default search action
Luís Torgo
Person information
- affiliation: University of Porto, Portugal
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c74]Luis Roque, Carlos Soares, Luís Torgo:
RHiOTS: A Framework for Evaluating Hierarchical Time Series Forecasting Algorithms. KDD 2024: 2491-2499 - [i22]Luis Roque, Carlos Soares, Luís Torgo:
RHiOTS: A Framework for Evaluating Hierarchical Time Series Forecasting Algorithms. CoRR abs/2408.03399 (2024) - 2023
- [j28]João Pimentel, Paulo J. Azevedo, Luís Torgo:
Subgroup mining for performance analysis of regression models. Expert Syst. J. Knowl. Eng. 40(1) (2023) - [j27]Vítor Cerqueira, Luís Torgo, Paula Branco, Colin Bellinger:
Automated imbalanced classification via layered learning. Mach. Learn. 112(6): 2083-2104 (2023) - [j26]Vítor Cerqueira, Heitor Murilo Gomes, Albert Bifet, Luís Torgo:
STUDD: a student-teacher method for unsupervised concept drift detection. Mach. Learn. 112(11): 4351-4378 (2023) - [j25]Vítor Cerqueira, Luís Torgo, Carlos Soares:
Early anomaly detection in time series: a hierarchical approach for predicting critical health episodes. Mach. Learn. 112(11): 4409-4430 (2023) - [j24]Vítor Cerqueira, Luís Torgo, Carlos Soares:
Model Selection for Time Series Forecasting An Empirical Analysis of Multiple Estimators. Neural Process. Lett. 55(7): 10073-10091 (2023) - [e6]Nuno Moniz, Paula Branco, Luís Torgo, Nathalie Japkowicz, Michal Wozniak, Shuo Wang:
Fifth International Workshop on Learning with Imbalanced Domains: Theory and Applications, 18 September 2023, LIDTA@ECML-PKDD, Turin, Italy. Proceedings of Machine Learning Research 241, PMLR 2023 [contents] - [i21]Vítor Cerqueira, Luís Torgo:
Multi-output Ensembles for Multi-step Forecasting. CoRR abs/2306.14563 (2023) - 2022
- [j23]Md. Mahbub Alam, Luís Torgo, Albert Bifet:
A Survey on Spatio-temporal Data Analytics Systems. ACM Comput. Surv. 54(10s): 219:1-219:38 (2022) - [j22]Vítor Cerqueira, Luís Torgo, Carlos Soares:
A case study comparing machine learning with statistical methods for time series forecasting: size matters. J. Intell. Inf. Syst. 59(2): 415-433 (2022) - [c73]Md. Mahbub Alam, Luís Torgo:
A Clustering-based Approach for Predicting the Future Location of a Vessel. Canadian AI 2022 - [c72]Nuno Moniz, Paula Branco, Luís Torgo, Nathalie Japkowicz, Michal Wozniak, Shuo Wang:
4th Workshop on Learning with Imbalanced Domains: Preface. LIDTA 2022: 1-7 - [e5]Nuno Moniz, Paula Branco, Luís Torgo, Nathalie Japkowicz, Michal Wozniak, Shuo Wang:
Fourth International Workshop on Learning with Imbalanced Domains: Theory and Applications, LIDTA 2022, Grenoble, France, September 23, 2022. Proceedings of Machine Learning Research 183, PMLR 2022 [contents] - [i20]Vítor Cerqueira, Luís Torgo, Paula Branco, Colin Bellinger:
Automated Imbalanced Classification via Layered Learning. CoRR abs/2205.02553 (2022) - [i19]Vítor Cerqueira, Luís Torgo:
Exceedance Probability Forecasting via Regression for Significant Wave Height Forecasting. CoRR abs/2206.09821 (2022) - 2021
- [j21]Mohammad Etemad, Amílcar Soares Júnior, Elham Etemad, Jordan Rose, Luís Torgo, Stan Matwin:
SWS: an unsupervised trajectory segmentation algorithm based on change detection with interpolation kernels. GeoInformatica 25(2): 269-289 (2021) - [j20]Mariana Oliveira, Nuno Moniz, Luís Torgo, Vítor Santos Costa:
Biased resampling strategies for imbalanced spatio-temporal forecasting. Int. J. Data Sci. Anal. 12(3): 205-228 (2021) - [j19]Nuno Guimarães, Álvaro Figueira, Luís Torgo:
Towards a pragmatic detection of unreliable accounts on social networks. Online Soc. Networks Media 24: 100152 (2021) - [c71]Mayukh Bhattacharjee, Hema Sri Kambhampati, Paula Branco, Luís Torgo:
Active Learning for Imbalanced Domains: the ALOD and ALOD-RE Algorithms. DSAA 2021: 1-10 - [c70]Nuno Moniz, Paula Branco, Luís Torgo, Nathalie Japkowicz, Michal Wozniak, Shuo Wang:
3rd Workshop on Learning with Imbalanced Domains: Preface. LIDTA@ECML/PKDD 2021: 1-6 - [e4]Carlos Soares, Luís Torgo:
Discovery Science - 24th International Conference, DS 2021, Halifax, NS, Canada, October 11-13, 2021, Proceedings. Lecture Notes in Computer Science 12986, Springer 2021, ISBN 978-3-030-88941-8 [contents] - [e3]Nuno Moniz, Paula Branco, Luís Torgo, Nathalie Japkowicz, Michal Wozniak, Shuo Wang:
Third International Workshop on Learning with Imbalanced Domains: Theory and Applications, LIDTA 2021, Bilbao, Spain, September 17, 2021. Proceedings of Machine Learning Research 154, PMLR 2021 [contents] - [i18]Nuno Guimarães, Álvaro Figueira, Luís Torgo:
An organized review of key factors for fake news detection. CoRR abs/2102.13433 (2021) - [i17]Vítor Cerqueira, Heitor Murilo Gomes, Albert Bifet, Luís Torgo:
STUDD: A Student-Teacher Method for Unsupervised Concept Drift Detection. CoRR abs/2103.00903 (2021) - [i16]Md. Mahbub Alam, Luís Torgo, Albert Bifet:
A Survey on Spatio-temporal Data Analytics Systems. CoRR abs/2103.09883 (2021) - [i15]Vítor Cerqueira, Luís Torgo, Carlos Soares:
Model Selection for Time Series Forecasting: Empirical Analysis of Different Estimators. CoRR abs/2104.00584 (2021) - [i14]Vítor Cerqueira, Luís Torgo, Carlos Soares, Albert Bifet:
Model Compression for Dynamic Forecast Combination. CoRR abs/2104.01830 (2021) - [i13]Luís Torgo, Paulo Azevedo, Inês Areosa:
Beyond Average Performance - exploring regions of deviating performance for black box classification models. CoRR abs/2109.08216 (2021) - 2020
- [j18]Inês Areosa, Luís Torgo:
Visual interpretation of regression error. Expert Syst. J. Knowl. Eng. 37(6) (2020) - [j17]Vítor Cerqueira, Luís Torgo, Igor Mozetic:
Evaluating time series forecasting models: an empirical study on performance estimation methods. Mach. Learn. 109(11): 1997-2028 (2020) - [c69]Mohammad Etemad, Zahra Etemad, Amílcar Soares Júnior, Vania Bogorny, Stan Matwin, Luís Torgo:
Wise Sliding Window Segmentation: A Classification-Aided Approach for Trajectory Segmentation. Canadian AI 2020: 208-219 - [c68]Nuno Guimarães, Álvaro Figueira, Luís Torgo:
Knowledge-based Reliability Metrics for Social Media Accounts. WEBIST 2020: 339-350 - [i12]Mohammad Etemad, Zahra Etemad, Amílcar Soares Júnior, Vania Bogorny, Stan Matwin, Luís Torgo:
Wise Sliding Window Segmentation: A classification-aided approach for trajectory segmentation. CoRR abs/2003.10248 (2020) - [i11]Vítor Cerqueira, Luís Torgo, Carlos Soares:
Early Anomaly Detection in Time Series: A Hierarchical Approach for Predicting Critical Health Episodes. CoRR abs/2010.11595 (2020)
2010 – 2019
- 2019
- [j16]Paula Branco, Luís Torgo, Rita P. Ribeiro:
Pre-processing approaches for imbalanced distributions in regression. Neurocomputing 343: 76-99 (2019) - [j15]Álvaro Figueira, Nuno Guimarães, Luís Torgo:
A Brief Overview on the Strategiesto Fight Back the Spreadof False Information. J. Web Eng. 18(4-6): 319-352 (2019) - [j14]Vítor Cerqueira, Luís Torgo, Fábio Pinto, Carlos Soares:
Arbitrage of forecasting experts. Mach. Learn. 108(6): 913-944 (2019) - [j13]Nuno Moniz, Luís Torgo:
A review on web content popularity prediction: Issues and open challenges. Online Soc. Networks Media 12: 1-20 (2019) - [c67]Colin Bellinger, Paula Branco, Luís Torgo:
The CURE for Class Imbalance. DS 2019: 3-17 - [c66]Vítor Cerqueira, Luís Torgo, Carlos Soares:
Layered Learning for Early Anomaly Detection: Predicting Critical Health Episodes. DS 2019: 445-459 - [c65]Mariana Oliveira, Nuno Moniz, Luís Torgo, Vítor Santos Costa:
Biased Resampling Strategies for Imbalanced Spatio-Temporal Forecasting. DSAA 2019: 100-109 - [c64]Inês Areosa, Luís Torgo:
Explaining the Performance of Black Box Regression Models. DSAA 2019: 110-118 - [c63]Paula Branco, Luís Torgo:
A Study on the Impact of Data Characteristics in Imbalanced Regression Tasks. DSAA 2019: 193-202 - [c62]Mohammad Etemad, Amílcar Soares Júnior, Stan Matwin, Luís Torgo:
On Feature Selection and Evaluation of Transportation Mode Prediction Strategies. EDBT/ICDT Workshops 2019 - [c61]Inês Areosa, Luís Torgo:
Visual Interpretation of Regression Error. EPIA (2) 2019: 473-485 - [i10]Vítor Cerqueira, Luís Torgo, Igor Mozetic:
Evaluating time series forecasting models: An empirical study on performance estimation methods. CoRR abs/1905.11744 (2019) - [i9]Vítor Cerqueira, Luís Torgo, Carlos Soares:
Machine Learning vs Statistical Methods for Time Series Forecasting: Size Matters. CoRR abs/1909.13316 (2019) - 2018
- [j12]Paula Branco, Luís Torgo, Rita P. Ribeiro:
Resampling with neighbourhood bias on imbalanced domains. Expert Syst. J. Knowl. Eng. 35(4) (2018) - [c60]Paula Branco, Luís Torgo, Rita P. Ribeiro:
MetaUtil: Meta Learning for Utility Maximization in Regression. DS 2018: 129-143 - [c59]Nuno Moniz, Luís Torgo:
The Utility Problem of Web Content Popularity Prediction. HT 2018: 82-86 - [c58]Nuno Guimarães, Álvaro Figueira, Luís Torgo:
Analysis and Detection of Unreliable Users in Twitter: Two Case Studies. IC3K 2018: 50-73 - [c57]Nuno Guimarães, Álvaro Figueira, Luís Torgo:
Contributions to the Detection of Unreliable Twitter Accounts through Analysis of Content and Behaviour. KDIR 2018: 90-99 - [c56]Luís Torgo, Stan Matwin, Nathalie Japkowicz, Bartosz Krawczyk, Nuno Moniz, Paula Branco:
2nd Workshop on Learning with Imbalanced Domains: Preface. LIDTA@ECML/PKDD 2018: 1-7 - [c55]Paula Branco, Luís Torgo, Rita P. Ribeiro:
REBAGG: REsampled BAGGing for Imbalanced Regression. LIDTA@ECML/PKDD 2018: 67-81 - [c54]Vítor Cerqueira, Fábio Pinto, Luís Torgo, Carlos Soares, Nuno Moniz:
Constructive Aggregation and Its Application to Forecasting with Dynamic Ensembles. ECML/PKDD (1) 2018: 620-636 - [c53]Mariana Oliveira, Luís Torgo, Vítor Santos Costa:
Evaluation Procedures for Forecasting with Spatio-Temporal Data. ECML/PKDD (1) 2018: 703-718 - [c52]Luís Torgo, Stan Matwin, Gary Weiss, Nuno Moniz, Paula Branco:
Cost-Sensitive Learning: Preface. COST@SDM 2018: 1-3 - [c51]Álvaro Figueira, Nuno Guimarães, Luís Torgo:
Current State of the Art to Detect Fake News in Social Media: Global Trendings and Next Challenges. WEBIST 2018: 332-339 - [p2]Nuno Guimarães, Luís Torgo, Álvaro Figueira:
Twitter as a Source for Time- and Domain-Dependent Sentiment Lexicons. Social Network Based Big Data Analysis and Applications 2018: 1-19 - [d1]Luís Torgo, Nuno Moniz:
News Popularity in Multiple Social Media Platforms. UCI Machine Learning Repository, 2018 - [i8]Nuno Moniz, Luís Torgo:
Multi-Source Social Feedback of Online News Feeds. CoRR abs/1801.07055 (2018) - [i7]Igor Mozetic, Luís Torgo, Vítor Cerqueira, Jasmina Smailovic:
How to evaluate sentiment classifiers for Twitter time-ordered data? CoRR abs/1803.05160 (2018) - 2017
- [j11]Luís Baía, Luís Torgo:
A comparative study of approaches to forecast the correct trading actions. Expert Syst. J. Knowl. Eng. 34(1) (2017) - [j10]Nuno Moniz, Paula Branco, Luís Torgo:
Resampling strategies for imbalanced time series forecasting. Int. J. Data Sci. Anal. 3(3): 161-181 (2017) - [j9]Nuno Moniz, Luís Torgo, Magdalini Eirinaki, Paula Branco:
A Framework for Recommendation of Highly Popular News Lacking Social Feedback. New Gener. Comput. 35(4): 417-450 (2017) - [c50]Paula Branco, Luís Torgo, Rita P. Ribeiro, Eibe Frank, Bernhard Pfahringer, Markus Michael Rau:
Learning Through Utility Optimization in Regression Tasks. DSAA 2017: 30-39 - [c49]Vítor Cerqueira, Luís Torgo, Mariana Oliveira, Bernhard Pfahringer:
Dynamic and Heterogeneous Ensembles for Time Series Forecasting. DSAA 2017: 242-251 - [c48]Vítor Cerqueira, Luís Torgo, Jasmina Smailovic, Igor Mozetic:
A Comparative Study of Performance Estimation Methods for Time Series Forecasting. DSAA 2017: 529-538 - [c47]Paula Branco, Luís Torgo, Rita P. Ribeiro:
Exploring Resampling with Neighborhood Bias on Imbalanced Regression Problems. EPIA 2017: 513-524 - [c46]Vítor Cerqueira, Luís Torgo, Carlos Soares:
Arbitrated Ensemble for Solar Radiation Forecasting. IWANN (1) 2017: 720-732 - [c45]Paula Branco, Luís Torgo, Rita P. Ribeiro:
Relevance-Based Evaluation Metrics for Multi-class Imbalanced Domains. PAKDD (1) 2017: 698-710 - [c44]Luís Torgo, Bartosz Krawczyk, Paula Branco, Nuno Moniz:
Learning with Imbalanced Domains: Preface. LIDTA@PKDD/ECML 2017: 1-6 - [c43]Paula Branco, Luís Torgo, Rita P. Ribeiro:
SMOGN: a Pre-processing Approach for Imbalanced Regression. LIDTA@PKDD/ECML 2017: 36-50 - [c42]Nuno Moniz, Paula Branco, Luís Torgo:
Evaluation of Ensemble Methods in Imbalanced Regression Tasks. LIDTA@PKDD/ECML 2017: 129-140 - [c41]Vítor Cerqueira, Luís Torgo, Fábio Pinto, Carlos Soares:
Arbitrated Ensemble for Time Series Forecasting. ECML/PKDD (2) 2017: 478-494 - [r4]Luís Torgo:
Model Trees. Encyclopedia of Machine Learning and Data Mining 2017: 845-848 - [r3]Luís Torgo:
Regression Trees. Encyclopedia of Machine Learning and Data Mining 2017: 1080-1083 - 2016
- [j8]Paula Branco, Luís Torgo, Rita P. Ribeiro:
A Survey of Predictive Modeling on Imbalanced Domains. ACM Comput. Surv. 49(2): 31:1-31:50 (2016) - [c40]Mariana Oliveira, Luís Torgo, Vítor Santos Costa:
Predicting Wildfires - Propositional and Relational Spatio-Temporal Pre-processing Approaches. DS 2016: 183-197 - [c39]Nuno Moniz, Paula Branco, Luís Torgo:
Resampling Strategies for Imbalanced Time Series. DSAA 2016: 282-291 - [c38]Nuno Guimarães, Luís Torgo, Álvaro Figueira:
Lexicon Expansion System for Domain and Time Oriented Sentiment Analysis. KDIR 2016: 463-471 - [c37]Nuno Moniz, Luís Torgo, Magdalini Eirinaki:
Time-Based Ensembles for Prediction of Rare Events in News Stream. ICDM Workshops 2016: 1066-1073 - [i6]Paula Branco, Rita P. Ribeiro, Luís Torgo:
UBL: an R package for Utility-based Learning. CoRR abs/1604.08079 (2016) - [i5]Nuno Moniz, Luís Torgo, João Vinagre:
Data-Driven Relevance Judgments for Ranking Evaluation. CoRR abs/1612.06136 (2016) - 2015
- [j7]Luís Torgo, Paula Branco, Rita P. Ribeiro, Bernhard Pfahringer:
Resampling strategies for regression. Expert Syst. J. Knowl. Eng. 32(3): 465-476 (2015) - [c36]Luís Baía, Luís Torgo:
Forecasting the Correct Trading Actions. EPIA 2015: 560-571 - [c35]Leona Nezvalová, Lubos Popelínský, Luís Torgo, Karel Vaculík:
Class-Based Outlier Detection: Staying Zombies or Awaiting for Resurrection? IDA 2015: 193-204 - [i4]Paula Branco, Luís Torgo, Rita P. Ribeiro:
A Survey of Predictive Modelling under Imbalanced Distributions. CoRR abs/1505.01658 (2015) - [i3]Nuno Moniz, Luís Torgo:
Socially Driven News Recommendation. CoRR abs/1506.01743 (2015) - 2014
- [c34]Mariana Oliveira, Luís Torgo:
Ensembles for Time Series Forecasting. ACML 2014 - [c33]Nuno Moniz, Luís Torgo, Fátima Rodrigues:
Resampling Approaches to Improve News Importance Prediction. IDA 2014: 215-226 - [i2]Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, Luís Torgo:
OpenML: networked science in machine learning. CoRR abs/1407.7722 (2014) - [i1]Luís Torgo:
An Infra-Structure for Performance Estimation and Experimental Comparison of Predictive Models in R. CoRR abs/1412.0436 (2014) - 2013
- [j6]Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, Luís Torgo:
OpenML: networked science in machine learning. SIGKDD Explor. 15(2): 49-60 (2013) - [c32]Luís Torgo, Rita P. Ribeiro, Bernhard Pfahringer, Paula Branco:
SMOTE for Regression. EPIA 2013: 378-389 - [c31]Jan N. van Rijn, Bernd Bischl, Luís Torgo, Bo Gao, Venkatesh Umaashankar, Simon Fischer, Patrick Winter, Bernd Wiswedel, Michael R. Berthold, Joaquin Vanschoren:
OpenML: A Collaborative Science Platform. ECML/PKDD (3) 2013: 645-649 - 2012
- [j5]Brett Drury, Luís Torgo, José João Almeida:
Classifying News Stories with a Constrained Learning Strategy to Estimate the Direction of a Market Index. Int. J. Comput. Sci. Appl. 9(1): 1-22 (2012) - [c30]Orlando Ohashi, Luís Torgo:
Wind speed forecasting using spatio-temporal indicators. ECAI 2012: 975-980 - [c29]Orlando Ohashi, Luís Torgo:
Spatial Interpolation Using Multiple Regression. ICDM 2012: 1044-1049 - 2011
- [c28]Luís Torgo, Elsa Lopes:
Utility-Based Fraud Detection. IJCAI 2011: 1517-1522 - [c27]Luís Torgo, Orlando Ohashi:
2D-interval predictions for time series. KDD 2011: 787-794 - [c26]Brett Drury, Gaël Dias, Luís Torgo:
A Contextual Classification Strategy for Polarity Analysis of Direct Quotations from Financial News. RANLP 2011: 434-440 - 2010
- [b1]Luís Torgo:
Data Mining with R: Learning with Case Studies. Chapman and Hall/CRC Press 2010, ISBN 9781439810187 - [c25]Orlando Ohashi, Luís Torgo, Rita P. Ribeiro:
Interval Forecast of Water Quality Parameters. ECAI 2010: 283-288 - [p1]Luís Torgo, Carlos Soares:
Resource-bounded Outlier Detection using Clustering Methods. Data Mining for Business Applications 2010: 84-98 - [r2]Luís Torgo:
Model Trees. Encyclopedia of Machine Learning 2010: 684-686 - [r1]Luís Torgo:
Regression Trees. Encyclopedia of Machine Learning 2010: 842-845
2000 – 2009
- 2009
- [c24]Luís Torgo, Rita P. Ribeiro:
Precision and Recall for Regression. Discovery Science 2009: 332-346 - [c23]Luís Torgo, Welma Pereira, Carlos Soares:
Detecting Errors in Foreign Trade Transactions: Dealing with Insufficient Data. EPIA 2009: 435-446 - 2007
- [c22]Luís Torgo:
Resource-Bounded Fraud Detection. EPIA Workshops 2007: 449-460 - [c21]Luís Torgo, Rita P. Ribeiro:
Utility-Based Regression. PKDD 2007: 597-604 - 2006
- [j4]Ana Costa e Silva, Alípio Mário Jorge, Luís Torgo:
Design of an end-to-end method to extract information from tables. Int. J. Document Anal. Recognit. 8(2-3): 144-171 (2006) - [c20]Rita P. Ribeiro, Luís Torgo:
Rule-Based Prediction of Rare Extreme Values. Discovery Science 2006: 219-230 - [c19]Luís Torgo, Rita P. Ribeiro:
Predicting Rare Extreme Values. PAKDD 2006: 816-820 - 2005
- [c18]Luís Torgo, Joana Marques:
Adapting Peepholing to Regression Trees. EPIA 2005: 293-303 - [c17]Luís Torgo:
Regression error characteristic surfaces. KDD 2005: 697-702 - [e2]João Gama, Rui Camacho, Pavel Brazdil, Alípio Jorge, Luís Torgo:
Machine Learning: ECML 2005, 16th European Conference on Machine Learning, Porto, Portugal, October 3-7, 2005, Proceedings. Lecture Notes in Computer Science 3720, Springer 2005, ISBN 3-540-29243-8 [contents] - [e1]Alípio Jorge, Luís Torgo, Pavel Brazdil, Rui Camacho, João Gama:
Knowledge Discovery in Databases: PKDD 2005, 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, Porto, Portugal, October 3-7, 2005, Proceedings. Lecture Notes in Computer Science 3721, Springer 2005, ISBN 3-540-29244-6 [contents] - 2003
- [j3]Luís Torgo, Joaquim Pinto da Costa:
Clustered Partial Linear Regression. Mach. Learn. 50(3): 303-319 (2003) - [c16]Rita P. Ribeiro, Luís Torgo:
Predicting Harmful Algae Blooms. EPIA 2003: 308-312 - [c15]Ana Costa e Silva, Alípio Jorge, Luís Torgo:
Automatic Selection of Table Areas in Documents for Information Extraction. EPIA 2003: 460-465 - [c14]Luís Torgo, Rita P. Ribeiro:
Predicting Outliers. PKDD 2003: 447-458 - 2001
- [c13]Luís Torgo:
A Study on End-Cut Preference in Least Squares Regression Trees. EPIA 2001: 104-115 - [c12]Pedro de Almeida, Luís Torgo:
The Use of Domain Knowledge in Feature Construction for Financial Time Series Prediction. EPIA 2001: 116-129 - 2000
- [j2]Luís Torgo:
Thesis: Inductive learning to tree-based regression models. AI Commun. 13(2): 137-138 (2000) - [c11]Luís Torgo, Joaquim Pinto da Costa:
Clustered Partial Linear Regression. ECML 2000: 426-436 - [c10]Luís Torgo:
Partial Linear Trees. ICML 2000: 1007-1014 - [c9]Luís Torgo:
Efficient and Comprehensible Local Regression. PAKDD 2000: 376-379
1990 – 1999
- 1998
- [c8]Luís Torgo:
Error Estimators for Pruning Regression Trees. ECML 1998: 125-130 - [c7]João Gama, Luís Torgo, Carlos Soares:
Dynamic Discretization of Continuous Attributes. IBERAMIA 1998: 160-169 - 1997
- [j1]Luís Torgo, João Gama:
Regression Using Classification Algorithms. Intell. Data Anal. 1(1-4): 275-292 (1997) - [c6]Luís Torgo, João Gama:
Search-Based Class Discretization. ECML 1997: 266-273 - [c5]Luís Torgo:
Functional Models for Regression Tree Leaves. ICML 1997: 385-393 - 1996
- [c4]Luís Torgo, João Gama:
Regression by Classification. SBIA 1996: 51-60 - 1993
- [c3]Luís Torgo:
Controlled Redundancy in Incremental Rule Learning. ECML 1993: 185-195 - [c2]Luís Torgo:
Rule Combination in Inductive Learning. ECML 1993: 384-389 - 1991
- [c1]Pavel Brazdil, Matjaz Gams, Sati S. Sian, Luís Torgo, Walter Van de Velde:
Panel: Learning in Distributed Systems and Multi-Agent Environments. EWSL 1991: 412-423
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:24 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint