default search action
Jakub M. Tomczak
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [b2]Jakub M. Tomczak:
Deep Generative Modeling, Second Editiontion. Springer 2024, ISBN 978-3-031-64086-5, pp. 1-313 - [j20]David W. Romero, Erik J. Bekkers, Jakub M. Tomczak, Mark Hoogendoorn:
Wavelet Networks: Scale-Translation Equivariant Learning From Raw Time-Series. Trans. Mach. Learn. Res. 2024 (2024) - [c41]Jan P. Engelmann, Alessandro Palma, Jakub M. Tomczak, Fabian J. Theis, Francesco Paolo Casale:
Mixed Models with Multiple Instance Learning. AISTATS 2024: 3664-3672 - [i54]Haotian Chen, Anna Kuzina, Babak Esmaeili, Jakub M. Tomczak:
Variational Stochastic Gradient Descent for Deep Neural Networks. CoRR abs/2404.06549 (2024) - [i53]Jakub M. Tomczak:
Generative AI Systems: A Systems-based Perspective on Generative AI. CoRR abs/2407.11001 (2024) - 2023
- [c40]Sharvaree P. Vadgama, Jakub M. Tomczak, Erik J. Bekkers:
Continuous Kendall Shape Variational Autoencoders. GSI (1) 2023: 73-81 - [c39]David M. Knigge, David W. Romero, Albert Gu, Efstratios Gavves, Erik J. Bekkers, Jakub Mikolaj Tomczak, Mark Hoogendoorn, Jan-Jakob Sonke:
Modelling Long Range Dependencies in $N$D: From Task-Specific to a General Purpose CNN. ICLR 2023 - [c38]Emile van Krieken, Thiviyan Thanapalasingam, Jakub M. Tomczak, Frank van Harmelen, Annette ten Teije:
A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic Inference. NeurIPS 2023 - [c37]Kamil Deja, Tomasz Trzcinski, Jakub M. Tomczak:
Learning Data Representations with Joint Diffusion Models. ECML/PKDD (2) 2023: 543-559 - [c36]Jie Luo, Jakub M. Tomczak, Karine Miras, Ágoston E. Eiben:
A Comparison of Controller Architectures and Learning Mechanisms for Arbitrary Robot Morphologies. SSCI 2023: 1518-1525 - [i52]David M. Knigge, David W. Romero, Albert Gu, Efstratios Gavves, Erik J. Bekkers, Jakub M. Tomczak, Mark Hoogendoorn, Jan-Jakob Sonke:
Modelling Long Range Dependencies in N-D: From Task-Specific to a General Purpose CNN. CoRR abs/2301.10540 (2023) - [i51]Kamil Deja, Tomasz Trzcinski, Jakub M. Tomczak:
Learning Data Representations with Joint Diffusion Models. CoRR abs/2301.13622 (2023) - [i50]Anna Kuzina, Jakub M. Tomczak:
Analyzing the Posterior Collapse in Hierarchical Variational Autoencoders. CoRR abs/2302.09976 (2023) - [i49]Michal Zajac, Kamil Deja, Anna Kuzina, Jakub M. Tomczak, Tomasz Trzcinski, Florian Shkurti, Piotr Milos:
Exploring Continual Learning of Diffusion Models. CoRR abs/2303.15342 (2023) - [i48]Jie Luo, Karine Miras, Jakub M. Tomczak, Ágoston E. Eiben:
Lamarck's Revenge: Inheritance of Learned Traits Can Make Robot Evolution Better. CoRR abs/2309.13099 (2023) - [i47]Jie Luo, Jakub M. Tomczak, Karine Miras, Ágoston E. Eiben:
A comparison of controller architectures and learning mechanisms for arbitrary robot morphologies. CoRR abs/2309.13908 (2023) - [i46]Adam Izdebski, Ewelina Weglarz-Tomczak, Ewa Szczurek, Jakub M. Tomczak:
De Novo Drug Design with Joint Transformers. CoRR abs/2310.02066 (2023) - [i45]Jan P. Engelmann, Alessandro Palma, Jakub M. Tomczak, Fabian J. Theis, Francesco Paolo Casale:
Attention-based Multi-instance Mixed Models. CoRR abs/2311.02455 (2023) - 2022
- [b1]Jakub M. Tomczak:
Deep Generative Modeling. Springer 2022, ISBN 978-3-030-93157-5, pp. 1-197 - [j19]Jie Luo, Aart C. Stuurman, Jakub M. Tomczak, Jacintha Ellers, Ágoston E. Eiben:
The Effects of Learning in Morphologically Evolving Robot Systems. Frontiers Robotics AI 9: 797393 (2022) - [j18]Gongjin Lan, Jakub M. Tomczak, Diederik M. Roijers, A. E. Eiben:
Time efficiency in optimization with a bayesian-Evolutionary algorithm. Swarm Evol. Comput. 69: 100970 (2022) - [c35]David W. Romero, Robert-Jan Bruintjes, Jakub Mikolaj Tomczak, Erik J. Bekkers, Mark Hoogendoorn, Jan van Gemert:
FlexConv: Continuous Kernel Convolutions With Differentiable Kernel Sizes. ICLR 2022 - [c34]David W. Romero, Anna Kuzina, Erik J. Bekkers, Jakub Mikolaj Tomczak, Mark Hoogendoorn:
CKConv: Continuous Kernel Convolution For Sequential Data. ICLR 2022 - [c33]Kamil Deja, Anna Kuzina, Tomasz Trzcinski, Jakub M. Tomczak:
On Analyzing Generative and Denoising Capabilities of Diffusion-based Deep Generative Models. NeurIPS 2022 - [c32]Anna Kuzina, Max Welling, Jakub M. Tomczak:
Alleviating Adversarial Attacks on Variational Autoencoders with MCMC. NeurIPS 2022 - [i44]Anna Kuzina, Max Welling, Jakub M. Tomczak:
Defending Variational Autoencoders from Adversarial Attacks with MCMC. CoRR abs/2203.09940 (2022) - [i43]Kamil Deja, Anna Kuzina, Tomasz Trzcinski, Jakub M. Tomczak:
On Analyzing Generative and Denoising Capabilities of Diffusion-based Deep Generative Models. CoRR abs/2206.00070 (2022) - [i42]David W. Romero, David M. Knigge, Albert Gu, Erik J. Bekkers, Efstratios Gavves, Jakub M. Tomczak, Mark Hoogendoorn:
Towards a General Purpose CNN for Long Range Dependencies in ND. CoRR abs/2206.03398 (2022) - [i41]Emile van Krieken, Thiviyan Thanapalasingam, Jakub M. Tomczak, Frank van Harmelen, Annette ten Teije:
A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic Inference. CoRR abs/2212.12393 (2022) - 2021
- [j17]Gongjin Lan, Matteo De Carlo, Fuda van Diggelen, Jakub M. Tomczak, Diederik M. Roijers, A. E. Eiben:
Learning directed locomotion in modular robots with evolvable morphologies. Appl. Soft Comput. 111: 107688 (2021) - [j16]Ewelina Weglarz-Tomczak, Jakub M. Tomczak, Stanley Brul:
M2R: a Python add-on to cobrapy for modifying human genome-scale metabolic reconstruction using the gut microbiota models. Bioinform. 37(17): 2785-2786 (2021) - [j15]Yura Perugachi-Diaz, Jakub M. Tomczak, Sandjai Bhulai:
Deep learning for white cabbage seedling prediction. Comput. Electron. Agric. 184: 106059 (2021) - [j14]Ilze Amanda Auzina, Jakub M. Tomczak:
Approximate Bayesian Computation for Discrete Spaces. Entropy 23(3): 312 (2021) - [j13]Ioannis Gatopoulos, Jakub M. Tomczak:
Self-Supervised Variational Auto-Encoders. Entropy 23(6): 747 (2021) - [j12]Gongjin Lan, Maarten van Hooft, Matteo De Carlo, Jakub M. Tomczak, A. E. Eiben:
Learning locomotion skills in evolvable robots. Neurocomputing 452: 294-306 (2021) - [c31]Maximilian Ilse, Jakub M. Tomczak, Patrick Forré:
Selecting Data Augmentation for Simulating Interventions. ICML 2021: 4555-4562 - [c30]Emile van Krieken, Jakub M. Tomczak, Annette ten Teije:
Storchastic: A Framework for General Stochastic Automatic Differentiation. NeurIPS 2021: 7574-7587 - [c29]Yura Perugachi-Diaz, Jakub M. Tomczak, Sandjai Bhulai:
Invertible DenseNets with Concatenated LipSwish. NeurIPS 2021: 17246-17257 - [i40]David W. Romero, Anna Kuzina, Erik J. Bekkers, Jakub M. Tomczak, Mark Hoogendoorn:
CKConv: Continuous Kernel Convolution For Sequential Data. CoRR abs/2102.02611 (2021) - [i39]Yura Perugachi-Diaz, Jakub M. Tomczak, Sandjai Bhulai:
Invertible DenseNets with Concatenated LipSwish. CoRR abs/2102.02694 (2021) - [i38]Anna Kuzina, Max Welling, Jakub M. Tomczak:
Diagnosing Vulnerability of Variational Auto-Encoders to Adversarial Attacks. CoRR abs/2103.06701 (2021) - [i37]Emile van Krieken, Jakub M. Tomczak, Annette ten Teije:
Storchastic: A Framework for General Stochastic Automatic Differentiation. CoRR abs/2104.00428 (2021) - [i36]Jie Luo, Jakub M. Tomczak, Ágoston E. Eiben:
The Effects of Learning in Morphologically Evolving Robot Systems. CoRR abs/2107.08249 (2021) - [i35]Justus F. Hübotter, Pablo Lanillos, Jakub M. Tomczak:
Training Deep Spiking Auto-encoders without Bursting or Dying Neurons through Regularization. CoRR abs/2109.11045 (2021) - [i34]David W. Romero, Robert-Jan Bruintjes, Jakub M. Tomczak, Erik J. Bekkers, Mark Hoogendoorn, Jan C. van Gemert:
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes. CoRR abs/2110.08059 (2021) - [i33]Jie Luo, Aart C. Stuurman, Jakub M. Tomczak, Jacintha Ellers, Ágoston E. Eiben:
The Effects of Learning in Morphologically Evolving Robot Systems. CoRR abs/2111.09851 (2021) - 2020
- [c28]Ioannis Gatopoulos, Romain Lepert, Auke J. Wiggers, Giovanni Mariani, Jakub M. Tomczak:
Evolutionary Algorithm with Non-parametric Surrogate Model for Tensor Program optimization. CEC 2020: 1-8 - [c27]Jakub M. Tomczak, Ewelina Weglarz-Tomczak, Ágoston E. Eiben:
Differential Evolution with Reversible Linear Transformations. GECCO Companion 2020: 205-206 - [c26]David W. Romero, Erik J. Bekkers, Jakub M. Tomczak, Mark Hoogendoorn:
Attentive Group Equivariant Convolutional Networks. ICML 2020: 8188-8199 - [c25]Maximilian Ilse, Jakub M. Tomczak, Christos Louizos, Max Welling:
DIVA: Domain Invariant Variational Autoencoders. MIDL 2020: 322-348 - [c24]Alessandro Zonta, Ali el Hassouni, David W. Romero, Jakub M. Tomczak:
Generative Fourier-Based Auto-encoders: Preliminary Results. LOD (2) 2020: 12-15 - [c23]Emiel Hoogeboom, Victor Garcia Satorras, Jakub M. Tomczak, Max Welling:
The Convolution Exponential and Generalized Sylvester Flows. NeurIPS 2020 - [i32]Gongjin Lan, Matteo De Carlo, Fuda van Diggelen, Jakub M. Tomczak, Diederik M. Roijers, A. E. Eiben:
Learning Directed Locomotion in Modular Robots with Evolvable Morphologies. CoRR abs/2001.07804 (2020) - [i31]Emiel Hoogeboom, Taco S. Cohen, Jakub M. Tomczak:
Learning Discrete Distributions by Dequantization. CoRR abs/2001.11235 (2020) - [i30]Jakub M. Tomczak, Ewelina Weglarz-Tomczak, Ágoston E. Eiben:
Differential Evolution with Reversible Linear Transformations. CoRR abs/2002.02869 (2020) - [i29]David W. Romero, Erik J. Bekkers, Jakub M. Tomczak, Mark Hoogendoorn:
Attentive Group Equivariant Convolutional Networks. CoRR abs/2002.03830 (2020) - [i28]Maximilian Ilse, Jakub M. Tomczak, Patrick Forré:
Designing Data Augmentation for Simulating Interventions. CoRR abs/2005.01856 (2020) - [i27]Gongjin Lan, Jakub M. Tomczak, Diederik M. Roijers, A. E. Eiben:
Time Efficiency in Optimization with a Bayesian-Evolutionary Algorithm. CoRR abs/2005.04166 (2020) - [i26]Emiel Hoogeboom, Victor Garcia Satorras, Jakub M. Tomczak, Max Welling:
The Convolution Exponential and Generalized Sylvester Flows. CoRR abs/2006.01910 (2020) - [i25]Ioannis Gatopoulos, Maarten Stol, Jakub M. Tomczak:
Super-resolution Variational Auto-Encoders. CoRR abs/2006.05218 (2020) - [i24]David W. Romero, Erik J. Bekkers, Jakub M. Tomczak, Mark Hoogendoorn:
Wavelet Networks: Scale Equivariant Learning From Raw Waveforms. CoRR abs/2006.05259 (2020) - [i23]Ioannis Gatopoulos, Jakub M. Tomczak:
Self-Supervised Variational Auto-Encoders. CoRR abs/2010.02014 (2020) - [i22]Yura Perugachi-Diaz, Jakub M. Tomczak, Sandjai Bhulai:
i-DenseNets. CoRR abs/2010.02125 (2020) - [i21]Ewelina Weglarz-Tomczak, Jakub M. Tomczak, Ágoston E. Eiben, Stanley Brul:
Population-based Optimization for Kinetic Parameter Identification in Glycolytic Pathway in Saccharomyces cerevisiae. CoRR abs/2010.06456 (2020) - [i20]Gongjin Lan, Maarten van Hooft, Matteo De Carlo, Jakub M. Tomczak, A. E. Eiben:
Learning Locomotion Skills in Evolvable Robots. CoRR abs/2010.09531 (2020) - [i19]Ilze Amanda Auzina, Jakub M. Tomczak:
ABC-Di: Approximate Bayesian Computation for Discrete Data. CoRR abs/2010.09790 (2020) - [i18]Jakub M. Tomczak:
General Invertible Transformations for Flow-based Generative Modeling. CoRR abs/2011.15056 (2020)
2010 – 2019
- 2019
- [j11]Jakub M. Tomczak, Szymon Zareba, Siamak Ravanbakhsh, Russell Greiner:
Low-Dimensional Perturb-and-MAP Approach for Learning Restricted Boltzmann Machines. Neural Process. Lett. 50(2): 1401-1419 (2019) - [c22]AmirHossein Habibian, Ties van Rozendaal, Jakub M. Tomczak, Taco Cohen:
Video Compression With Rate-Distortion Autoencoders. ICCV 2019: 7032-7041 - [c21]Maximilian Ilse, Jakub M. Tomczak, Christos Louizos, Max Welling:
DIVA: Domain Invariant Variational Autoencoder. DGS@ICLR 2019 - [c20]ChangYong Oh, Jakub M. Tomczak, Efstratios Gavves, Max Welling:
Combinatorial Bayesian Optimization using the Graph Cartesian Product. NeurIPS 2019: 2910-2920 - [i17]ChangYong Oh, Jakub M. Tomczak, Efstratios Gavves, Max Welling:
Combinatorial Bayesian Optimization using Graph Representations. CoRR abs/1902.00448 (2019) - [i16]Jakub M. Tomczak, Romain Lepert, Auke J. Wiggers:
Simulating Execution Time of Tensor Programs using Graph Neural Networks. CoRR abs/1904.11876 (2019) - [i15]Maximilian Ilse, Jakub M. Tomczak, Christos Louizos, Max Welling:
DIVA: Domain Invariant Variational Autoencoders. CoRR abs/1905.10427 (2019) - [i14]AmirHossein Habibian, Ties van Rozendaal, Jakub M. Tomczak, Taco S. Cohen:
Video Compression With Rate-Distortion Autoencoders. CoRR abs/1908.05717 (2019) - [i13]Tim R. Davidson, Jakub M. Tomczak, Efstratios Gavves:
Increasing Expressivity of a Hyperspherical VAE. CoRR abs/1910.02912 (2019) - 2018
- [j10]Adam Gonczarek, Jakub M. Tomczak, Szymon Zareba, Joanna Kaczmar, Piotr Dabrowski, Michal J. Walczak:
Interaction prediction in structure-based virtual screening using deep learning. Comput. Biol. Medicine 100: 253-258 (2018) - [c19]Jakub M. Tomczak, Max Welling:
VAE with a VampPrior. AISTATS 2018: 1214-1223 - [c18]Maximilian Ilse, Jakub M. Tomczak, Max Welling:
Attention-based Deep Multiple Instance Learning. ICML 2018: 2132-2141 - [c17]Rianne van den Berg, Leonard Hasenclever, Jakub M. Tomczak, Max Welling:
Sylvester Normalizing Flows for Variational Inference. UAI 2018: 393-402 - [c16]Tim R. Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, Jakub M. Tomczak:
Hyperspherical Variational Auto-Encoders. UAI 2018: 856-865 - [i12]Maximilian Ilse, Jakub M. Tomczak, Max Welling:
Attention-based Deep Multiple Instance Learning. CoRR abs/1802.04712 (2018) - [i11]Rianne van den Berg, Leonard Hasenclever, Jakub M. Tomczak, Max Welling:
Sylvester Normalizing Flows for Variational Inference. CoRR abs/1803.05649 (2018) - [i10]Tim R. Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, Jakub M. Tomczak:
Hyperspherical Variational Auto-Encoders. CoRR abs/1804.00891 (2018) - [i9]Philip Botros, Jakub M. Tomczak:
Hierarchical VampPrior Variational Fair Auto-Encoder. CoRR abs/1806.09918 (2018) - 2017
- [j9]Jakub M. Tomczak, Adam Gonczarek:
Learning Invariant Features Using Subspace Restricted Boltzmann Machine. Neural Process. Lett. 45(1): 173-182 (2017) - [i8]Jakub M. Tomczak, Max Welling:
VAE with a VampPrior. CoRR abs/1705.07120 (2017) - [i7]Jakub M. Tomczak, Maximilian Ilse, Max Welling:
Deep Learning with Permutation-invariant Operator for Multi-instance Histopathology Classification. CoRR abs/1712.00310 (2017) - 2016
- [j8]Maciej Zieba, Sebastian K. Tomczak, Jakub M. Tomczak:
Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction. Expert Syst. Appl. 58: 93-101 (2016) - [j7]Adam Gonczarek, Jakub M. Tomczak:
Articulated tracking with manifold regularized particle filter. Mach. Vis. Appl. 27(2): 275-286 (2016) - [j6]Jakub M. Tomczak:
Learning Informative Features from Restricted Boltzmann Machines. Neural Process. Lett. 44(3): 735-750 (2016) - [c15]Maciej Zieba, Jakub M. Tomczak, Jerzy Swiatek:
Self-paced Learning for Imbalanced Data. ACIIDS (1) 2016: 564-573 - [i6]Adam Gonczarek, Jakub M. Tomczak, Szymon Zareba, Joanna Kaczmar, Piotr Dabrowski, Michal J. Walczak:
Learning Deep Architectures for Interaction Prediction in Structure-based Virtual Screening. CoRR abs/1610.07187 (2016) - [i5]Jakub M. Tomczak, Max Welling:
Improving Variational Auto-Encoders using Householder Flow. CoRR abs/1611.09630 (2016) - 2015
- [j5]Jakub M. Tomczak, Maciej Zieba:
Classification Restricted Boltzmann Machine for comprehensible credit scoring model. Expert Syst. Appl. 42(4): 1789-1796 (2015) - [j4]Jakub M. Tomczak, Maciej Zieba:
Probabilistic combination of classification rules and its application to medical diagnosis. Mach. Learn. 101(1-3): 105-135 (2015) - [j3]Maciej Zieba, Jakub M. Tomczak:
Boosted SVM with active learning strategy for imbalanced data. Soft Comput. 19(12): 3357-3368 (2015) - [c14]Maciej Zieba, Jakub M. Tomczak, Adam Gonczarek:
RBM-SMOTE: Restricted Boltzmann Machines for Synthetic Minority Oversampling Technique. ACIIDS (1) 2015: 377-386 - [i4]Jakub Mikolaj Tomczak:
Improving neural networks with bunches of neurons modeled by Kumaraswamy units: Preliminary study. CoRR abs/1505.02581 (2015) - 2014
- [j2]Maciej Zieba, Jakub M. Tomczak, Marek Lubicz, Jerzy Swiatek:
Boosted SVM for extracting rules from imbalanced data in application to prediction of the post-operative life expectancy in the lung cancer patients. Appl. Soft Comput. 14: 99-108 (2014) - [c13]Jakub M. Tomczak, Adam Gonczarek:
Sparse hidden units activation in Restricted Boltzmann Machine. ICSEng 2014: 181-185 - [c12]Szymon Zareba, Adam Gonczarek, Jakub M. Tomczak, Jerzy Swiatek:
Accelerated learning for Restricted Boltzmann Machine with momentum term. ICSEng 2014: 187-192 - [c11]Maciej Zieba, Jakub M. Tomczak, Krzysztof Brzostowski:
Selecting right questions with Restricted Boltzmann Machines. ICSEng 2014: 227-232 - [e1]Jerzy Swiatek, Adam Grzech, Pawel Swiatek, Jakub M. Tomczak:
Advances in Systems Science - Proceedings of the International Conference on Systems Science 2013, ICSS 2013, Wroclaw, Poland, September 10-12, 2013. Advances in Intelligent Systems and Computing 240, Springer 2014, ISBN 978-3-319-01856-0 [contents] - [i3]Jakub M. Tomczak, Adam Gonczarek:
Subspace Restricted Boltzmann Machine. CoRR abs/1407.4422 (2014) - 2013
- [j1]Jakub M. Tomczak, Adam Gonczarek:
Decision rules extraction from data stream in the presence of changing context for diabetes treatment. Knowl. Inf. Syst. 34(3): 521-546 (2013) - [c10]Adam Gonczarek, Jakub M. Tomczak:
Manifold Regularized Particle Filter for Articulated Human Motion Tracking. ICSS 2013: 283-293 - [c9]Jakub M. Tomczak:
Associative Learning Using Ising-Like Model. ICSS 2013: 295-304 - [c8]Jakub Mikolaj Tomczak, Maciej Zieba:
On-line bayesian context change detection in web service systems. HotTopiCS 2013: 3-10 - [i2]Jakub M. Tomczak:
Prediction of breast cancer recurrence using Classification Restricted Boltzmann Machine with Dropping. CoRR abs/1308.6324 (2013) - 2012
- [c7]Krzysztof Juszczyszyn, Adam Gonczarek, Jakub M. Tomczak, Katarzyna Musial, Marcin Budka:
A Probabilistic Approach to Structural Change Prediction in Evolving Social Networks. ASONAM 2012: 996-1001 - [c6]Jakub M. Tomczak, Katarzyna Cieslinska, Michal Pleszkun:
Development of Service Composition by Applying ICT Service Mapping. CN 2012: 45-54 - [c5]Jakub M. Tomczak:
On-Line Change Detection for Resource Allocation in Service-Oriented Systems. DoCEIS 2012: 51-58 - [i1]Jakub M. Tomczak, Jerzy Swiatek, Krzysztof J. Latawiec:
Gaussian process regression as a predictive model for Quality-of-Service in Web service systems. CoRR abs/1207.6910 (2012) - 2011
- [c4]Jakub M. Tomczak, Jerzy Swiatek:
Personalisation in Service-Oriented Systems Using Markov Chain Model and Bayesian Inference. DoCEIS 2011: 91-98 - [c3]Piotr Rygielski, Jakub M. Tomczak:
Context Change Detection for Resource Allocation in Service-Oriented Systems. KES (2) 2011: 591-600 - 2010
- [c2]Janusz Sobecki, Jakub M. Tomczak:
Student Courses Recommendation Using Ant Colony Optimization. ACIIDS (2) 2010: 124-133 - [c1]Krzysztof Brzostowski, Jakub M. Tomczak, Witold Rekuc, Janusz Sobecki:
Service Discovery Approach Based on Rough Sets for SOA Systems. MISSI 2010: 131-141
Coauthor Index
aka: Ágoston E. Eiben
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-17 00:11 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint