


default search action
Munehiko Nagatani
- > Home > Persons > Munehiko Nagatani
Publications
- 2020
- [j8]Munehiko Nagatani
, Hitoshi Wakita, Hiroshi Yamazaki
, Yoshihiro Ogiso
, Miwa Mutoh, Minoru Ida, Fukutaro Hamaoka
, Masanori Nakamura
, Takayuki Kobayashi
, Yutaka Miyamoto, Hideyuki Nosaka
:
A Beyond-1-Tb/s Coherent Optical Transmitter Front-End Based on 110-GHz-Bandwidth 2: 1 Analog Multiplexer in 250-nm InP DHBT. IEEE J. Solid State Circuits 55(9): 2301-2315 (2020) - [c32]Teruo Jyo, Munehiko Nagatani, Minoru Ida, Miwa Mutoh, Hitoshi Wakita, Naoki Terao, Hideyuki Nosaka
:
An over 220-GHz-Bandwidth Distributed Active Power Combiner in 250-nm InP DHBT. BCICTS 2020: 1-4 - [c31]Fukutaro Hamaoka, Masahito Nakamura, Munehiko Nagatani, Hitoshi Wakita, Takayuki Kobayashi
, Hiroshi Yamazaki, Hideyuki Nosaka
, Yutaka Miyamoto:
Ultra-wideband Optical Receiver Using Electrical Spectrum Decomposition Technique. ECOC 2020: 1-4 - [c30]Teruo Jyo, Munehiko Nagatani, Josuke Ozaki, Mitsuteru Ishikawa, Hideyuki Nosaka
:
12.3 A 48GHz BW 225mW/ch Linear Driver IC with Stacked Current-Reuse Architecture in 65nm CMOS for Beyond-400Gb/s Coherent Optical Transmitters. ISSCC 2020: 212-214 - [c29]Nikolaos-Panteleimon Diamantopoulos, Hiroshi Yamazaki, Suguru Yamaoka, Munehiko Nagatani, Hidetaka Nishi, Hiromasa Tanobe, Ryo Nakao, Takuro Fujii, Koji Takeda, Takaaki Kakitsuka, Hitoshi Wakita, Minoru Ida, Hideyuki Nosaka, Fumio Koyama, Yutaka Miyamoto, Shinji Matsuo:
Net 321.24-Gb/s IMDD Transmission Based on a >100-GHz Bandwidth Directly-Modulated Laser. OFC 2020: 1-3 - [c28]Toshiki Kishi, Munehiko Nagatani, Shigeru Kanazawa, Kota Shikama, Takuro Fujii, Hidetaka Nishi, Hiroshi Yamazaki, Norio Sato, Hideyuki Nosaka, Shinji Matsuo:
A 0.57-mW/Gbps, 2ch × 53-Gbps Low-Power PAM4 Transmitter Front-End Flip-Chip-Bonded 1.3-µm LD-Array-on-Si. OFC 2020: 1-3 - [c27]Takayuki Kobayashi, Masanori Nakamura, Fukutaro Hamaoka, Munehiko Nagatani, Hiroshi Yamazaki, Hideyuki Nosaka, Yutaka Miyamoto:
Long-Haul WDM Transmission with Over-1-Tb/s Channels using Electrically Synthesized High-Symbol-Rate Signals. OFC 2020: 1-3 - [c26]Takayuki Kobayashi, Shimpei Shimizu, Masahito Nakamura, Takeshi Umeki, Takushi Kazama, Ryoichi Kasahara, Fukutaro Hamaoka, Munehiko Nagatani, Hiroshi Yamazaki, Takayuki Mizuno, Hideyuki Nosaka, Yutaka Miyamoto:
Wideband Inline-Amplified WDM Transmission using PPLN-Based OPA with Over-10-THz Bandwidth. OFC 2020: 1-3 - [c25]Masanori Nakamura, Takayuki Kobayashi, Hiroshi Yamazaki, Fukutaro Hamaoka, Munehiko Nagatani, Hitoshi Wakita, Hideyuki Nosaka, Yutaka Miyamoto:
Entropy and Symbol-Rate Optimized 120 GBaud PS-36QAM Signal Transmission over 2400 km at Net-Rate of 800 Gbps/λ. OFC 2020: 1-3 - 2019
- [c23]Munehiko Nagatani, Yutaka Miyamoto, Hideyuki Nosaka
, Hitoshi Wakita, Yoshihiro Ogiso, Hiroshi Yamazaki, Miwa Mutoh, Minoru Ida, Fukutaro Hamaoka, Masanori Nakamura, Takayuki Kobayashi:
A 110-GHz-Bandwidth 2: 1 AMUX-Driver using 250-nm InP DHBTs for Beyond-1-Tb/s/carrier Optical Transmission Systems. BCICTS 2019: 1-4 - [c22]Fukutaro Hamaoka, Masanori Nakamura, Munehiko Nagatani, Takayuki Kobayashi, Asuka Matsushita, Hitoshi Wakita, Hiroshi Yamazaki, Hideyuki Nosaka, Yutaka Miyamoto:
120-GBaud 32QAM Signal Generation using Ultra-Broadband Electrical Bandwidth Doubler. OFC 2019: 1-3 - [c21]Toshiki Kishi, Hitoshi Wakita, Kota Shikama, Munehiko Nagatani, Shigeru Kanazawa, Takuro Fujii, Hidetaka Nishi, Hiroshi Ishikawa, Yuko Kawajiri, Atsushi Aratake, Hideyuki Nosaka, Hiroshi Fukuda, Shinji Matsuo:
A 25-Gbps × 4 ch, Low-Power Compact Wire-Bond-Free 3D-Stacked Transmitter Module with 1.3-μm LD-Array-on-Si for On-Board Optics. OFC 2019: 1-3 - [c20]Takayuki Kobayashi, Masanori Nakamura, Fukutaro Hamaoka, Munehiko Nagatani, Hitoshi Wakita, Hiroshi Yamazaki, Takeshi Umeki, Hideyuki Nosaka, Yutaka Miyamoto:
35-Tb/s C-Band Transmission Over 800 km Employing 1-Tb/s PS-64QAM Signals Enhanced by Complex 8 × 2 MIMO Equalizer. OFC 2019: 1-3 - [c19]Masanori Nakamura, Fukutaro Hamaoka, Munehiko Nagatani, Yoshihiro Ogiso, Hitoshi Wakita, Hiroshi Yamazaki, Takayuki Kobayashi, Minoru Ida, Hideyuki Nosaka, Yutaka Miyamoto:
192-Gbaud Signal Generation using Ultra-Broadband Optical Frontend Module Integrated with Bandwidth Multiplexing Function. OFC 2019: 1-3 - [c18]Masanori Nakamura, Fukutaro Hamaoka, Munehiko Nagatani, Hiroshi Yamazaki, Takayuki Kobayashi, Asuka Matsushita, Seiji Okamoto, Hitoshi Wakita, Hideyuki Nosaka, Yutaka Miyamoto:
1.04 Tbps/Carrier Probabilistically Shaped PDM-64QAM WDM Transmission Over 240 km Based on Electrical Spectrum Synthesis. OFC 2019: 1-3 - [c16]Hiroshi Yamazaki, Munehiko Nagatani, Hitoshi Wakita, Masanori Nakamura, Fukutaro Hamaoka, Takayuki Kobayashi, Yoshihiro Ogiso, Minoru Ida, Toshikazu Hashimoto, Hideyuki Nosaka
, Yutaka Miyamoto:
Digital-Preprocessed Analog-Multiplexed DAC for High-Speed Optical Communications. OECC/PSC 2019: 1-3 - 2018
- [c15]Munehiko Nagatani, Hitoshi Wakita, Teruo Jyo, Miwa Mutoh, Minoru Ida, Sorin P. Voinigescu, Hideyuki Nosaka
:
A 256-Gbps PAM-4 Signal Generator IC in 0.25-µm InP DHBT Technology. BCICTS 2018: 28-31 - [c14]Hiroshi Yamazaki, Munehiko Nagatani, Hitoshi Wakita, Yoshihiro Ogiso, Masanori Nakamura, Minoru Ida, Toshikazu Hashimoto, Hideyuki Nosaka
, Yutaka Miyamoto:
Transmission of 400-Gbps Discrete Multi-Tone Signal Using >100-GHz-Bandwidth Analog Multiplexer and InP Mach-Zehnder Modulator. ECOC 2018: 1-3 - [c13]Toshiki Kishi, Munehiko Nagatani, Shigeru Kanazawa, Shinsuke Nakano, Hiroaki Katsurai, Takuro Fujii, Hidetaka Nishi, Takaaki Kakitsuka, Koichi Hasebe, Kota Shikama, Yuko Kawajiri, Atsushi Aratake, Hideyuki Nosaka, Hiroshi Fukuda, Shinji Matsuo:
A 137-mW, 4 ch × 25-Gbps Low-Power Compact Transmitter Flip-Chip-Bonded 1.3-μm LD-Array-on-Si. OFC 2018: 1-3 - 2017
- [c7]Shinsuke Nakano, Munehiko Nagatani, Kenji Tanaka, Yoshihiro Ogiso, Josuke Ozaki
, Hiroshi Yamazaki, Hideyuki Nosaka
:
A 180-mW Linear MZM Driver in CMOS for Single-Carrier 400-Gb/s Coherent Optical Transmitter. ECOC 2017: 1-3 - [c6]Hiroshi Yamazaki, Munehiko Nagatani, Fukutaro Hamaoka, Shigeru Kanazawa, Hideyuki Nosaka
, Toshikazu Hashimoto, Yutaka Miyamoto:
Ultra-Wideband Digital-to-Analog Conversion Technologies for Tbit/s channel transmission. ECOC 2017: 1-3 - 2016
- [j7]Munehiko Nagatani, Hideyuki Nosaka
:
High-performance compound-semiconductor integrated circuits for advanced digital coherent optical communications systems. IEICE Electron. Express 13(18): 20162003 (2016) - [j6]Hiroyuki Fukuyama, Michihiro Hirata, Kenji Kurishima, Minoru Ida, Masami Tokumitsu, Shogo Yamanaka, Munehiko Nagatani, Toshihiro Itoh, Kimikazu Sano, Hideyuki Nosaka
, Koichi Murata:
An InP-Based 27-GHz-Bandwidth Limiting TIA IC Designed to Suppress Undershoot and Ringing in Its Output Waveform. IEICE Trans. Electron. 99-C(3): 385-396 (2016) - 2015
- [j5]Hitoshi Wakita, Munehiko Nagatani, Shigeru Kanazawa, Toshihiro Itoh, Eiichi Yamada, Hiroyuki Ishii
, Hideyuki Nosaka
:
28 Gbaud 16-QAM modulation with compact driver module for InP MZM. IEICE Electron. Express 12(20): 20150656 (2015) - [c3]Hiroshi Yamazaki, Munehiko Nagatani, Shigeru Kanazawa, Hideyuki Nosaka
, Toshikazu Hashimoto, Akihide Sano, Yutaka Miyamoto:
160-Gbps Nyquist PAM4 transmitter using a digital-preprocessed analog-multiplexed DAC. ECOC 2015: 1-3 - [c2]Akihide Sano, Munehiko Nagatani, Hideyuki Nosaka, Yutaka Miyamoto:
5 × 1-Tb/s PDM-16QAM transmission over 1, 920 km using high-speed InP MUX-DAC integrated module. OFC 2015: 1-3 - 2011
- [j2]Munehiko Nagatani, Hideyuki Nosaka
, Shogo Yamanaka, Kimikazu Sano, Koichi Murata:
Ultrahigh-Speed Low-Power DACs Using InP HBTs for Beyond-100-Gb/s/ch Optical Transmission Systems. IEEE J. Solid State Circuits 46(10): 2215-2225 (2011) - 2010
- [j1]Munehiko Nagatani, Hideyuki Nosaka
, Shogo Yamanaka, Kimikazu Sano, Koichi Murata:
A 24-GS/s 6-bit R-2R Current-Steering DAC in InP HBT Technology. IEICE Trans. Electron. 93-C(8): 1279-1285 (2010)

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-07-22 19:24 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint