default search action
Mathias Drton
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j14]Mathias Drton, Benjamin Hollering, Jun Wu:
Identifiability of homoscedastic linear structural equation models using algebraic matroids. Adv. Appl. Math. 163: 102794 (2025) - 2024
- [c21]David Strieder, Mathias Drton:
Dual Likelihood for Causal Inference under Structure Uncertainty. CLeaR 2024: 1-17 - [c20]Philipp Dettling, Mathias Drton, Mladen Kolar:
On the Lasso for Graphical Continuous Lyapunov Models. CLeaR 2024: 514-550 - [c19]Konstantin Göbler, Tobias Windisch, Mathias Drton, Tim Pychynski, Martin Roth, Steffen Sonntag:
extttcausalAssembly: Generating Realistic Production Data for Benchmarking Causal Discovery. CLeaR 2024: 609-642 - [c18]Daniele Tramontano, Yaroslav Kivva, Saber Salehkaleybar, Mathias Drton, Negar Kiyavash:
Causal Effect Identification in LiNGAM Models with Latent Confounders. ICML 2024 - [i16]Daniele Tramontano, Yaroslav Kivva, Saber Salehkaleybar, Mathias Drton, Negar Kiyavash:
Causal Effect Identification in LiNGAM Models with Latent Confounders. CoRR abs/2406.02049 (2024) - [i15]Daniela Schkoda, Elina Robeva, Mathias Drton:
Causal Discovery of Linear Non-Gaussian Causal Models with Unobserved Confounding. CoRR abs/2408.04907 (2024) - [i14]Yurou Liang, Oleksandr Zadorozhnyi, Mathias Drton:
Kernel-Based Differentiable Learning of Non-Parametric Directed Acyclic Graphical Models. CoRR abs/2408.10976 (2024) - 2023
- [j13]Y. Samuel Wang, Mathias Drton:
Causal Discovery with Unobserved Confounding and Non-Gaussian Data. J. Mach. Learn. Res. 24: 271:1-271:61 (2023) - [j12]Daniele Tramontano, L. Waldmann, Mathias Drton, Eliana Duarte:
Learning Linear Gaussian Polytree Models With Interventions. IEEE J. Sel. Areas Inf. Theory 4: 569-578 (2023) - [j11]Jun Wu, Mathias Drton:
Partial Homoscedasticity in Causal Discovery With Linear Models. IEEE J. Sel. Areas Inf. Theory 4: 639-650 (2023) - [j10]Philipp Dettling, Roser Homs, Carlos Améndola, Mathias Drton, Niels Richard Hansen:
Identifiability in Continuous Lyapunov Models. SIAM J. Matrix Anal. Appl. 44(4): 1799-1821 (2023) - [j9]Wenyu Chen, Mathias Drton, Ali Shojaie:
Causal Structural Learning via Local Graphs. SIAM J. Math. Data Sci. 5(2): 280-305 (2023) - [c17]Grigor Keropyan, David Strieder, Mathias Drton:
Rank-Based Causal Discovery for Post-Nonlinear Models. AISTATS 2023: 7849-7870 - [c16]Shiqing Yu, Mathias Drton, Ali Shojaie:
Directed Graphical Models and Causal Discovery for Zero-Inflated Data. CLeaR 2023: 27-67 - [c15]Shiqing Yu, Mathias Drton, Ali Shojaie:
Interaction Models and Generalized Score Matching for Compositional Data. LoG 2023: 20 - [c14]Nils Sturma, Chandler Squires, Mathias Drton, Caroline Uhler:
Unpaired Multi-Domain Causal Representation Learning. NeurIPS 2023 - [i13]Nils Sturma, Chandler Squires, Mathias Drton, Caroline Uhler:
Unpaired Multi-Domain Causal Representation Learning. CoRR abs/2302.00993 (2023) - [i12]Grigor Keropyan, David Strieder, Mathias Drton:
Rank-Based Causal Discovery for Post-Nonlinear Models. CoRR abs/2302.12341 (2023) - [i11]Konstantin Göbler, Tobias Windisch, Tim Pychynski, Steffen Sonntag, Martin Roth, Mathias Drton:
causalAssembly: Generating Realistic Production Data for Benchmarking Causal Discovery. CoRR abs/2306.10816 (2023) - [i10]Daniele Tramontano, L. Waldmann, Mathias Drton, Eliana Duarte:
Learning Linear Gaussian Polytree Models with Interventions. CoRR abs/2311.04636 (2023) - 2022
- [c13]Thijs van Ommen, Mathias Drton:
Graphical Representations for Algebraic Constraints of Linear Structural Equations Models. PGM 2022: 409-420 - [c12]Daniele Tramontano, Anthea Monod, Mathias Drton:
Learning linear non-Gaussian polytree models. UAI 2022: 1960-1969 - [i9]Krzysztof Rusek, Mathias Drton:
Fine-grained network traffic prediction from coarse data. CoRR abs/2201.07179 (2022) - [i8]Thijs van Ommen, Mathias Drton:
Graphical Representations for Algebraic Constraints of Linear Structural Equations Models. CoRR abs/2208.00926 (2022) - [i7]Daniele Tramontano, Anthea Monod, Mathias Drton:
Learning Linear Non-Gaussian Polytree Models. CoRR abs/2208.06701 (2022) - [i6]Konstantin Göbler, Anne Miloschewski, Mathias Drton, Sach Mukherjee:
High-Dimensional Undirected Graphical Models for Arbitrary Mixed Data. CoRR abs/2211.11700 (2022) - 2021
- [j8]Shiqing Yu, Mathias Drton, Daniel E. L. Promislow, Ali Shojaie:
CorDiffViz: an R package for visualizing multi-omics differential correlation networks. BMC Bioinform. 22(1): 486 (2021) - [c11]David Strieder, Tobias Freidling, Stefan Haffner, Mathias Drton:
Confidence in causal discovery with linear causal models. UAI 2021: 1217-1226 - [i5]Wenyu Chen, Mathias Drton, Ali Shojaie:
Definite Non-Ancestral Relations and Structure Learning. CoRR abs/2105.10350 (2021) - 2020
- [c10]Lina Lin, Mathias Drton, Ali Shojaie:
Statistical Significance in High-dimensional Linear Mixed Models. FODS 2020: 171-181 - [c9]Carlos Améndola, Philipp Dettling, Mathias Drton, Federica Onori, Jun Wu:
Structure Learning for Cyclic Linear Causal Models. UAI 2020: 999-1008
2010 – 2019
- 2019
- [j7]Shiqing Yu, Mathias Drton, Ali Shojaie:
Generalized Score Matching for Non-Negative Data. J. Mach. Learn. Res. 20: 76:1-76:70 (2019) - 2018
- [c8]Shiqing Yu, Mathias Drton, Ali Shojaie:
Graphical Models for Non-Negative Data Using Generalized Score Matching. AISTATS 2018: 1781-1790 - [c7]Dennis Leung, Mathias Drton:
Algebraic tests of general Gaussian latent tree models. NeurIPS 2018: 6301-6310 - [i4]Shiqing Yu, Mathias Drton, Ali Shojaie:
Generalized Score Matching for Non-Negative Data. CoRR abs/1812.10551 (2018) - 2016
- [j6]Luca Weihs, Mathias Drton, Dennis Leung:
Efficient computation of the Bergsma-Dassios sign covariance. Comput. Stat. 31(1): 315-328 (2016) - 2015
- [c6]Carlos Améndola, Mathias Drton, Bernd Sturmfels:
Maximum Likelihood Estimates for Gaussian Mixtures Are Transcendental. MACIS 2015: 579-590 - 2014
- [i3]Michael Finegold, Mathias Drton:
Robust Graphical Modeling with t-Distributions. CoRR abs/1408.2033 (2014) - 2013
- [j5]Naftali Harris, Mathias Drton:
PC algorithm for nonparanormal graphical models. J. Mach. Learn. Res. 14(1): 3365-3383 (2013) - 2012
- [c5]Rina Foygel, Michael Horrell, Mathias Drton, John D. Lafferty:
Nonparametric Reduced Rank Regression. NIPS 2012: 1637-1645 - [i2]Mathias Drton, Thomas S. Richardson:
Iterative Conditional Fitting for Gaussian Ancestral Graph Models. CoRR abs/1207.4118 (2012) - [i1]Mathias Drton, Thomas S. Richardson:
A New Algorithm for Maximum Likelihood Estimation in Gaussian Graphical Models for Marginal Independence. CoRR abs/1212.2462 (2012) - 2010
- [j4]Mathias Drton, Josephine Yu:
On a Parametrization of Positive Semidefinite Matrices with Zeros. SIAM J. Matrix Anal. Appl. 31(5): 2665-2680 (2010) - [c4]Rina Foygel, Mathias Drton:
Extended Bayesian Information Criteria for Gaussian Graphical Models. NIPS 2010: 604-612
2000 – 2009
- 2009
- [j3]Mathias Drton, Michael Eichler, Thomas S. Richardson:
Computing Maximum Likelihood Estimates in Recursive Linear Models with Correlated Errors. J. Mach. Learn. Res. 10: 2329-2348 (2009) - [c3]Michael Finegold, Mathias Drton:
Robust Graphical Modeling with t-Distributions. UAI 2009: 169-176 - 2008
- [j2]Mathias Drton, Thomas S. Richardson:
Graphical Methods for Efficient Likelihood Inference in Gaussian Covariance Models. J. Mach. Learn. Res. 9: 893-914 (2008) - 2006
- [j1]Mathias Drton:
Computing all roots of the likelihood equations of seemingly unrelated regressions. J. Symb. Comput. 41(2): 245-254 (2006) - 2004
- [c2]Mathias Drton, Thomas S. Richardson:
Iterative Conditional Fitting for Gaussian Ancestral Graph Models. UAI 2004: 130-137 - 2003
- [c1]Mathias Drton, Thomas S. Richardson:
A New Algorithm for Maximum Likelihood Estimation in Gaussian Graphical Models for Marginal Independence. UAI 2003: 184-191
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-07 20:28 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint