default search action
James Caverlee
2020 – today
- 2024
- [j24]Kaize Ding, Jianling Wang, Jundong Li, James Caverlee, Huan Liu:
Robust Graph Meta-Learning for Weakly Supervised Few-Shot Node Classification. ACM Trans. Knowl. Discov. Data 18(4): 83:1-83:18 (2024) - [c165]Takeshi Onishi, James Caverlee:
Political Bias of Large Language Models in Few-Shot News Summarization. BIAS 2024: 32-45 - [c164]Rui Yang, Haoran Liu, Edison Marrese-Taylor, Qingcheng Zeng, Yuhe Ke, Wanxin Li, Lechao Cheng, Qingyu Chen, James Caverlee, Yutaka Matsuo, Irene Li:
KG-Rank: Enhancing Large Language Models for Medical QA with Knowledge Graphs and Ranking Techniques. BioNLP@ACL 2024: 155-166 - [c163]Chengkai Liu, Jianghao Lin, Hanzhou Liu, Jianling Wang, James Caverlee:
Behavior-Dependent Linear Recurrent Units for Efficient Sequential Recommendation. CIKM 2024: 1430-1440 - [c162]Rohan Chaudhury, Maria Teleki, Xiangjue Dong, James Caverlee:
DACL: Disfluency Augmented Curriculum Learning for Fluent Text Generation. LREC/COLING 2024: 4311-4321 - [c161]Maria Teleki, Xiangjue Dong, James Caverlee:
Quantifying the Impact of Disfluency on Spoken Content Summarization. LREC/COLING 2024: 13419-13428 - [c160]Shubham Parashar, Zhiqiu Lin, Tian Liu, Xiangjue Dong, Yanan Li, Deva Ramanan, James Caverlee, Shu Kong:
The Neglected Tails in Vision-Language Models. CVPR 2024: 12988-12997 - [c159]Allen Lin, Jianling Wang, Ziwei Zhu, James Caverlee:
Federated Conversational Recommender Systems. ECIR (5) 2024: 50-65 - [c158]Jinhao Pan, Ziwei Zhu, Jianling Wang, Allen Lin, James Caverlee:
Countering Mainstream Bias via End-to-End Adaptive Local Learning. ECIR (5) 2024: 75-89 - [c157]Yibo Wang, Xiangjue Dong, James Caverlee, Philip S. Yu:
DA³: A Distribution-Aware Adversarial Attack against Language Models. EMNLP 2024: 1808-1825 - [c156]Zhuoer Wang, Leonardo F. R. Ribeiro, Alexandros Papangelis, Rohan Mukherjee, Tzu-Yen Wang, Xinyan Zhao, Arijit Biswas, James Caverlee, Angeliki Metallinou:
FANTAstic SEquences and Where to Find Them: Faithful and Efficient API Call Generation through State-tracked Constrained Decoding and Reranking. EMNLP (Findings) 2024: 6179-6191 - [c155]Guanchu Wang, Yu-Neng Chuang, Ruixiang Tang, Shaochen Zhong, Jiayi Yuan, Hongye Jin, Zirui Liu, Vipin Chaudhary, Shuai Xu, James Caverlee, Xia Ben Hu:
Taylor Unswift: Secured Weight Release for Large Language Models via Taylor Expansion. EMNLP 2024: 6928-6941 - [c154]Noveen Sachdeva, Benjamin Coleman, Wang-Cheng Kang, Jianmo Ni, James Caverlee, Lichan Hong, Ed H. Chi, Derek Zhiyuan Cheng:
Improving Data Efficiency for Recommenders and LLMs. RecSys 2024: 790-792 - [c153]Haoran Liu, Bokun Wang, Jianling Wang, Xiangjue Dong, Tianbao Yang, James Caverlee:
Everything Perturbed All at Once: Enabling Differentiable Graph Attacks. WWW (Companion Volume) 2024: 485-488 - [c152]Jianling Wang, Haokai Lu, James Caverlee, Ed H. Chi, Minmin Chen:
Large Language Models as Data Augmenters for Cold-Start Item Recommendation. WWW (Companion Volume) 2024: 726-729 - [i44]Shubham Parashar, Zhiqiu Lin, Tian Liu, Xiangjue Dong, Yanan Li, Deva Ramanan, James Caverlee, Shu Kong:
The Neglected Tails of Vision-Language Models. CoRR abs/2401.12425 (2024) - [i43]Noveen Sachdeva, Benjamin Coleman, Wang-Cheng Kang, Jianmo Ni, Lichan Hong, Ed H. Chi, James Caverlee, Julian J. McAuley, Derek Zhiyuan Cheng:
How to Train Data-Efficient LLMs. CoRR abs/2402.09668 (2024) - [i42]Xiangjue Dong, Yibo Wang, Philip S. Yu, James Caverlee:
Disclosure and Mitigation of Gender Bias in LLMs. CoRR abs/2402.11190 (2024) - [i41]Jianling Wang, Haokai Lu, James Caverlee, Ed H. Chi, Minmin Chen:
Large Language Models as Data Augmenters for Cold-Start Item Recommendation. CoRR abs/2402.11724 (2024) - [i40]Chengkai Liu, Jianghao Lin, Jianling Wang, Hanzhou Liu, James Caverlee:
Mamba4Rec: Towards Efficient Sequential Recommendation with Selective State Space Models. CoRR abs/2403.03900 (2024) - [i39]Rui Yang, Haoran Liu, Edison Marrese-Taylor, Qingcheng Zeng, Yuhe Ke, Wanxin Li, Lechao Cheng, Qingyu Chen, James Caverlee, Yutaka Matsuo, Irene Li:
KG-Rank: Enhancing Large Language Models for Medical QA with Knowledge Graphs and Ranking Techniques. CoRR abs/2403.05881 (2024) - [i38]Jinhao Pan, Ziwei Zhu, Jianling Wang, Allen Lin, James Caverlee:
Countering Mainstream Bias via End-to-End Adaptive Local Learning. CoRR abs/2404.08887 (2024) - [i37]Chengkai Liu, Jianghao Lin, Hanzhou Liu, Jianling Wang, James Caverlee:
Behavior-Dependent Linear Recurrent Units for Efficient Sequential Recommendation. CoRR abs/2406.12580 (2024) - [i36]Zhuoer Wang, Leonardo F. R. Ribeiro, Alexandros Papangelis, Rohan Mukherjee, Tzu-Yen Wang, Xinyan Zhao, Arijit Biswas, James Caverlee, Angeliki Metallinou:
FANTAstic SEquences and Where to Find Them: Faithful and Efficient API Call Generation through State-tracked Constrained Decoding and Reranking. CoRR abs/2407.13945 (2024) - [i35]Chengkai Liu, Jianling Wang, James Caverlee:
TwinCL: A Twin Graph Contrastive Learning Model for Collaborative Filtering. CoRR abs/2409.19169 (2024) - [i34]Guanchu Wang, Yu-Neng Chuang, Ruixiang Tang, Shaochen Zhong, Jiayi Yuan, Hongye Jin, Zirui Liu, Vipin Chaudhary, Shuai Xu, James Caverlee, Xia Hu:
Taylor Unswift: Secured Weight Release for Large Language Models via Taylor Expansion. CoRR abs/2410.05331 (2024) - [i33]Millennium Bismay, Xiangjue Dong, James Caverlee:
ReasoningRec: Bridging Personalized Recommendations and Human-Interpretable Explanations through LLM Reasoning. CoRR abs/2410.23180 (2024) - 2023
- [c151]Xiangjue Dong, Yun He, Ziwei Zhu, James Caverlee:
PromptAttack: Probing Dialogue State Trackers with Adversarial Prompts. ACL (Findings) 2023: 10651-10666 - [c150]Karthic Madanagopal, James Caverlee:
Reinforced Sequence Training based Subjective Bias Correction. EACL 2023: 2577-2590 - [c149]Xiangjue Dong, Jiaying Lu, Jianling Wang, James Caverlee:
Closed-book Question Generation via Contrastive Learning. EACL 2023: 3142-3154 - [c148]Han Zhang, Ziwei Zhu, James Caverlee:
Evolution of Filter Bubbles and Polarization in News Recommendation. ECIR (2) 2023: 685-693 - [c147]Zhuoer Wang, Yicheng Wang, Ziwei Zhu, James Caverlee:
Unsupervised Candidate Answer Extraction through Differentiable Masker-Reconstructor Model. EMNLP (Findings) 2023: 5712-5723 - [c146]Xiangjue Dong, Ziwei Zhu, Zhuoer Wang, Maria Teleki, James Caverlee:
Co²PT: Mitigating Bias in Pre-trained Language Models through Counterfactual Contrastive Prompt Tuning. EMNLP (Findings) 2023: 5859-5871 - [c145]Karthic Madanagopal, James Caverlee:
Bias Neutralization in Non-Parallel Texts: A Cyclic Approach with Auxiliary Guidance. EMNLP 2023: 14265-14278 - [c144]Yin Zhang, Ruoxi Wang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Lichan Hong, James Caverlee, Ed H. Chi:
Empowering Long-tail Item Recommendation through Cross Decoupling Network (CDN). KDD 2023: 5608-5617 - [c143]Mostafa Rahmani, James Caverlee, Fei Wang:
Incorporating Time in Sequential Recommendation Models. RecSys 2023: 784-790 - [c142]Allen Lin, Ziwei Zhu, Jianling Wang, James Caverlee:
Enhancing User Personalization in Conversational Recommenders. WWW 2023: 770-778 - [i32]Han Zhang, Ziwei Zhu, James Caverlee:
Evolution of Filter Bubbles and Polarization in News Recommendation. CoRR abs/2301.10926 (2023) - [i31]Allen Lin, Ziwei Zhu, Jianling Wang, James Caverlee:
Enhancing User Personalization in Conversational Recommenders. CoRR abs/2302.06656 (2023) - [i30]Yingqiang Ge, Mostafa Rahmani, Athirai A. Irissappane, Jose Sepulveda, James Caverlee, Fei Wang:
Automated Data Denoising for Recommendation. CoRR abs/2305.07070 (2023) - [i29]Xiangjue Dong, Yun He, Ziwei Zhu, James Caverlee:
PromptAttack: Probing Dialogue State Trackers with Adversarial Prompts. CoRR abs/2306.04535 (2023) - [i28]Haoran Liu, Bokun Wang, Jianling Wang, Xiangjue Dong, Tianbao Yang, James Caverlee:
Everything Perturbed All at Once: Enabling Differentiable Graph Attacks. CoRR abs/2308.15614 (2023) - [i27]Xiangjue Dong, Ziwei Zhu, Zhuoer Wang, Maria Teleki, James Caverlee:
Co$^2$PT: Mitigating Bias in Pre-trained Language Models through Counterfactual Contrastive Prompt Tuning. CoRR abs/2310.12490 (2023) - [i26]Zhuoer Wang, Yicheng Wang, Ziwei Zhu, James Caverlee:
Unsupervised Candidate Answer Extraction through Differentiable Masker-Reconstructor Model. CoRR abs/2310.13106 (2023) - [i25]Xiangjue Dong, Yibo Wang, Philip S. Yu, James Caverlee:
Probing Explicit and Implicit Gender Bias through LLM Conditional Text Generation. CoRR abs/2311.00306 (2023) - [i24]Yibo Wang, Xiangjue Dong, James Caverlee, Philip S. Yu:
DALA: A Distribution-Aware LoRA-Based Adversarial Attack against Pre-trained Language Models. CoRR abs/2311.08598 (2023) - 2022
- [j23]Weiwen Liu, Yin Zhang, Jianling Wang, Yun He, James Caverlee, Patrick P. K. Chan, Daniel S. Yeung, Pheng-Ann Heng:
Item Relationship Graph Neural Networks for E-Commerce. IEEE Trans. Neural Networks Learn. Syst. 33(9): 4785-4799 (2022) - [c141]Kaize Ding, Jianling Wang, James Caverlee, Huan Liu:
Meta Propagation Networks for Graph Few-shot Semi-supervised Learning. AAAI 2022: 6524-6531 - [c140]Zhuoer Wang, Qizhang Feng, Mohinish Chatterjee, Xing Zhao, Yezi Liu, Yuening Li, Abhay Kumar Singh, Frank M. Shipman, Xia Hu, James Caverlee:
RES: An Interpretable Replicability Estimation System for Research Publications. AAAI 2022: 13230-13232 - [c139]Allen Lin, Jianling Wang, Ziwei Zhu, James Caverlee:
Quantifying and Mitigating Popularity Bias in Conversational Recommender Systems. CIKM 2022: 1238-1247 - [c138]Ziwei Zhu, James Caverlee:
Fighting Mainstream Bias in Recommender Systems via Local Fine Tuning. WSDM 2022: 1497-1506 - [c137]Karthic Madanagopal, James Caverlee:
Improving Linguistic Bias Detection in Wikipedia using Cross-Domain Adaptive Pre-Training. WWW (Companion Volume) 2022: 1301-1309 - [c136]Yun He, Xue Feng, Cheng Cheng, Geng Ji, Yunsong Guo, James Caverlee:
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks. WWW 2022: 2205-2215 - [i23]Yun He, Xue Feng, Cheng Cheng, Geng Ji, Yunsong Guo, James Caverlee:
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks. CoRR abs/2203.06801 (2022) - [i22]Ziwei Zhu, Yun He, Xing Zhao, James Caverlee:
Evolution of Popularity Bias: Empirical Study and Debiasing. CoRR abs/2207.03372 (2022) - [i21]Allen Lin, Jianling Wang, Ziwei Zhu, James Caverlee:
Quantifying and Mitigating Popularity Bias in Conversational Recommender Systems. CoRR abs/2208.03298 (2022) - [i20]Allen Lin, Ziwei Zhu, Jianling Wang, James Caverlee:
Towards Fair Conversational Recommender Systems. CoRR abs/2208.03854 (2022) - [i19]Xiangjue Dong, Jiaying Lu, Jianling Wang, James Caverlee:
Closed-book Question Generation via Contrastive Learning. CoRR abs/2210.06781 (2022) - [i18]Yin Zhang, Ruoxi Wang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Lichan Hong, James Caverlee, Ed H. Chi:
Empowering Long-tail Item Recommendation through Cross Decoupling Network (CDN). CoRR abs/2210.14309 (2022) - 2021
- [c135]Yin Zhang, Yun He, James Caverlee:
Vibe check: social resonance learning for enhanced recommendation. ASONAM 2021: 164-167 - [c134]Ziwei Zhu, Yun He, Xing Zhao, James Caverlee:
Popularity Bias in Dynamic Recommendation. KDD 2021: 2439-2449 - [c133]Jianling Wang, Kaize Ding, Ziwei Zhu, James Caverlee:
Session-based Recommendation with Hypergraph Attention Networks. SDM 2021: 82-90 - [c132]Ziwei Zhu, Jingu Kim, Trung Nguyen, Aish Fenton, James Caverlee:
Fairness among New Items in Cold Start Recommender Systems. SIGIR 2021: 767-776 - [c131]Jianling Wang, Kaize Ding, James Caverlee:
Sequential Recommendation for Cold-start Users with Meta Transitional Learning. SIGIR 2021: 1783-1787 - [c130]Ziwei Zhu, Yun He, Xing Zhao, Yin Zhang, Jianling Wang, James Caverlee:
Popularity-Opportunity Bias in Collaborative Filtering. WSDM 2021: 85-93 - [c129]Karthic Madanagopal, James Caverlee:
Towards Ongoing Detection of Linguistic Bias on Wikipedia. WWW (Companion Volume) 2021: 629-631 - [c128]Xing Zhao, Ziwei Zhu, James Caverlee:
Rabbit Holes and Taste Distortion: Distribution-Aware Recommendation with Evolving Interests. WWW 2021: 888-899 - [i17]Ziwei Zhu, Jianling Wang, James Caverlee:
Fairness-aware Personalized Ranking Recommendation via Adversarial Learning. CoRR abs/2103.07849 (2021) - [i16]Jian Wu, Rajal Nivargi, Sree Sai Teja Lanka, Arjun Manoj Menon, Sai Ajay Modukuri, Nishanth Nakshatri, Xin Wei, Zhuoer Wang, James Caverlee, Sarah Michele Rajtmajer, C. Lee Giles:
Predicting the Reproducibility of Social and Behavioral Science Papers Using Supervised Learning Models. CoRR abs/2104.04580 (2021) - [i15]Kaize Ding, Jianling Wang, Jundong Li, James Caverlee, Huan Liu:
Weakly-supervised Graph Meta-learning for Few-shot Node Classification. CoRR abs/2106.06873 (2021) - [i14]Monika Daryani, James Caverlee:
Identifying Hijacked Reviews. CoRR abs/2107.05385 (2021) - [i13]Jianling Wang, Kaize Ding, James Caverlee:
Sequential Recommendation for Cold-start Users with Meta Transitional Learning. CoRR abs/2107.06427 (2021) - [i12]Kaize Ding, Jianling Wang, James Caverlee, Huan Liu:
Meta Propagation Networks for Graph Few-shot Semi-supervised Learning. CoRR abs/2112.09810 (2021) - [i11]Jianling Wang, Kaize Ding, Ziwei Zhu, James Caverlee:
Session-based Recommendation with Hypergraph Attention Networks. CoRR abs/2112.14266 (2021) - 2020
- [c127]Parisa Kaghazgaran, James Caverlee:
Towards an Automated Writing Assistant for Online Reviews. AutomationXP@CHI 2020 - [c126]Jianling Wang, James Caverlee:
Recommending Music Curators: A Neural Style-Aware Approach. ECIR (1) 2020: 191-204 - [c125]Yun He, Ziwei Zhu, Yin Zhang, Qin Chen, James Caverlee:
Infusing Disease Knowledge into BERT for Health Question Answering, Medical Inference and Disease Name Recognition. EMNLP (1) 2020: 4604-4614 - [c124]Yun He, Zhuoer Wang, Yin Zhang, Ruihong Huang, James Caverlee:
PARADE: A New Dataset for Paraphrase Identification Requiring Computer Science Domain Knowledge. EMNLP (1) 2020: 7572-7582 - [c123]Yin Zhang, Ziwei Zhu, Yun He, James Caverlee:
Content-Collaborative Disentanglement Representation Learning for Enhanced Recommendation. RecSys 2020: 43-52 - [c122]Ziwei Zhu, Yun He, Yin Zhang, James Caverlee:
Unbiased Implicit Recommendation and Propensity Estimation via Combinational Joint Learning. RecSys 2020: 551-556 - [c121]Ziwei Zhu, Jianling Wang, James Caverlee:
Measuring and Mitigating Item Under-Recommendation Bias in Personalized Ranking Systems. SIGIR 2020: 449-458 - [c120]Parisa Kaghazgaran, Jianling Wang, Ruihong Huang, James Caverlee:
ADORE: Aspect Dependent Online REview Labeling for Review Generation. SIGIR 2020: 1021-1030 - [c119]Jianling Wang, Kaize Ding, Liangjie Hong, Huan Liu, James Caverlee:
Next-item Recommendation with Sequential Hypergraphs. SIGIR 2020: 1101-1110 - [c118]Ziwei Zhu, Shahin Sefati, Parsa Saadatpanah, James Caverlee:
Recommendation for New Users and New Items via Randomized Training and Mixture-of-Experts Transformation. SIGIR 2020: 1121-1130 - [c117]Yun He, Yin Zhang, Weiwen Liu, James Caverlee:
Consistency-Aware Recommendation for User-Generated Item List Continuation. WSDM 2020: 250-258 - [c116]Jianling Wang, Ziwei Zhu, James Caverlee:
User Recommendation in Content Curation Platforms. WSDM 2020: 627-635 - [c115]Jianling Wang, Kaize Ding, Ziwei Zhu, Yin Zhang, James Caverlee:
Key Opinion Leaders in Recommendation Systems: Opinion Elicitation and Diffusion. WSDM 2020: 636-644 - [c114]Jianling Wang, Raphael Louca, Diane Hu, Caitlin Cellier, James Caverlee, Liangjie Hong:
Time to Shop for Valentine's Day: Shopping Occasions and Sequential Recommendation in E-commerce. WSDM 2020: 645-653 - [c113]Xing Zhao, Ziwei Zhu, Yin Zhang, James Caverlee:
Improving the Estimation of Tail Ratings in Recommender System with Multi-Latent Representations. WSDM 2020: 762-770 - [c112]Xing Zhao, Ziwei Zhu, Majid Alfifi, James Caverlee:
Addressing the Target Customer Distortion Problem in Recommender Systems. WWW 2020: 2969-2975 - [c111]Yin Zhang, Yun He, Jianling Wang, James Caverlee:
Adaptive Hierarchical Translation-based Sequential Recommendation. WWW 2020: 2984-2990 - [e5]James Caverlee, Xia (Ben) Hu, Mounia Lalmas, Wei Wang:
WSDM '20: The Thirteenth ACM International Conference on Web Search and Data Mining, Houston, TX, USA, February 3-7, 2020. ACM 2020, ISBN 978-1-4503-6822-3 [contents] - [i10]Habeeb Hooshmand, James Caverlee:
Understanding Car-Speak: Replacing Humans in Dealerships. CoRR abs/2002.02070 (2020) - [i9]Yun He, Zhuoer Wang, Yin Zhang, Ruihong Huang, James Caverlee:
PARADE: A New Dataset for Paraphrase Identification Requiring Computer Science Domain Knowledge. CoRR abs/2010.03725 (2020) - [i8]Yun He, Ziwei Zhu, Yin Zhang, Qin Chen, James Caverlee:
Infusing Disease Knowledge into BERT for Health Question Answering, Medical Inference and Disease Name Recognition. CoRR abs/2010.03746 (2020)
2010 – 2019
- 2019
- [j22]Qingquan Song, Hancheng Ge, James Caverlee, Xia Hu:
Tensor Completion Algorithms in Big Data Analytics. ACM Trans. Knowl. Discov. Data 13(1): 6:1-6:48 (2019) - [c110]Parisa Kaghazgaran, Majid Alfifi, James Caverlee:
Wide-Ranging Review Manipulation Attacks: Model, Empirical Study, and Countermeasures. CIKM 2019: 981-990 - [c109]Yun He, Jianling Wang, Wei Niu, James Caverlee:
A Hierarchical Self-Attentive Model for Recommending User-Generated Item Lists. CIKM 2019: 1481-1490 - [c108]Yin Zhang, James Caverlee:
Instagrammers, Fashionistas, and Me: Recurrent Fashion Recommendation with Implicit Visual Influence. CIKM 2019: 1583-1592 - [c107]Majid Alfifi, Parisa Kaghazgaran, James Caverlee, Fred Morstatter:
A Large-Scale Study of ISIS Social Media Strategy: Community Size, Collective Influence, and Behavioral Impact. ICWSM 2019: 58-67 - [c106]Parisa Kaghazgaran, Majid Alfifi, James Caverlee:
TOmCAT: Target-Oriented Crowd Review Attacks and Countermeasures. ICWSM 2019: 302-312 - [c105]Yin Zhang, Ninghao Liu, Shuiwang Ji, James Caverlee, Xia Hu:
An Interpretable Neural Model with Interactive Stepwise Influence. PAKDD (3) 2019: 528-540 - [c104]Jianling Wang, James Caverlee:
Recurrent Recommendation with Local Coherence. WSDM 2019: 564-572 - [c103]Ziwei Zhu, Jianling Wang, James Caverlee:
Improving Top-K Recommendation via JointCollaborative Autoencoders. WWW 2019: 3483-3482 - [i7]Yun He, Haochen Chen, Ziwei Zhu, James Caverlee:
Pseudo-Implicit Feedback for Alleviating Data Sparsity in Top-K Recommendation. CoRR abs/1901.00597 (2019) - [i6]Yun He, Jianling Wang, Wei Niu, James Caverlee:
A Hierarchical Self-Attentive Model for Recommending User-Generated Item Lists. CoRR abs/1912.13023 (2019) - [i5]Yun He, Yin Zhang, Weiwen Liu, James Caverlee:
Consistency-Aware Recommendation for User-Generated ItemList Continuation. CoRR abs/1912.13031 (2019) - 2018
- [j21]Benjamin A. Knott, Jonathan Gratch, Angelo Cangelosi, James Caverlee:
ACM Transactions on Interactive Intelligent Systems (TiiS) Special Issue on Trust and Influence in Intelligent Human-Machine Interaction. ACM Trans. Interact. Intell. Syst. 8(4): 25:1-25:3 (2018) - [j20]Victor Bahl, Barbara Carminati, James Caverlee, Ing-Ray Chen, Wynne Hsu, Toru Ishida, Valérie Issarny, Surya Nepal, Indrakshi Ray, Kui Ren, Shamik Sural, Mei-Ling Shyu:
Editorial. IEEE Trans. Serv. Comput. 11(1): 1-4 (2018) - [c102]Wei Niu, James Caverlee, Haokai Lu:
Location-Sensitive User Profiling Using Crowdsourced Labels. AAAI 2018: 386-393 - [c101]Chenxi Qiu, Anna Cinzia Squicciarini, Dev Rishi Khare, Barbara Carminati, James Caverlee:
CrowdEval: A Cost-Efficient Strategy to Evaluate Crowdsourced Worker's Reliability. AAMAS 2018: 1486-1494 - [c100]Ziwei Zhu, Xia Hu, James Caverlee:
Fairness-Aware Tensor-Based Recommendation. CIKM 2018: 1153-1162 - [c99]Cheng Cao, Zhengzhang Chen, James Caverlee, Lu-An Tang, Chen Luo, Zhichun Li:
Behavior-based Community Detection: Application to Host Assessment In Enterprise Information Networks. CIKM 2018: 1977-1985 - [c98]Hancheng Ge, Kai Zhang, Majid Alfifi, Xia Hu, James Caverlee:
DisTenC: A Distributed Algorithm for Scalable Tensor Completion on Spark. ICDE 2018: 137-148 - [c97]Yun He, Haochen Chen, Ziwei Zhu, James Caverlee:
Pseudo-Implicit Feedback for Alleviating Data Sparsity in Top-K Recommendation. ICDM 2018: 1025-1030 - [c96]Xing Zhao, Qingquan Song, James Caverlee, Xia Hu:
TrailMix: An Ensemble Recommender System for Playlist Curation and Continuation. RecSys Challenge 2018: 8:1-8:6 - [c95]Yin Zhang, Haokai Lu, Wei Niu, James Caverlee:
Quality-aware neural complementary item recommendation. RecSys 2018: 77-85 - [c94]Haokai Lu, Wei Niu, James Caverlee:
Learning Geo-Social User Topical Profiles with Bayesian Hierarchical User Factorization. SIGIR 2018: 205-214 - [c93]Xing Zhao, James Caverlee:
Vitriol on Social Media: Curation and Investigation. SocInfo (1) 2018: 487-504 - [c92]Parisa Kaghazgaran, James Caverlee, Anna Cinzia Squicciarini:
Combating Crowdsourced Review Manipulators: A Neighborhood-Based Approach. WSDM 2018: 306-314 - [c91]Wei Niu, James Caverlee, Haokai Lu:
Neural Personalized Ranking for Image Recommendation. WSDM 2018: 423-431 - [r9]James Caverlee:
Data Dictionary. Encyclopedia of Database Systems (2nd ed.) 2018 - [r8]James Caverlee:
Topic Maps. Encyclopedia of Database Systems (2nd ed.) 2018 - [r7]James Caverlee, Prasenjit Mitra, Mary Lynette Larsgaard:
Dublin Core. Encyclopedia of Database Systems (2nd ed.) 2018 - [r6]James Caverlee, Zhiyuan Cheng:
Geography and Web Communities. Encyclopedia of Social Network Analysis and Mining. 2nd Ed. 2018 - [i4]Ziwei Zhu, Jianling Wang, Yin Zhang, James Caverlee:
Fairness-Aware Recommendation of Information Curators. CoRR abs/1809.03040 (2018) - 2017
- [c90]Chenxi Qiu, Anna Cinzia Squicciarini, Sarah Michele Rajtmajer, James Caverlee:
Dynamic Contract Design for Heterogenous Workers in Crowdsourcing for Quality Control. ICDCS 2017: 1168-1177 - [c89]Parisa Kaghazgaran, James Caverlee, Majid Alfifi:
Behavioral Analysis of Review Fraud: Linking Malicious Crowdsourcing to Amazon and Beyond. ICWSM 2017: 560-563 - [c88]Qingquan Song, Xiao Huang, Hancheng Ge, James Caverlee, Xia Hu:
Multi-Aspect Streaming Tensor Completion. KDD 2017: 435-443 - [c87]Wenlin Yao, Zeyu Dai, Ruihong Huang, James Caverlee:
Online Deception Detection Refueled by Real World Data Collection. RANLP 2017: 793-802 - [c86]Cheng Cao, Hancheng Ge, Haokai Lu, Xia Hu, James Caverlee:
What Are You Known For?: Learning User Topical Profiles with Implicit and Explicit Footprints. SIGIR 2017: 743-752 - [c85]Shanshan Li, James Caverlee, Wei Niu, Parisa Kaghazgaran:
Crowdsourced App Review Manipulation. SIGIR 2017: 1137-1140 - [c84]Majid Alfifi, James Caverlee:
Badly Evolved? Exploring Long-Surviving Suspicious Users on Twitter. SocInfo (1) 2017: 218-233 - [i3]Wenlin Yao, Zeyu Dai, Ruihong Huang, James Caverlee:
Online Deception Detection Refueled by Real World Data Collection. CoRR abs/1707.09406 (2017) - [i2]Qingquan Song, Hancheng Ge, James Caverlee, Xia Hu:
Tensor Completion Algorithms in Big Data Analytics. CoRR abs/1711.10105 (2017) - 2016
- [j19]Wei Niu, Zhijiao Liu, James Caverlee:
On Local Expert Discovery via Geo-Located Crowds, Queries, and Candidates. ACM Trans. Spatial Algorithms Syst. 2(4): 14:1-14:24 (2016) - [c83]Hancheng Ge, James Caverlee:
College Towns, Vacation Spots, and Tech Hubs: Using Geo-Social Media to Model and Compare Locations. AAAI 2016: 129-136 - [c82]Wei Niu, James Caverlee, Haokai Lu, Krishna Yeswanth Kamath:
Community-based geospatial tag estimation. ASONAM 2016: 279-286 - [c81]Chenxi Qiu, Anna Cinzia Squicciarini, Barbara Carminati, James Caverlee, Dev Rishi Khare:
CrowdSelect: Increasing Accuracy of Crowdsourcing Tasks through Behavior Prediction and User Selection. CIKM 2016: 539-548 - [c80]Hancheng Ge, James Caverlee, Nan Zhang, Anna Cinzia Squicciarini:
Uncovering the Spatio-Temporal Dynamics of Memes in the Presence of Incomplete Information. CIKM 2016: 1493-1502 - [c79]Wei Niu, Zhijiao Liu, James Caverlee:
LExL: A Learning Approach for Local Expert Discovery on Twitter. ECIR 2016: 803-809 - [c78]Haokai Lu, James Caverlee, Wei Niu:
Discovering What You're Known For: A Contextual Poisson Factorization Approach. RecSys 2016: 253-260 - [c77]Hancheng Ge, James Caverlee, Haokai Lu:
TAPER: A Contextual Tensor-Based Approach for Personalized Expert Recommendation. RecSys 2016: 261-268 - [e4]Ravi Kumar, James Caverlee, Hanghang Tong:
2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2016, San Francisco, CA, USA, August 18-21, 2016. IEEE Computer Society 2016, ISBN 978-1-5090-2846-7 [contents] - 2015
- [c76]Haokai Lu, James Caverlee, Wei Niu:
BiasWatch: A Lightweight System for Discovering and Tracking Topic-Sensitive Opinion Bias in Social Media. CIKM 2015: 213-222 - [c75]Cheng Cao, James Caverlee, Kyumin Lee, Hancheng Ge, Jin-Wook Chung:
Organic or Organized?: Exploring URL Sharing Behavior. CIKM 2015: 513-522 - [c74]Yuan Liang, James Caverlee, Cheng Cao:
A Noise-Filtering Approach for Spatio-temporal Event Detection in Social Media. ECIR 2015: 233-244 - [c73]Cheng Cao, James Caverlee:
Detecting Spam URLs in Social Media via Behavioral Analysis. ECIR 2015: 703-714 - [c72]Hancheng Ge, James Caverlee, Kyumin Lee:
Crowds, Gigs, and Super Sellers: A Measurement Study of a Supply-Driven Crowdsourcing Marketplace. ICWSM 2015: 120-129 - [c71]Haokai Lu, James Caverlee:
Exploiting Geo-Spatial Preference for Personalized Expert Recommendation. RecSys 2015: 67-74 - [c70]Amir Fayazi, Kyumin Lee, James Caverlee, Anna Cinzia Squicciarini:
Uncovering Crowdsourced Manipulation of Online Reviews. SIGIR 2015: 233-242 - [c69]Klaus Berberich, James Caverlee, Miles Efron, Claudia Hauff, Vanessa Murdock, Milad Shokouhi, Bart Thomee:
SIGIR 2015 Workshop on Temporal, Social and Spatially-aware Information Access (#TAIA2015). SIGIR 2015: 1149-1150 - [c68]Natwar Modani, Elham Khabiri, Harini Srinivasan, James Caverlee:
Creating Diverse Product Review Summaries: A Graph Approach. WISE (1) 2015: 169-184 - 2014
- [j18]Adam Jatowt, Carlos Castillo, James Caverlee, Katsumi Tanaka:
Report on the WebQuality 2014 Workshop. SIGIR Forum 48(2): 93-95 (2014) - [c67]Cheng Cao, James Caverlee:
Behavioral detection of spam URL sharing: Posting patterns versus click patterns. ASONAM 2014: 138-141 - [c66]Jalal Mahmud, Jeffrey Nichols, Michelle X. Zhou, James Caverlee, Yi Zeng, Liang Chen, John O'Donovan:
DUBMOD14 - International Workshop on Data-driven User Behavioral Modeling and Mining from Social Media. CIKM 2014: 2092-2093 - [c65]Zhiyuan Cheng, James Caverlee, Himanshu Barthwal, Vandana Bachani:
Who is the barbecue king of texas?: a geo-spatial approach to finding local experts on twitter. SIGIR 2014: 335-344 - [c64]Kyumin Lee, James Caverlee, Calton Pu:
Social spam, campaigns, misinformation and crowdturfing. WWW (Companion Volume) 2014: 199-200 - [c63]Zhiyuan Cheng, James Caverlee, Himanshu Barthwal, Vandana Bachani:
Finding local experts on twitter. WWW (Companion Volume) 2014: 241-242 - [e3]Jalal Mahmud, James Caverlee, Jeffrey Nichols, John O'Donovan, Michelle X. Zhou, Yi Zeng, Liang Chen:
Proceedings of the 3rd Workshop on Data-Driven User Behavioral Modeling and Mining from Social Media, DUBMOD@CIKM 2014, Shanghai, China, November 3, 2014. ACM 2014, ISBN 978-1-4503-1303-2 [contents] - 2013
- [j17]James Caverlee, Zhiyuan Cheng, Daniel Z. Sui, Krishna Yeswanth Kamath:
Towards Geo-Social Intelligence: Mining, Analyzing, and Leveraging Geospatial Footprints in Social Media. IEEE Data Eng. Bull. 36(3): 33-41 (2013) - [j16]James Caverlee, Calton Pu, Dimitrios Georgakopoulos, James Joshi:
Editorial for CollaborateCom 2011 Special Issue. Mob. Networks Appl. 18(2): 235-236 (2013) - [j15]Zhiyuan Cheng, James Caverlee, Kyumin Lee:
A content-driven framework for geolocating microblog users. ACM Trans. Intell. Syst. Technol. 4(1): 2:1-2:27 (2013) - [j14]Kyumin Lee, James Caverlee, Zhiyuan Cheng, Daniel Z. Sui:
Campaign extraction from social media. ACM Trans. Intell. Syst. Technol. 5(1): 9:1-9:28 (2013) - [c62]Jeffrey McGee, James Caverlee, Zhiyuan Cheng:
Location prediction in social media based on tie strength. CIKM 2013: 459-468 - [c61]Krishna Yeswanth Kamath, James Caverlee:
Spatio-temporal meme prediction: learning what hashtags will be popular where. CIKM 2013: 1341-1350 - [c60]Jalal Mahmud, Jeffrey Nichols, Michelle X. Zhou, James Caverlee, John O'Donovan:
DUBMOD13: international workshop on data-driven user behavioral modelling and mining from social media. CIKM 2013: 2551-2552 - [c59]Yuan Liang, James Caverlee, Zhiyuan Cheng, Krishna Yeswanth Kamath:
How big is the crowd?: event and location based population modeling in social media. HT 2013: 99-108 - [c58]Kyumin Lee, Krishna Yeswanth Kamath, James Caverlee:
Combating Threats to Collective Attention in Social Media: An Evaluation. ICWSM 2013 - [c57]Kyumin Lee, Prithivi Tamilarasan, James Caverlee:
Crowdturfers, Campaigns, and Social Media: Tracking and Revealing Crowdsourced Manipulation of Social Media. ICWSM 2013 - [c56]Krishna Yeswanth Kamath, Ana-Maria Popescu, James Caverlee:
Board Recommendation in Pinterest. UMAP Workshops 2013 - [c55]Ana-Maria Popescu, Krishna Yeswanth Kamath, James Caverlee:
Mining Potential Domain Expertise in Pinterest. UMAP Workshops 2013 - [c54]Krishna Yeswanth Kamath, Ana-Maria Popescu, James Caverlee:
Board coherence in Pinterest: non-visual aspects of a visual site. WWW (Companion Volume) 2013: 49-50 - [c53]Krishna Yeswanth Kamath, James Caverlee, Kyumin Lee, Zhiyuan Cheng:
Spatio-temporal dynamics of online memes: a study of geo-tagged tweets. WWW 2013: 667-678 - [c52]Yuan Liang, James Caverlee, John Mander:
Text vs. images: on the viability of social media to assess earthquake damage. WWW (Companion Volume) 2013: 1003-1006 - [e2]Jalal Mahmud, James Caverlee, Jeffrey Nichols, John O'Donovan, Michelle X. Zhou:
Proceedings of the 2013 Workshop on Data-Driven User Behavioral Modelling and Mining from Social Media, DUBMOD@CIKM 2013 San Francisco, CA, USA, October 28, 2013. ACM 2013, ISBN 978-1-4503-2417-5 [contents] - [r5]James Caverlee:
Exploitation in Human Computation Systems. Handbook of Human Computation 2013: 837-845 - 2012
- [j13]Said Kashoob, James Caverlee:
Temporal dynamics of communities in social bookmarking systems. Soc. Netw. Anal. Min. 2(4): 387-404 (2012) - [j12]Chiao-Fang Hsu, James Caverlee, Elham Khabiri:
Predicting community preference of comments on the Social Web. Web Intell. Agent Syst. 10(4): 447-463 (2012) - [c51]Krishna Yeswanth Kamath, James Caverlee:
Content-based crowd retrieval on the real-time web. CIKM 2012: 195-204 - [c50]Krishna Yeswanth Kamath, James Caverlee, Zhiyuan Cheng, Daniel Z. Sui:
Spatial influence vs. community influence: modeling the global spread of social media. CIKM 2012: 962-971 - [c49]Jalal Mahmud, James Caverlee, Jeffrey Nichols, John O'Donovan, Michelle X. Zhou:
DUBMMSM'12: international workshop on data-driven user behavioral modeling and mining from social media. CIKM 2012: 2752-2753 - [c48]James Caverlee, Zhiyuan Cheng, Wai Gen Yee, Roger Liew, Yuan Liang:
Public checkins versus private queries: measuring and evaluating spatial preference. LBSN@GIS 2012: 40-47 - [c47]Elham Khabiri, James Caverlee, Krishna Yeswanth Kamath:
Predicting semantic annotations on the real-time web. HT 2012: 219-228 - [c46]Kyumin Lee, James Caverlee, Krishna Yeswanth Kamath, Zhiyuan Cheng:
Detecting collective attention spam. WebQuality@WWW 2012: 48-55 - [e1]Jalal Mahmud, James Caverlee, Jeffrey Nichols, John O'Donovan, Michelle X. Zhou:
Proceedings of the 2012 workshop on Data-driven User Behavioral Modelling and Mining from Social Media, DUBMMSM 2012, October 29, 2012, Maui, Hawaii, USA. ACM 2012, ISBN 978-1-4503-1707-8 [contents] - 2011
- [c45]Kyumin Lee, James Caverlee, Zhiyuan Cheng, Daniel Z. Sui:
Content-driven detection of campaigns in social media. CIKM 2011: 551-556 - [c44]Zhiyuan Cheng, James Caverlee, Krishna Yeswanth Kamath, Kyumin Lee:
Toward traffic-driven location-based web search. CIKM 2011: 805-814 - [c43]Krishna Yeswanth Kamath, James Caverlee:
Discovering trending phrases on information streams. CIKM 2011: 2245-2248 - [c42]Jeffrey McGee, James Caverlee, Zhiyuan Cheng:
A geographic study of tie strength in social media. CIKM 2011: 2333-2336 - [c41]Zhiyuan Cheng, James Caverlee, Kyumin Lee, Daniel Z. Sui:
Exploring Millions of Footprints in Location Sharing Services. ICWSM 2011 - [c40]Elham Khabiri, James Caverlee, Chiao-Fang Hsu:
Summarizing User-Contributed Comments. ICWSM 2011 - [c39]Kyumin Lee, Brian David Eoff, James Caverlee:
Seven Months with the Devils: A Long-Term Study of Content Polluters on Twitter. ICWSM 2011 - [c38]Chiao-Fang Hsu, James Caverlee, Elham Khabiri:
Hierarchical comments-based clustering. SAC 2011: 1130-1137 - [c37]James Caverlee, Zhiyuan Cheng, Brian Eoff, Chiao-Fang Hsu, Krishna Yeswanth Kamath, Jeffrey McGee:
CrowdTracker: enabling community-based real-time web monitoring. SIGIR 2011: 1283-1284 - [c36]Krishna Yeswanth Kamath, James Caverlee:
Expert-Driven Topical Classification of Short Message Streams. SocialCom/PASSAT 2011: 388-393 - [c35]Krishna Yeswanth Kamath, James Caverlee:
Transient crowd discovery on the real-time social web. WSDM 2011: 585-594 - 2010
- [j11]James Caverlee, Ling Liu, Steve Webb:
The SocialTrust framework for trusted social information management: Architecture and algorithms. Inf. Sci. 180(1): 95-112 (2010) - [c34]Zhiyuan Cheng, James Caverlee, Kyumin Lee:
You are where you tweet: a content-based approach to geo-locating twitter users. CIKM 2010: 759-768 - [c33]Krishna Yeswanth Kamath, James Caverlee:
Identifying hotspots on the real-time web. CIKM 2010: 1837-1840 - [c32]James Caverlee, Zhiyuan Cheng, Brian Eoff, Chiao-Fang Hsu, Krishna Yeswanth Kamath, Said Kashoob, Jeremy Kelley, Elham Khabiri, Kyumin Lee:
SocialTrust++: Building community-based trust in Social Information Systems. CollaborateCom 2010: 1-7 - [c31]Steve Webb, James Caverlee, Calton Pu:
A Summary of Granular Computing System Vulnerabilities: Exploring the Dark Side of Social Networking Communities. GrC 2010: 39-40 - [c30]Said Kashoob, James Caverlee, Krishna Yeswanth Kamath:
Community-based ranking of the social web. HT 2010: 141-150 - [c29]Kyumin Lee, Brian David Eoff, James Caverlee:
Devils, Angels, and Robots: Tempting Destructive Users in Social Media. ICWSM 2010 - [c28]Kyumin Lee, James Caverlee, Steve Webb:
Uncovering social spammers: social honeypots + machine learning. SIGIR 2010: 435-442 - [c27]Kyumin Lee, James Caverlee, Steve Webb:
The social honeypot project: protecting online communities from spammers. WWW 2010: 1139-1140 - [i1]Ying Ding, Erjia Yan, Arthur R. Frazho, James Caverlee:
PageRank for ranking authors in co-citation networks. CoRR abs/1012.4872 (2010)
2000 – 2009
- 2009
- [j10]Ying Ding, Elin K. Jacob, James Caverlee, Michael A. H. Fried, Zhixiong Zhang:
Profiling Social Networks: A Social Tagging Perspective. D Lib Mag. 15(3/4) (2009) - [j9]Ying Ding, Erjia Yan, Arthur R. Frazho, James Caverlee:
PageRank for ranking authors in co-citation networks. J. Assoc. Inf. Sci. Technol. 60(11): 2229-2243 (2009) - [j8]James Caverlee, Steve Webb, Ling Liu, William B. Rouse:
A Parameterized Approach to Spam-Resilient Link Analysis of the Web. IEEE Trans. Parallel Distributed Syst. 20(10): 1422-1438 (2009) - [c26]Said Kashoob, James Caverlee, Elham Khabiri:
Probabilistic Generative Models of the Social Annotation Process. CSE (4) 2009: 42-49 - [c25]Chiao-Fang Hsu, Elham Khabiri, James Caverlee:
Ranking Comments on the Social Web. CSE (4) 2009: 90-97 - [c24]Said Kashoob, James Caverlee, Ying Ding:
A Categorical Model for Discovering Latent Structure in Social Annotations. ICWSM 2009 - [c23]Elham Khabiri, Chiao-Fang Hsu, James Caverlee:
Analyzing and Predicting Community Preference of Socially Generated Metadata: A Case Study on Comments in the Digg Community. ICWSM 2009 - [r4]Steve Webb, James Caverlee, Calton Pu:
Granular Computing System Vulnerabilities: Exploring the Dark Side of Social Networking Communities. Encyclopedia of Complexity and Systems Science 2009: 4367-4378 - [r3]James Caverlee:
Data Dictionary. Encyclopedia of Database Systems 2009: 570-571 - [r2]James Caverlee, Prasenjit Mitra, Mary Laarsgard:
Dublin Core. Encyclopedia of Database Systems 2009: 949 - [r1]James Caverlee:
Topic Maps. Encyclopedia of Database Systems 2009: 3124-3126 - 2008
- [c22]Steve Webb, James Caverlee, Calton Pu:
Social Honeypots: Making Friends With A Spammer Near You. CEAS 2008 - [c21]Steve Webb, James Caverlee, Calton Pu:
Predicting web spam with HTTP session information. CIKM 2008: 339-348 - [c20]James Caverlee, Steve Webb:
A Large-Scale Study of MySpace: Observations and Implications for Online Social Networks. ICWSM 2008 - [c19]James Caverlee, Ling Liu, Steve Webb:
Socialtrust: tamper-resilient trust establishment in online communities. JCDL 2008: 104-114 - [c18]Robert Graham, James Caverlee:
Exploring Feedback Models in Interactive Tagging. Web Intelligence 2008: 141-147 - [c17]James Caverlee, Ling Liu, Steve Webb:
Towards robust trust establishment in web-based social networks with socialtrust. WWW 2008: 1163-1164 - [c16]Robert Graham, Brian Eoff, James Caverlee:
Plurality: a context-aware personalized tagging system. WWW 2008: 1165-1166 - 2007
- [j7]James Caverlee, Joonsoo Bae, Qinyi Wu, Ling Liu, Calton Pu, William B. Rouse:
Workflow management for enterprise transformation. Inf. Knowl. Syst. Manag. 6(1-2): 61-80 (2007) - [j6]Daniel Rocco, James Caverlee, Ling Liu, Terence Critchlow:
Service Class Driven Dynamic Data Source Discovery with DynaBot. Int. J. Web Serv. Res. 4(3): 26-48 (2007) - [j5]Joonsoo Bae, Ling Liu, James Caverlee, Liang-Jie Zhang, Hyerim Bae:
Development of Distance Measures for Process Mining, Discovery and Integration. Int. J. Web Serv. Res. 4(4): 1-17 (2007) - [c15]Steve Webb, James Caverlee, Calton Pu:
Characterizing Web Spam Using Content and HTTP Session Analysis. CEAS 2007 - [c14]Bhuvan Bamba, Ling Liu, James Caverlee, Vaibhav Padliya, Mudhakar Srivatsa, Tushar Bansal, Mahesh Palekar, Joseph Patrao, Suiyang Li, Aameek Singh:
DSphere: A Source-Centric Approach to Crawling, Indexing and Searching the World Wide Web. ICDE 2007: 1515-1516 - [c13]James Caverlee, Steve Webb, Ling Liu:
Spam-Resilient Web Rankings via Influence Throttling. IPDPS 2007: 1-10 - [c12]James Caverlee, Ling Liu:
Countering web spam with credibility-based link analysis. PODC 2007: 157-166 - 2006
- [j4]Ling Liu, Jianjun Zhang, Wei Han, Calton Pu, James Caverlee, Sungkeun Park, Terence Critchlow, David Buttler, Matthew Coleman:
XWRAPComposer: A Multi-Page Data Extraction Service. Int. J. Web Serv. Res. 3(2): 33-60 (2006) - [j3]James Caverlee, Ling Liu, Daniel Rocco:
Discovering Interesting Relationships among Deep Web Databases: A Source-Biased Approach. World Wide Web 9(4): 585-622 (2006) - [c11]Joonsoo Bae, James Caverlee, Ling Liu, Hua Yan:
Process Mining by Measuring Process Block Similarity. Business Process Management Workshops 2006: 141-152 - [c10]Steve Webb, James Caverlee, Calton Pu:
Introducing the Webb Spam Corpus: Using Email Spam to Identify Web Spam Automatically. CEAS 2006 - [c9]James Caverlee, Ling Liu, William B. Rouse:
Link-Based Ranking of the Web with Source-Centric Collaboration. CollaborateCom 2006 - [c8]Joonsoo Bae, Ling Liu, James Caverlee, William B. Rouse:
Process Mining, Discovery, and Integration using Distance Measures. ICWS 2006: 479-488 - [c7]James Caverlee, Ling Liu, Joonsoo Bae:
Distributed query sampling: a quality-conscious approach. SIGIR 2006: 340-347 - 2005
- [j2]Ling Liu, David Buttler, James Caverlee, Calton Pu, Jianjun Zhang:
A methodical approach to extracting interesting objects from dynamic web pages. Int. J. Web Grid Serv. 1(2): 165-195 (2005) - [j1]James Caverlee, Ling Liu:
QA-Pagelet: Data Preparation Techniques for Large-Scale Data Analysis of the Deep Web. IEEE Trans. Knowl. Data Eng. 17(9): 1247-1262 (2005) - [c6]Ling Liu, Jianjun Zhang, Wei Han, Calton Pu, James Caverlee, Sungkeun Park, Terence Critchlow, Matthew Coleman, David Buttler:
XWRAPComposer: A Multi-Page Data Extraction Service for Bio-Computing Applications. IEEE SCC 2005: 271-278 - [c5]Daniel Rocco, James Caverlee, Ling Liu, Terence Critchlow:
Domain-Specific Web Service Discovery with Service Class Descriptions. ICWS 2005: 481-488 - [c4]Daniel Rocco, James Caverlee, Ling Liu:
XPACK: A High-Performance WEB Document Encoding. WEBIST 2005: 32-39 - [c3]Daniel Rocco, James Caverlee, Ling Liu, Terence Critchlow:
Exploiting the deep web with DynaBot: matching, probing, and ranking. WWW (Special interest tracks and posters) 2005: 1174-1175 - 2004
- [c2]James Caverlee, Ling Liu, David Buttler:
Probe, Cluster, and Discover: Focused Extraction of QA-Pagelets from the Deep Web. ICDE 2004: 103-114 - [c1]James Caverlee, Ling Liu, Daniel Rocco:
Discovering and ranking web services with BASIL: a personalized approach with biased focus. ICSOC 2004: 153-162
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
[+][–] Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
[+][–] Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-20 23:04 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint