i7]Mike Wu, Yura N. Perov, Frank D. Wood, Hongseok Yang:
Spreadsheet Probabilistic Programming. CoRR abs/1606.04216 (2016) - [i6]David Tolpin, Jan-Willem van de Meent, Hongseok Yang, Frank D. Wood:
Design and Implementation of Probabilistic Programming Language Anglican. CoRR abs/1608.05263 (2016) - [i5]Kwonsoo Chae, Hakjoo Oh, Kihong Heo, Hongseok Yang:
Automatically generating features for learning program analysis heuristics. CoRR abs/1612.09394 (2016) - 2015
- [c57]Jan-Willem van de Meent, Hongseok Yang, Vikash Mansinghka, Frank D. Wood:
Particle Gibbs with Ancestor Sampling for Probabilistic Programs. AISTATS 2015 - [c56]Alexey Gotsman, Hongseok Yang:
Composite Replicated Data Types. ESOP 2015: 585-609 - [c55]Hakjoo Oh, Hongseok Yang, Kwangkeun Yi:
Learning a strategy for adapting a program analysis via bayesian optimisation. OOPSLA 2015: 572-588 - [c54]Ghila Castelnuovo, Mayur Naik, Noam Rinetzky, Mooly Sagiv, Hongseok Yang:
Modularity in Lattices: A Case Study on the Correspondence Between Top-Down and Bottom-Up Analysis. SAS 2015: 252-274 - [c53]Andrea Cerone, Alexey Gotsman, Hongseok Yang:
Transaction Chopping for Parallel Snapshot Isolation. DISC 2015: 388-404 - [i4]Jan-Willem van de Meent, Hongseok Yang, Vikash Mansinghka, Frank D. Wood:
Particle Gibbs with Ancestor Sampling for Probabilistic Programs. CoRR abs/1501.06769 (2015) - [i3]Radu Grigore, Hongseok Yang:
Abstraction Refinement Guided by a Learnt Probabilistic Model. CoRR abs/1511.01874 (2015) - 2014
- [c52]Ravi Mangal, Mayur Naik, Hongseok Yang:
A Correspondence between Two Approaches to Interprocedural Analysis in the Presence of Join. ESOP 2014: 513-533 - [c51]Andrea Cerone, Alexey Gotsman, Hongseok Yang:
Parameterised Linearisability. ICALP (2) 2014: 98-109 - [c50]Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, Hongseok Yang:
On abstraction refinement for program analyses in Datalog. PLDI 2014: 239-248 - [c49]Xin Zhang, Ravi Mangal, Mayur Naik, Hongseok Yang:
Hybrid top-down and bottom-up interprocedural analysis. PLDI 2014: 249-258 - [c48]Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, Kwangkeun Yi:
Selective context-sensitivity guided by impact pre-analysis. PLDI 2014: 475-484 - [c47]Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, Marek Zawirski:
Replicated data types: specification, verification, optimality. POPL 2014: 271-284 - 2013
- [j17]Alexey Gotsman, Hongseok Yang:
Linearizability with Ownership Transfer. Log. Methods Comput. Sci. 9(3) (2013) - [j16]Alexey Gotsman, Hongseok Yang:
Modular verification of preemptive OS kernels. J. Funct. Program. 23(4): 452-514 (2013) - [j15]Jan Schwinghammer, Lars Birkedal, François Pottier, Bernhard Reus, Kristian Støvring, Hongseok Yang:
A step-indexed Kripke model of hidden state. Math. Struct. Comput. Sci. 23(1): 1-54 (2013) - [c46]Alexey Gotsman, Noam Rinetzky, Hongseok Yang:
Verifying Concurrent Memory Reclamation Algorithms with Grace. ESOP 2013: 249-269 - [c45]Xin Zhang, Mayur Naik, Hongseok Yang:
Finding optimum abstractions in parametric dataflow analysis. PLDI 2013: 365-376 - [c44]Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, Hongseok Yang:
Views: compositional reasoning for concurrent programs. POPL 2013: 287-300 - [c43]Hila Peleg, Sharon Shoham, Eran Yahav, Hongseok Yang:
Symbolic Automata for Static Specification Mining. SAS 2013: 63-83 - 2012
- [j14]Jacob Thamsborg, Lars Birkedal, Hongseok Yang:
Two for the Price of One: Lifting Separation Logic Assertions. Log. Methods Comput. Sci. 8(3) (2012) - [j13]Oukseh Lee, Hongseok Yang, Rasmus Petersen:
A divide-and-conquer approach for analysing overlaid data structures. Formal Methods Syst. Des. 41(1): 4-24 (2012) - [c42]Alexey Gotsman, Hongseok Yang:
Linearizability with Ownership Transfer. CONCUR 2012: 256-271 - [c41]Sebastian Burckhardt, Alexey Gotsman, Madanlal Musuvathi, Hongseok Yang:
Concurrent Library Correctness on the TSO Memory Model. ESOP 2012: 87-107 - [c40]Mayur Naik, Hongseok Yang, Ghila Castelnuovo, Mooly Sagiv:
Abstractions from tests. POPL 2012: 373-386 - [c39]Saswat Anand, Mayur Naik, Mary Jean Harrold, Hongseok Yang:
Automated concolic testing of smartphone apps. SIGSOFT FSE 2012: 59 - [c38]Alexey Gotsman, Madanlal Musuvathi, Hongseok Yang:
Show No Weakness: Sequentially Consistent Specifications of TSO Libraries. DISC 2012: 31-45 - 2011
- [j12]Jan Schwinghammer, Lars Birkedal, Bernhard Reus, Hongseok Yang:
Nested Hoare Triples and Frame Rules for Higher-order Store. Log. Methods Comput. Sci. 7(3) (2011) - [j11]Cristiano Calcagno, Dino Distefano, Peter W. O'Hearn, Hongseok Yang:
Compositional Shape Analysis by Means of Bi-Abduction. J. ACM 58(6): 26:1-26:66 (2011) - [c37]Oukseh Lee, Hongseok Yang, Rasmus Petersen:
Program Analysis for Overlaid Data Structures. CAV 2011: 592-608 - [c36]Alexey Gotsman, Hongseok Yang:
Liveness-Preserving Atomicity Abstraction. ICALP (2) 2011: 453-465 - [c35]Alexey Gotsman, Hongseok Yang:
Modular verification of preemptive OS kernels. ICFP 2011: 404-417 - [c34]Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Støvring, Jacob Thamsborg, Hongseok Yang:
Step-indexed kripke models over recursive worlds. POPL 2011: 119-132 - [e1]Hongseok Yang:
Programming Languages and Systems - 9th Asian Symposium, APLAS 2011, Kenting, Taiwan, December 5-7, 2011. Proceedings. Lecture Notes in Computer Science 7078, Springer 2011, ISBN 978-3-642-25317-1 [contents] - 2010
- [j10]Ivana Filipovic, Peter W. O'Hearn, Noah Torp-Smith, Hongseok Yang:
Blaming the client: on data refinement in the presence of pointers. Formal Aspects Comput. 22(5): 547-583 (2010) - [j9]Ivana Filipovic, Peter W. O'Hearn, Noam Rinetzky, Hongseok Yang:
Abstraction for concurrent objects. Theor. Comput. Sci. 411(51-52): 4379-4398 (2010) - [c33]Aziem Chawdhary, Hongseok Yang:
Metric Spaces and Termination Analyses. APLAS 2010: 156-171 - [c32]Jan Schwinghammer, Hongseok Yang, Lars Birkedal, François Pottier, Bernhard Reus:
A Semantic Foundation for Hidden State. FoSSaCS 2010: 2-17
2000 – 2009
- 2009
- [j8]Peter W. O'Hearn, Hongseok Yang, John C. Reynolds:
Separation and information hiding. ACM Trans. Program. Lang. Syst. 31(3): 11:1-11:50 (2009) - [c31]Jan Schwinghammer, Lars Birkedal, Bernhard Reus, Hongseok Yang:
Nested Hoare Triples and Frame Rules for Higher-Order Store. CSL 2009: 440-454 - [c30]Hongseok Yang:
Automatic Verification of Heap-Manipulating Programs Using Separation Logic. CSR 2009: 25 - [c29]Ivana Filipovic, Peter W. O'Hearn, Noam Rinetzky, Hongseok Yang:
Abstraction for Concurrent Objects. ESOP 2009: 252-266 - [c28]Cristiano Calcagno, Dino Distefano, Peter W. O'Hearn, Hongseok Yang:
Compositional shape analysis by means of bi-abduction. POPL 2009: 289-300 - 2008
- [j7]Lars Birkedal, Hongseok Yang:
Relational Parametricity and Separation Logic. Log. Methods Comput. Sci. 4(2) (2008) - [c27]Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter W. O'Hearn:
Scalable Shape Analysis for Systems Code. CAV 2008: 385-398 - [c26]Aziem Chawdhary, Byron Cook, Sumit Gulwani, Mooly Sagiv, Hongseok Yang:
Ranking Abstractions. ESOP 2008: 148-162 - [c25]Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Hongseok Yang:
A Simple Model of Separation Logic for Higher-Order Store. ICALP (2) 2008: 348-360 - [c24]Cristiano Calcagno, Dino Distefano, Peter W. O'Hearn, Hongseok Yang:
Space Invading Systems Code. LOPSTR 2008: 1-3 - [i2]Lars Birkedal, Hongseok Yang:
Relational Parametricity and Separation Logic. CoRR abs/0805.0783 (2008) - 2007
- [j6]Hongseok Yang:
Relational separation logic. Theor. Comput. Sci. 375(1-3): 308-334 (2007) - [j5]Sunae Seo, Hongseok Yang, Kwangkeun Yi, Taisook Han:
Goal-directed weakening of abstract interpretation results. ACM Trans. Program. Lang. Syst. 29(6): 39 (2007) - [c23]Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter W. O'Hearn, Thomas Wies, Hongseok Yang:
Shape Analysis for Composite Data Structures. CAV 2007: 178-192 - [c22]Lars Birkedal, Hongseok Yang:
Relational Parametricity and Separation Logic. FoSSaCS 2007: 93-107 - [c21]Cristiano Calcagno, Peter W. O'Hearn, Hongseok Yang:
Local Action and Abstract Separation Logic. LICS 2007: 366-378 - [c20]Cristiano Calcagno, Dino Distefano, Peter W. O'Hearn, Hongseok Yang:
Footprint Analysis: A Shape Analysis That Discovers Preconditions. SAS 2007: 402-418 - [c19]Hongseok Yang:
Towards Shape Analysis for Device Drivers. VMCAI 2007: 267 - 2006
- [j4]Lars Birkedal, Noah Torp-Smith, Hongseok Yang:
Semantics of Separation-Logic Typing and Higher-order Frame Rules for Algol-like Languages. Log. Methods Comput. Sci. 2(5) (2006) - [c18]Cristiano Calcagno, Dino Distefano, Peter W. O'Hearn, Hongseok Yang:
Beyond Reachability: Shape Abstraction in the Presence of Pointer Arithmetic. SAS 2006: 182-203 - [c17]Hongseok Yang:
Shape Analysis for Low-Level Code. SAS 2006: 280 - [c16]Dino Distefano, Peter W. O'Hearn, Hongseok Yang:
A Local Shape Analysis Based on Separation Logic. TACAS 2006: 287-302 - [i1]Lars Birkedal, Noah Torp-Smith, Hongseok Yang:
Semantics of Separation-Logic Typing and Higher-order Frame Rules for Algol-like Languages. CoRR abs/cs/0610081 (2006) - 2005
- [j3]Oukseh Lee, Hongseok Yang, Kwangkeun Yi:
Static insertion of safe and effective memory reuse commands into ML-like programs. Sci. Comput. Program. 58(1-2): 141-178 (2005) - [c15]Ivana Mijajlovic, Hongseok Yang:
Data Refinement with Low-Level Pointer Operations. APLAS 2005: 19-36 - [c14]Oukseh Lee, Hongseok Yang, Kwangkeun Yi:
Automatic Verification of Pointer Programs Using Grammar-Based Shape Analysis. ESOP 2005: 124-140 - [c13]Lars Birkedal, Noah Torp-Smith, Hongseok Yang:
Semantics of Separation-Logic Typing and Higher-Order Frame Rules. LICS 2005: 260-269 - [c12]Richard Bornat, Cristiano Calcagno, Hongseok Yang:
Variables as Resource in Separation Logic. MFPS 2005: 247-276 - 2004
- [j2]Uday S. Reddy, Hongseok Yang:
Correctness of data representations involving heap data structures. Sci. Comput. Program. 50(1-3): 129-160 (2004) - [j1]David J. Pym, Peter W. O'Hearn, Hongseok Yang:
Possible worlds and resources: the semantics of BI. Theor. Comput. Sci. 315(1): 257-305 (2004) - [c11]Peter W. O'Hearn, Hongseok Yang, John C. Reynolds:
Separation and information hiding. POPL 2004: 268-280 - 2003
- [c10]Sunae Seo, Hongseok Yang, Kwangkeun Yi:
Automatic Construction of Hoare Proofs from Abstract Interpretation Results. APLAS 2003: 230-245 - [c9]Uday S. Reddy, Hongseok Yang:
Correctness of Data Representations Involving Heap Data Structures. ESOP 2003: 223-237 - [c8]Oukseh Lee, Hongseok Yang, Kwangkeun Yi:
Inserting Safe Memory Reuse Commands into ML-Like Programs. SAS 2003: 171-188 - 2002
- [c7]Oukseh Lee, Hongseok Yang, Kwangkeun Yi:
Inserting Safe Memory Re-use Commands into ML-like Programs. APLAS 2002: 317-333 - [c6]Hongseok Yang, Peter W. O'Hearn:
A Semantic Basis for Local Reasoning. FoSSaCS 2002: 402-416 - 2001
- [b1]Hongseok Yang:
Local Reasoning for Stateful Programs. University of Illinois Urbana-Champaign, USA, 2001 - [c5]Cristiano Calcagno, Hongseok Yang, Peter W. O'Hearn:
Computability and Complexity Results for a Spatial Assertion Language for Data Structures. APLAS 2001: 289-300 - [c4]Peter W. O'Hearn, John C. Reynolds, Hongseok Yang:
Local Reasoning about Programs that Alter Data Structures. CSL 2001: 1-19 - [c3]Cristiano Calcagno, Hongseok Yang, Peter W. O'Hearn:
Computability and Complexity Results for a Spatial Assertion Language for Data Structures. FSTTCS 2001: 108-119 - 2000
- [c2]Hongseok Yang, Uday S. Reddy:
On the Semantics of Refinement Calculi. FoSSaCS 2000: 359-374
1990 – 1999
- 1998
- [c1]Hongseok Yang, Howard Huang:
Type Reconstruction for Syntactic Control of Interference, Part 2. ICCL 1998: 164-173
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:17 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint