


default search action
Su Ruan
Person information
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j68]Ling Huang
, Su Ruan, Pierre Decazes, Thierry Denoeux
:
Deep evidential fusion with uncertainty quantification and reliability learning for multimodal medical image segmentation. Inf. Fusion 113: 102648 (2025) - [j67]Zexin Ji, Beiji Zou, Xiaoyan Kui, Hua Li, Pierre Vera, Su Ruan:
Generation of super-resolution for medical image via a self-prior guided Mamba network with edge-aware constraint. Pattern Recognit. Lett. 187: 93-99 (2025) - [i37]Aghiles Kebaili, Jérôme Lapuyade-Lahorgue, Pierre Vera, Su Ruan:
AMM-Diff: Adaptive Multi-Modality Diffusion Network for Missing Modality Imputation. CoRR abs/2501.12840 (2025) - 2024
- [j66]Fethi Ghazouani
, Pierre Vera, Su Ruan:
Efficient brain tumor segmentation using Swin transformer and enhanced local self-attention. Int. J. Comput. Assist. Radiol. Surg. 19(2): 273-281 (2024) - [j65]Aghiles Kebaili
, Jérôme Lapuyade-Lahorgue, Pierre Vera, Su Ruan
:
Discriminative Hamiltonian variational autoencoder for accurate tumor segmentation in data-scarce regimes. Neurocomputing 606: 128360 (2024) - [j64]Ling Huang
, Su Ruan
, Yucheng Xing
, Mengling Feng
:
A review of uncertainty quantification in medical image analysis: Probabilistic and non-probabilistic methods. Medical Image Anal. 97: 103223 (2024) - [c94]Zexin Ji, Beiji Zou, Xiaoyan Kui, Pierre Vera, Su Ruan:
Self-prior Guided Mamba-UNet Networks for Medical Image Super-Resolution. ICPR (11) 2024: 160-174 - [c93]Thibaud Brochet, Kangfu Han, Jiale Cheng, Fenqiang Zhao, Jérôme Lapuyade-Lahorgue, Su Ruan, Yi-Fang Tu, Sheng-Che Hung, Gang Li:
Neonatal Hypoxic Ischemic Encephalopathy Severity Grading Using Multimodal Swin Transformer. ISBI 2024: 1-4 - [c92]Aghiles Kebaili, Jérôme Lapuyade-Lahorgue, Pierre Vera, Su Ruan:
3D MRI Synthesis with Slice-Based Latent Diffusion Models: Improving Tumor Segmentation Tasks in Data-Scarce Regimes. ISBI 2024: 1-5 - [c91]Zexin Ji, Beiji Zou, Xiaoyan Kui, Pierre Vera, Su Ruan:
Deform-Mamba Network for MRI Super-Resolution. MICCAI (7) 2024: 242-252 - [i36]Aghiles Kebaili, Jérôme Lapuyade-Lahorgue, Pierre Vera, Su Ruan:
3D MRI Synthesis with Slice-Based Latent Diffusion Models: Improving Tumor Segmentation Tasks in Data-Scarce Regimes. CoRR abs/2406.05421 (2024) - [i35]Aghiles Kebaili, Jérôme Lapuyade-Lahorgue, Pierre Vera, Su Ruan:
Discriminative Hamiltonian Variational Autoencoder for Accurate Tumor Segmentation in Data-Scarce Regimes. CoRR abs/2406.11659 (2024) - [i34]Zexin Ji, Beiji Zou, Xiaoyan Kui, Pierre Vera, Su Ruan:
Deform-Mamba Network for MRI Super-Resolution. CoRR abs/2407.05969 (2024) - [i33]Zexin Ji, Beiji Zou, Xiaoyan Kui, Pierre Vera, Su Ruan:
Self-Prior Guided Mamba-UNet Networks for Medical Image Super-Resolution. CoRR abs/2407.05993 (2024) - [i32]Zacharia Mesbah, Léo Mottay, Romain Modzelewski, Pierre Decazes, Sébastien Hapdey, Su Ruan, Sébastien Thureau:
AutoPETIII: The Tracer Frontier. What Frontier? CoRR abs/2410.02807 (2024) - [i31]Ling Huang, Yucheng Xing, Qika Lin, Su Ruan, Mengling Feng:
EsurvFusion: An evidential multimodal survival fusion model based on Gaussian random fuzzy numbers. CoRR abs/2412.01215 (2024) - 2023
- [j63]Tongxue Zhou, Su Ruan, Haigen Hu:
A literature survey of MR-based brain tumor segmentation with missing modalities. Comput. Medical Imaging Graph. 104: 102167 (2023) - [j62]Tongxue Zhou, Alexandra Noeuveglise, Romain Modzelewski, Fethi Ghazouani, Sébastien Thureau, Maxime Fontanilles, Su Ruan:
Prediction of brain tumor recurrence location based on multi-modal fusion and nonlinear correlation learning. Comput. Medical Imaging Graph. 106: 102218 (2023) - [j61]Ling Huang, Su Ruan, Thierry Denoeux:
Semi-supervised multiple evidence fusion for brain tumor segmentation. Neurocomputing 535: 40-52 (2023) - [j60]Ling Huang
, Su Ruan, Thierry Denoeux
:
Application of belief functions to medical image segmentation: A review. Inf. Fusion 91: 737-756 (2023) - [j59]Aghiles Kebaili
, Jérôme Lapuyade-Lahorgue
, Su Ruan
:
Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review. J. Imaging 9(4): 81 (2023) - [c90]Thibaud Brochet, Jérôme Lapuyade-Lahorgue, Hua Li, Pierre Vera, Pierre Decazes, Su Ruan:
Prediction of Head-Neck Cancer Recurrence from Pet/CT Images with Havrda-Charvat Entropy. IPTA 2023: 1-5 - [c89]Lixin Zhang, Yulun Sun, Pierre Decazes, Su Ruan, Yu Guo
, Hui Yu:
One-shot Learning for DLBCL Segmentation in Whole Body PET/CT Images. ISBI 2023: 1-4 - [c88]Aghiles Kebaili
, Jérôme Lapuyade-Lahorgue, Pierre Vera, Su Ruan:
End-to-End Autoencoding Architecture for the Simultaneous Generation of Medical Images and Corresponding Segmentation Masks. MICAD 2023: 32-40 - [i30]Tongxue Zhou, Alexandra Noeuveglise, Romain Modzelewski, Fethi Ghazouani, Sébastien Thureau, Maxime Fontanilles, Su Ruan:
Prediction of brain tumor recurrence location based on multi-modal fusion and nonlinear correlation learning. CoRR abs/2304.13725 (2023) - [i29]Aghiles Kebaili, Jérôme Lapuyade-Lahorgue, Su Ruan:
Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review. CoRR abs/2307.13125 (2023) - [i28]Ling Huang, Su Ruan, Pierre Decazes, Thierry Denoeux:
Deep evidential fusion with uncertainty quantification and contextual discounting for multimodal medical image segmentation. CoRR abs/2309.05919 (2023) - [i27]Ling Huang, Su Ruan, Yucheng Xing, Mengling Feng:
A review of uncertainty quantification in medical image analysis: probabilistic and non-probabilistic methods. CoRR abs/2310.06873 (2023) - [i26]Aghiles Kebaili, Jérôme Lapuyade-Lahorgue, Pierre Vera, Su Ruan:
End-to-end autoencoding architecture for the simultaneous generation of medical images and corresponding segmentation masks. CoRR abs/2311.10472 (2023) - 2022
- [j58]Amine Amyar
, Romain Modzelewski
, Pierre Vera, Vincent Morard, Su Ruan
:
Multi-task multi-scale learning for outcome prediction in 3D PET images. Comput. Biol. Medicine 151(Part): 106208 (2022) - [j57]Zhengshan Huang, Yu Guo
, Ning Zhang, Xian Huang, Pierre Decazes, Stéphanie Becker, Su Ruan
:
Multi-scale feature similarity-based weakly supervised lymphoma segmentation in PET/CT images. Comput. Biol. Medicine 151(Part): 106230 (2022) - [j56]Thibaud Brochet, Jérôme Lapuyade-Lahorgue, Pierre Vera, Su Ruan
:
A Quantitative Comparison between Shannon and Tsallis-Havrda-Charvat Entropies Applied to Cancer Outcome Prediction. Entropy 24(4): 436 (2022) - [j55]Thibaud Brochet, Jérôme Lapuyade-Lahorgue, Alexandre Huat, Sébastien Thureau
, David Pasquier
, Isabelle Gardin, Romain Modzelewski, David Gibon, Juliette Thariat, Vincent Grégoire, Pierre Vera, Su Ruan
:
Correction: Brochet et al. A Quantitative Comparison between Shannon and Tsallis-Havrda-Charvat Entropies Applied to Cancer Outcome Prediction. Entropy 2022, 24, 436. Entropy 24(5): 685 (2022) - [j54]Ling Huang
, Su Ruan, Pierre Decazes, Thierry Denoeux
:
Lymphoma segmentation from 3D PET-CT images using a deep evidential network. Int. J. Approx. Reason. 149: 39-60 (2022) - [j53]Amine Amyar
, Romain Modzelewski, Pierre Vera, Vincent Morard
, Su Ruan
:
Weakly Supervised Tumor Detection in PET Using Class Response for Treatment Outcome Prediction. J. Imaging 8(5): 130 (2022) - [j52]Tongxue Zhou, Su Ruan, Pierre Vera, Stéphane Canu:
A Tri-Attention fusion guided multi-modal segmentation network. Pattern Recognit. 124: 108417 (2022) - [j51]Haigen Hu, Leizhao Shen, Qiu Guan, Xiaoxin Li, Qianwei Zhou, Su Ruan:
Deep co-supervision and attention fusion strategy for automatic COVID-19 lung infection segmentation on CT images. Pattern Recognit. 124: 108452 (2022) - [j50]Tongxue Zhou
, Pierre Vera, Stéphane Canu, Su Ruan
:
Missing Data Imputation via Conditional Generator and Correlation Learning for Multimodal Brain Tumor Segmentation. Pattern Recognit. Lett. 158: 125-132 (2022) - [c87]Tongxue Zhou, Alexandra Noeuveglise, Fethi Ghazouani, Romain Modzelewski, Sébastien Thureau, Maxime Fontanilles, Su Ruan:
Prediction of Brain Tumor Recurrence Location Based on Kullback-Leibler Divergence and Nonlinear Correlation Learning. ICPR 2022: 4414-4419 - [c86]Thibaud Brochet, Jérôme Lapuyade-Lahorgue, Alexandre Huat, Sébastien Thureau, David Pasquier, Isabelle Gardin, Romain Modzelewski, David Gibon, Juliette Thariat, Vincent Grégoire, Pierre Vera, Su Ruan:
Deep Learning Based Radiomics to Predict Treatment Response Using Multi-datasets. MICAD 2022: 431-440 - [c85]Vincent Andrearczyk, Valentin Oreiller, Moamen Abobakr
, Azadeh Akhavanallaf, Panagiotis Balermpas
, Sarah Boughdad, Leo Capriotti, Joël Castelli, Catherine Cheze Le Rest, Pierre Decazes, Ricardo Correia, Dina El-Habashy, Hesham Elhalawani
, Clifton D. Fuller, Mario Jreige, Yomna Khamis, Agustina La Greca Saint-Esteven, Abdallah Sherif Radwan Mohamed
, Mohamed A. Naser
, John O. Prior
, Su Ruan, Stephanie Tanadini-Lang
, Olena Tankyevych, Yazdan Salimi, Martin Vallières, Pierre Vera, Dimitris Visvikis, Kareem A. Wahid
, Habib Zaidi, Mathieu Hatt
, Adrien Depeursinge
:
Overview of the HECKTOR Challenge at MICCAI 2022: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT. HECKTOR@MICCAI 2022: 1-30 - [c84]Ling Huang
, Thierry Denoeux
, Pierre Vera, Su Ruan:
Evidence Fusion with Contextual Discounting for Multi-modality Medical Image Segmentation. MICCAI (5) 2022: 401-411 - [i25]Ling Huang, Su Ruan, Pierre Decazes, Thierry Denoeux:
Lymphoma segmentation from 3D PET-CT images using a deep evidential network. CoRR abs/2201.13078 (2022) - [i24]Amine Amyar
, Romain Modzelewski, Pierre Vera, Vincent Morard, Su Ruan:
Multi-Task Multi-Scale Learning For Outcome Prediction in 3D PET Images. CoRR abs/2203.00641 (2022) - [i23]Thibaud Brochet, Jérôme Lapuyade-Lahorgue, Pierre Vera, Su Ruan:
A Quantitative Comparison between Shannon and Tsallis Havrda Charvat Entropies Applied to Cancer Outcome Prediction. CoRR abs/2203.11943 (2022) - [i22]Ling Huang, Su Ruan:
Application of belief functions to medical image segmentation: A review. CoRR abs/2205.01733 (2022) - [i21]Zong Fan, Xiaohui Zhang
, Jacob A. Gasienica, Jennifer Potts, Su Ruan, Wade Thorstad, Hiram Gay, Xiaowei Wang, Hua Li:
A novel adversarial learning strategy for medical image classification. CoRR abs/2206.11501 (2022) - [i20]Ling Huang, Thierry Denoeux
, Pierre Vera, Su Ruan:
Evidence fusion with contextual discounting for multi-modality medical image segmentation. CoRR abs/2206.11739 (2022) - 2021
- [j49]Shenghua He, Chunfeng Lian, Wade Thorstad, Hiram Gay, Yujie Zhao, Su Ruan, Xiaowei Wang
, Hua Li
:
A novel systematic approach for cancer treatment prognosis and its applications in oropharyngeal cancer with microRNA biomarkers. Bioinform. 37(19): 3106-3114 (2021) - [j48]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
Feature-enhanced generation and multi-modality fusion based deep neural network for brain tumor segmentation with missing MR modalities. Neurocomputing 466: 102-112 (2021) - [j47]Tongxue Zhou
, Stéphane Canu, Su Ruan
:
Automatic COVID-19 CT segmentation using U-Net integrated spatial and channel attention mechanism. Int. J. Imaging Syst. Technol. 31(1): 16-27 (2021) - [j46]Tongxue Zhou
, Stéphane Canu
, Pierre Vera, Su Ruan
:
Latent Correlation Representation Learning for Brain Tumor Segmentation With Missing MRI Modalities. IEEE Trans. Image Process. 30: 4263-4274 (2021) - [c83]Ling Huang
, Su Ruan, Pierre Decazes, Thierry Denoeux
:
Evidential Segmentation of 3D PET/CT Images. BELIEF 2021: 159-167 - [c82]Ling Huang
, Su Ruan, Thierry Denoeux
:
Covid-19 Classification with Deep Neural Network and Belief Functions. BIBE 2021: 3:1-3:4 - [c81]Ling Huang
, Su Ruan, Thierry Denoeux
:
Belief Function-Based Semi-Supervised Learning For Brain Tumor Segmentation. ISBI 2021: 160-164 - [c80]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
A Dual Supervision Guided Attentional Network for Multimodal MR Brain Tumor Segmentation. MICAD 2021: 3-11 - [c79]Ling Huang
, Thierry Denoeux
, David Tonnelet, Pierre Decazes, Su Ruan:
Deep PET/CT Fusion with Dempster-Shafer Theory for Lymphoma Segmentation. MLMI@MICCAI 2021: 30-39 - [c78]Zong Fan, Shenghua He, Su Ruan, Xiaowei Wang, Hua Li:
Deep learning-based multi-class COVID-19 classification with x-ray images. Image-Guided Procedures 2021 - [i19]Ling Huang
, Su Ruan, Thierry Denoeux:
Covid-19 classification with deep neural network and belief functions. CoRR abs/2101.06958 (2021) - [i18]Ling Huang
, Su Ruan, Thierry Denoeux:
Belief function-based semi-supervised learning for brain tumor segmentation. CoRR abs/2102.00097 (2021) - [i17]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
3D Medical Multi-modal Segmentation Network Guided by Multi-source Correlation Constraint. CoRR abs/2102.03111 (2021) - [i16]Thibaud Brochet, Jérôme Lapuyade-Lahorgue, Sébastien Bougleux, Mathieu Salaün, Su Ruan:
Deep learning using Havrda-Charvat entropy for classification of pulmonary endomicroscopy. CoRR abs/2104.05450 (2021) - [i15]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
Latent Correlation Representation Learning for Brain Tumor Segmentation with Missing MRI Modalities. CoRR abs/2104.06231 (2021) - [i14]Ling Huang
, Su Ruan, Pierre Decazes, Thierry Denoeux:
Evidential segmentation of 3D PET/CT images. CoRR abs/2104.13293 (2021) - [i13]Ling Huang
, Thierry Denoeux, David Tonnelet, Pierre Decazes, Su Ruan:
Deep PET/CT fusion with Dempster-Shafer theory for lymphoma segmentation. CoRR abs/2108.05422 (2021) - [i12]Fereshteh Yousefirizi, Pierre Decazes, Amine Amyar, Su Ruan, Babak Saboury, Arman Rahmim:
AI-Based Detection, Classification and Prediction/Prognosis in Medical Imaging: Towards Radiophenomics. CoRR abs/2110.10332 (2021) - [i11]Tongxue Zhou, Su Ruan, Pierre Vera, Stéphane Canu:
A Tri-attention Fusion Guided Multi-modal Segmentation Network. CoRR abs/2111.01623 (2021) - [i10]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
Feature-enhanced Generation and Multi-modality Fusion based Deep Neural Network for Brain Tumor Segmentation with Missing MR Modalities. CoRR abs/2111.04735 (2021) - [i9]Haigen Hu, Leizhao Shen, Qiu Guan, Xiaoxin Li, Qianwei Zhou, Su Ruan:
Deep Co-supervision and Attention Fusion Strategy for Automatic COVID-19 Lung Infection Segmentation on CT Images. CoRR abs/2112.10368 (2021) - 2020
- [j45]Amine Amyar
, Romain Modzelewski
, Hua Li, Su Ruan:
Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation. Comput. Biol. Medicine 126: 104037 (2020) - [j44]Tongxue Zhou, Stéphane Canu, Su Ruan:
Fusion based on attention mechanism and context constraint for multi-modal brain tumor segmentation. Comput. Medical Imaging Graph. 86: 101811 (2020) - [j43]Yuan Liu
, Stéphane Canu, Paul Honeine
, Su Ruan
:
Incoherent dictionary learning via mixed-integer programming and hybrid augmented Lagrangian. Digit. Signal Process. 101: 102703 (2020) - [j42]Dong Nie
, Roger Trullo, Jun Lian
, Li Wang
, Caroline Petitjean
, Su Ruan
, Qian Wang, Dinggang Shen
:
Corrections to "Medical Image Synthesis With Deep Convolutional Adversarial Networks". IEEE Trans. Biomed. Eng. 67(9): 2706 (2020) - [c77]Amine Amyar
, Su Ruan, Pierre Vera, Pierre Decazes, Romain Modzelewski:
RADIOGAN: Deep Convolutional Conditional Generative Adversarial Network to Generate PET Images. ICBRA 2020: 28-33 - [c76]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
3D Medical Multi-modal Segmentation Network Guided by Multi-source Correlation Constraint. ICPR 2020: 10243-10250 - [c75]Thibaud Brochet, Jérôme Lapuyade-Lahorgue, Sébastien Bougleux
, Mathieu Salaün, Su Ruan:
Deep learning based automatic detection of uninformative images in pulmonary optical endomicroscopy. IPTA 2020: 1-5 - [c74]Zoé Lambert, Caroline Petitjean, Bernard Dubray, Su Ruan:
SegTHOR: Segmentation of Thoracic Organs at Risk in CT images. IPTA 2020: 1-6 - [c73]Yu Guo
, Pierre Decazes, Stéphanie Becker, Hua Li, Su Ruan:
Deep Disentangled Representation Learning of Pet Images for Lymphoma Outcome Prediction. ISBI 2020: 1-4 - [c72]Tongxue Zhou
, Su Ruan, Yu Guo
, Stéphane Canu:
A Multi-Modality Fusion Network Based on Attention Mechanism for Brain Tumor Segmentation. ISBI 2020: 377-380 - [c71]Haigen Hu, Leizhao Shen, Tongxue Zhou
, Pierre Decazes, Pierre Vera, Su Ruan:
Lymphoma Segmentation in PET Images Based on Multi-view and Conv3D Fusion Strategy. ISBI 2020: 1197-1200 - [c70]Tongxue Zhou
, Stéphane Canu, Pierre Vera, Su Ruan:
Brain Tumor Segmentation with Missing Modalities via Latent Multi-source Correlation Representation. MICCAI (4) 2020: 533-541 - [i8]Amine Amyar, Romain Modzelewski, Pierre Vera, Vincent Morard, Su Ruan:
Weakly Supervised PET Tumor Detection Using Class Response. CoRR abs/2003.08337 (2020) - [i7]Amine Amyar, Su Ruan, Pierre Vera, Pierre Decazes, Romain Modzelewski:
RADIOGAN: Deep Convolutional Conditional Generative adversarial Network To Generate PET Images. CoRR abs/2003.08663 (2020) - [i6]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
Brain tumor segmentation with missing modalities via latent multi-source correlation representation. CoRR abs/2003.08870 (2020) - [i5]Tongxue Zhou, Stéphane Canu, Su Ruan:
An automatic COVID-19 CT segmentation network using spatial and channel attention mechanism. CoRR abs/2004.06673 (2020) - [i4]Tongxue Zhou, Su Ruan, Stéphane Canu:
A review: Deep learning for medical image segmentation using multi-modality fusion. CoRR abs/2004.10664 (2020)
2010 – 2019
- 2019
- [j41]Tongxue Zhou
, Su Ruan, Stéphane Canu:
A review: Deep learning for medical image segmentation using multi-modality fusion. Array 3-4: 100004 (2019) - [j40]Haigen Hu
, Pierre Decazes, Pierre Vera, Hua Li, Su Ruan
:
Detection and segmentation of lymphomas in 3D PET images via clustering with entropy-based optimization strategy. Int. J. Comput. Assist. Radiol. Surg. 14(10): 1715-1724 (2019) - [j39]Fan Wang, Chunfeng Lian, Pierre Vera, Su Ruan
:
Adaptive kernelized evidential clustering for automatic 3D tumor segmentation in FDG-PET images. Multim. Syst. 25(2): 127-133 (2019) - [j38]Yuan Liu, Stéphane Canu
, Paul Honeine
, Su Ruan
:
Mixed Integer Programming For Sparse Coding: Application to Image Denoising. IEEE Trans. Computational Imaging 5(3): 354-365 (2019) - [j37]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
, Hua Li, Pierre Vera:
Joint Tumor Segmentation in PET-CT Images Using Co-Clustering and Fusion Based on Belief Functions. IEEE Trans. Image Process. 28(2): 755-766 (2019) - [c69]Haigen Hu, Chao Du, Qiu Guan, Qianwei Zhou, Pierre Vera, Su Ruan:
A Background-based Data Enhancement Method for Lymphoma Segmentation in 3D PET Images. BIBM 2019: 1194-1196 - [c68]Haigen Hu, Chao Du, Pierre Decazes, Pierre Vera, Su Ruan:
A Prior Knowledge Intergrated Scheme for Detection and Segmentation of Lymphomas in 3D PET Images based on DBSCAN and GAs. BIBM 2019: 2413-2420 - [c67]Haigen Hu, Pierre Decazes, Jérôme Lapuyade-Lahorgue, Pierre Vera, Su Ruan
:
Gaussian-based Spatial Hybrid Distances for Detection and Segmentation of Lymphoid Lesions in 3D PET Images. CISP-BMEI 2019: 1-5 - [c66]Tongxue Zhou
, Su Ruan
, Haigen Hu, Stéphane Canu:
Deep Learning Model Integrating Dilated Convolution and Deep Supervision for Brain Tumor Segmentation in Multi-parametric MRI. MLMI@MICCAI 2019: 574-582 - [e1]Caroline Petitjean, Su Ruan, Zoé Lambert, Bernard Dubray:
Proceedings of the 2019 Challenge on Segmentation of THoracic Organs at Risk in CT Images, SegTHOR@ISBI 2019, April 8, 2019. CEUR Workshop Proceedings 2349, CEUR-WS.org 2019 [contents] - [i3]Zoé Lambert, Caroline Petitjean, Bernard Dubray, Su Ruan:
SegTHOR: Segmentation of Thoracic Organs at Risk in CT images. CoRR abs/1912.05950 (2019) - 2018
- [j36]Yuntao Yu, Pierre Decazes
, Jérôme Lapuyade-Lahorgue, Isabelle Gardin
, Pierre Vera, Su Ruan
:
Semi-automatic lymphoma detection and segmentation using fully conditional random fields. Comput. Medical Imaging Graph. 70: 1-7 (2018) - [j35]Jian Wu, Thomas R. Mazur, Su Ruan
, Chunfeng Lian, Nalini Daniel, Hilary Lashmett, Laura Ochoa, Imran Zoberi, Mark A. Anastasio, H. Michael Gach, Sasa Mutic, Maria Thomas, Hua Li:
A deep Boltzmann machine-driven level set method for heart motion tracking using cine MRI images. Medical Image Anal. 47: 68-80 (2018) - [j34]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
, Hua Li, Pierre Vera:
Spatial Evidential Clustering With Adaptive Distance Metric for Tumor Segmentation in FDG-PET Images. IEEE Trans. Biomed. Eng. 65(1): 21-30 (2018) - [j33]Dong Nie
, Roger Trullo, Jun Lian, Li Wang
, Caroline Petitjean, Su Ruan
, Qian Wang, Dinggang Shen
:
Medical Image Synthesis with Deep Convolutional Adversarial Networks. IEEE Trans. Biomed. Eng. 65(12): 2720-2730 (2018) - [c65]Naouel Boughattas, Maxime Berar, Kamel Hamrouni, Su Ruan
:
Feature selection and classification using multiple kernel learning for brain tumor segmentation. ATSIP 2018: 1-5 - [c64]Jierui Zha, Pierre Decazes, Jérôme Lapuyade, Abderrahim Elmoataz, Su Ruan
:
3D lymphoma detection in PET-CT images with supervoxel and CRFs. IPTA 2018: 1-5 - [c63]Chunfeng Lian, Hua Li, Pierre Vera, Su Ruan
:
Unsupervised co-segmentation of tumor in PET-CT images using belief functions based fusion. ISBI 2018: 220-223 - [c62]Jian Wu, Su Ruan
, Chunfeng Lian, Sasa Mutic, Mark A. Anastasio, Hua Li:
Active learning with noise modeling for medical image annotation. ISBI 2018: 298-301 - [c61]Jian Wu, Su Ruan
, Thomas R. Mazur, Nalini Daniel, Hilary Lashmett, Laura Ochoa, Imran Zoberi, Chunfeng Lian, H. Michael Gach, Sasa Mutic, Maria Thomas, Mark A. Anastasio, Hua Li:
Heart motion tracking on cine MRI based on a deep Boltzmann machine-driven level set method. ISBI 2018: 1153-1156 - [c60]Yuan Liu, Stéphane Canu
, Paul Honeine
, Su Ruan
:
K-SVD with a Real ℓ0 Optimization: Application to Image Denoising. MLSP 2018: 1-6 - 2017
- [j32]Paul Desbordes, Su Ruan
, Romain Modzelewski, Vauclin Sébastien, Pierre Vera, Isabelle Gardin
:
Feature selection for outcome prediction in oesophageal cancer using genetic algorithm and random forest classifier. Comput. Medical Imaging Graph. 60: 42-49 (2017) - [j31]Jérôme Lapuyade-Lahorgue, Jing-Hao Xue
, Su Ruan
:
Segmenting Multi-Source Images Using Hidden Markov Fields With Copula-Based Multivariate Statistical Distributions. IEEE Trans. Image Process. 26(7): 3187-3195 (2017) - [c59]Chunfeng Lian, Su Ruan
, Thierry Denoeux
, Yu Guo
, Pierre Vera:
Accurate tumor segmentation in FDG-PET images with guidance of complementary CT images. ICIP 2017: 4447-4451 - [c58]Roger Trullo, Caroline Petitjean, Dong Nie, Dinggang Shen, Su Ruan
:
Fully automated esophagus segmentation with a hierarchical deep learning approach. ICSIPA 2017: 503-506 - [c57]Roger Trullo, Caroline Petitjean, Su Ruan
, Bernard Dubray, Dong Nie, Dinggang Shen:
Segmentation of Organs at Risk in thoracic CT images using a SharpMask architecture and Conditional Random Fields. ISBI 2017: 1003-1006 - [c56]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
, Hua Li, Pierre Vera:
Tumor delineation in FDG-PET images using a new evidential clustering algorithm with spatial regularization and adaptive distance metric. ISBI 2017: 1177-1180 - [c55]Yuntao Yu, Pierre Decazes, Isabelle Gardin, Pierre Vera, Su Ruan
:
3D Lymphoma Segmentation in PET/CT Images Based on Fully Connected CRFs. CMMI/RAMBO/SWITCH@MICCAI 2017: 3-12 - [c54]Roger Trullo, Caroline Petitjean, Dong Nie, Dinggang Shen, Su Ruan
:
Joint Segmentation of Multiple Thoracic Organs in CT Images with Two Collaborative Deep Architectures. DLMIA/ML-CDS@MICCAI 2017: 21-29 - [c53]Dong Nie, Roger Trullo, Jun Lian, Caroline Petitjean, Su Ruan
, Qian Wang
, Dinggang Shen:
Medical Image Synthesis with Context-Aware Generative Adversarial Networks. MICCAI (3) 2017: 417-425 - [i2]Yuan Liu, Stéphane Canu, Paul Honeine, Su Ruan:
Une véritable approche $\ell_0$ pour l'apprentissage de dictionnaire. CoRR abs/1709.05937 (2017) - 2016
- [j30]Damien Grosgeorge, Caroline Petitjean, Su Ruan
:
Multilabel statistical shape prior for image segmentation. IET Image Process. 10(10): 710-716 (2016) - [j29]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
, Fabrice Jardin, Pierre Vera:
Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction. Medical Image Anal. 32: 257-268 (2016) - [j28]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
:
Dissimilarity Metric Learning in the Belief Function Framework. IEEE Trans. Fuzzy Syst. 24(6): 1555-1564 (2016) - [c52]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
:
Joint Feature Transformation and Selection Based on Dempster-Shafer Theory. IPMU (1) 2016: 253-261 - [c51]Kevin Gosse, Stéphanie Jehan-Besson
, François Lecellier
, Su Ruan
:
Comparison of 2D and 3D region-based deformable models and random walker methods for PET segmentation. IPTA 2016: 1-7 - [c50]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
, Hua Li, Pierre Vera:
Robust Cancer Treatment Outcome Prediction Dealing with Small-Sized and Imbalanced Data from FDG-PET Images. MICCAI (2) 2016: 61-69 - [i1]Dong Nie, Roger Trullo, Caroline Petitjean, Su Ruan, Dinggang Shen:
Medical Image Synthesis with Context-Aware Generative Adversarial Networks. CoRR abs/1612.05362 (2016) - 2015
- [j27]Hongmei Mi, Caroline Petitjean
, Bernard Dubray, Pierre Vera, Su Ruan
:
Robust feature selection to predict tumor treatment outcome. Artif. Intell. Medicine 64(3): 195-204 (2015) - [j26]Caroline Petitjean
, Maria A. Zuluaga
, Wenjia Bai
, Jean-Nicolas Dacher, Damien Grosgeorge, Jérôme Caudron, Su Ruan
, Ismail Ben Ayed, Manuel Jorge Cardoso
, Hsiang-Chou Chen, Daniel Jimenez-Carretero
, María J. Ledesma-Carbayo
, Christos Davatzikos
, Jimit Doshi, Güray Erus, Oskar M. O. Maier, Cyrus M. S. Nambakhsh, Yangming Ou
, Sébastien Ourselin
, Chun-Wei Peng, Nicholas S. Peters, Terry M. Peters, Martin Rajchl, Daniel Rueckert, Andrés Santos
, Wenzhe Shi, Ching-Wei Wang
, Haiyan Wang, Jing Yuan:
Right ventricle segmentation from cardiac MRI: A collation study. Medical Image Anal. 19(1): 187-202 (2015) - [j25]Hongmei Mi, Caroline Petitjean
, Pierre Vera, Su Ruan
:
Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images. Medical Image Anal. 23(1): 84-91 (2015) - [j24]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
:
An evidential classifier based on feature selection and two-step classification strategy. Pattern Recognit. 48(7): 2318-2327 (2015) - [c49]Saïd Ettaïeb, Kamel Hamrouni, Su Ruan
:
Modelling and Tracking of Deformable Structures in Medical Images. ICIG (2) 2015: 475-490 - [c48]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
, Pierre Vera:
Outcome prediction in tumour therapy based on Dempster-Shafer theory. ISBI 2015: 63-66 - [c47]Maxime Guinin, Su Ruan
, Lamyaa Nkhali, Bernard Dubray, Laurent Massoptier, Isabelle Gardin:
Segmentation of pelvic organs at risk using superpixels and graph diffusion in prostate radiotherapy. ISBI 2015: 1564-1567 - [c46]Chunfeng Lian
, Su Ruan
, Thierry Denoeux
, Hua Li, Pierre Vera:
Dempster-Shafer Theory Based Feature Selection with Sparse Constraint for Outcome Prediction in Cancer Therapy. MICCAI (3) 2015: 695-702 - 2014
- [j23]Ines Ketata, Lamia Sallemi, Frédéric Morain-Nicolier, Mohamed Ben Slima, Alexandre Cochet, Khalil Chtourou, Su Ruan
, Ahmed Ben Hamida:
Factor analysis-based approach for early uptake automatic quantification of breast cancer by 18F-FDG PET images sequence. Biomed. Signal Process. Control. 9: 19-31 (2014) - [j22]D. P. Onoma, Su Ruan
, Sébastien Thureau, Lamyaa Nkhali, Romain Modzelewski, G. A. Monnehan, Pierre Vera, Isabelle Gardin
:
Segmentation of heterogeneous or small FDG PET positive tissue based on a 3D-locally adaptive random walk algorithm. Comput. Medical Imaging Graph. 38(8): 753-763 (2014) - [j21]Benoît Lelandais
, Isabelle Gardin, Laurent Mouchard, Pierre Vera, Su Ruan
:
Dealing with uncertainty and imprecision in image segmentation using belief function theory. Int. J. Approx. Reason. 55(1): 376-387 (2014) - [j20]Pierre Buyssens, Isabelle Gardin, Su Ruan
, Abderrahim Elmoataz:
Eikonal-based region growing for efficient clustering. Image Vis. Comput. 32(12): 1045-1054 (2014) - [j19]Benoît Lelandais
, Su Ruan
, Thierry Denoeux
, Pierre Vera, Isabelle Gardin
:
Fusion of multi-tracer PET images for dose painting. Medical Image Anal. 18(7): 1247-1259 (2014) - [j18]Hongmei Mi, Caroline Petitjean
, Bernard Dubray, Pierre Vera, Su Ruan
:
Prediction of Lung Tumor Evolution During Radiotherapy in Individual Patients With PET. IEEE Trans. Medical Imaging 33(4): 995-1003 (2014) - [c45]Ines Ketata, Lamia Sallemi, Mohamed Ben Slima, Ahmed Ben Hamida, Frédéric Morain-Nicolier, Su Ruan
, Alexandre Cochet, Khalil Chtourou:
Advanced approach for PET breast cancer segmentation based on FAMIS methodology. ATSIP 2014: 219-224 - [c44]Naouel Boughattas, Maxime Berar, Kamel Hamrouni, Su Ruan
:
Brain tumor segmentation from multiple MRI sequences using multiple kernel learning. ICIP 2014: 1887-1891 - [c43]Saïd Ettaïeb, Kamel Hamrouni, Su Ruan
:
Myocardium segmentation using a priori knowledge of shape and a spatial relation. ICMCS 2014: 380-384 - [c42]Paul Desbordes, Caroline Petitjean
, Su Ruan
:
3D automated lymphoma segmentation in PET images based on cellular automata. IPTA 2014: 23-28 - [c41]Damien Grosgeorge, Caroline Petitjean, Su Ruan:
Joint segmentation of right and left cardiac ventricles using multi-label graph cut. ISBI 2014: 429-432 - [c40]Yu Guo
, Su Ruan, Paul Walker, Yuanming Feng:
Prostate cancer segmentation from multiparametric MRI based on fuzzy Bayesian model. ISBI 2014: 866-869 - [c39]Hongmei Mi, Caroline Petitjean
, Bernard Dubray
, Pierre Vera, Su Ruan:
Automatic lung tumor segmentation on PET images based on random walks and tumor growth model. ISBI 2014: 1385-1388 - [c38]Saïd Ettaïeb, Kamel Hamrouni, Su Ruan:
Statistical Models of Shape and Spatial Relation-application to Hippocampus Segmentation. VISAPP (1) 2014: 448-455 - 2013
- [j17]Xiangbo Lin
, Su Ruan
, Tianshuang Qiu, Dongmei Guo:
Nonrigid Medical Image Registration Based on Mesh Deformation Constraints. Comput. Math. Methods Medicine 2013: 373082:1-373082:8 (2013) - [j16]Damien Grosgeorge
, Caroline Petitjean
, Bernard Dubray, Su Ruan
:
Esophagus Segmentation from 3D CT Data Using Skeleton Prior-Based Graph Cut. Comput. Math. Methods Medicine 2013: 547897:1-547897:6 (2013) - [j15]Damien Grosgeorge, Caroline Petitjean
, Jean-Nicolas Dacher, Su Ruan
:
Graph cut segmentation with a statistical shape model in cardiac MRI. Comput. Vis. Image Underst. 117(9): 1027-1035 (2013) - [c37]Hongmei Mi, Caroline Petitjean
, Su Ruan
, Pierre Vera, Bernard Dubray
:
Predicting lung tumor evolution during radiotherapy from PET images using a patient specific model. ISBI 2013: 1404-1407 - [p1]Yu Guo
, Su Ruan
:
Signal Separation with A Priori Knowledge Using Sparse Representation. Advances in Heuristic Signal Processing and Applications 2013: 315-332 - 2012
- [c36]Benoît Lelandais
, Isabelle Gardin, Laurent Mouchard, Pierre Vera, Su Ruan
:
Using Belief Function Theory to Deal with Uncertainties and Imprecisions in Image Processing. Belief Functions 2012: 197-204 - [c35]Xiangbo Lin, Su Ruan
:
Analyzing the intrinsic relations between the diffusion and fluid deformable registration methods. BMEI 2012: 200-203 - [c34]D. P. Onoma, Su Ruan
, Isabelle Gardin, G. A. Monnehan, Romain Modzelewski, Pierre Vera:
3D random walk based segmentation for lung tumor delineation in PET imaging. ISBI 2012: 1260-1263 - [c33]Benoît Lelandais
, Isabelle Gardin, Laurent Mouchard, Pierre Vera, Su Ruan:
Segmentation of Biological Target Volumes on Multi-tracer PET Images Based on Information Fusion for Achieving Dose Painting in Radiotherapy. MICCAI (1) 2012: 545-552 - 2011
- [j14]Yu Guo
, Su Ruan
, Jérôme Landré
, Paul Walker:
A priori knowledge based frequency-domain quantification of prostate Magnetic Resonance Spectroscopy. Biomed. Signal Process. Control. 6(1): 13-20 (2011) - [j13]Nan Zhang, Su Ruan
, Stéphane Lebonvallet, Qingmin Liao, Yuemin Zhu:
Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation. Comput. Vis. Image Underst. 115(2): 256-269 (2011) - [c32]Su Ruan
, Nan Zhang, Qingmin Liao, Yuemin Zhu:
Image fusion for following-up brain tumor evolution. ISBI 2011: 281-284 - 2010
- [j12]Xiangbo Lin, Tianshuang Qiu, Frédéric Morain-Nicolier, Su Ruan
:
A topology preserving non-rigid registration algorithm with integration shape knowledge to segment brain subcortical structures from MRI images. Pattern Recognit. 43(7): 2418-2427 (2010) - [j11]Su Ruan, Stéphane Lebonvallet:
Brain Magnetic Resonance Image. Stud. Inform. Univ. 8(4): 128-149 (2010) - [j10]Yu Guo
, Su Ruan
, Jérôme Landré
, Jean-Marc Constans
:
A Sparse Representation Method for Magnetic Resonance Spectroscopy Quantification. IEEE Trans. Biomed. Eng. 57(7): 1620-1627 (2010) - [c31]Xiaobing Li, Tianshuang Qiu, Stéphane Lebonvallet, Su Ruan
:
An automatic method of brain tumor segmentation from MRI volume based on the symmetry of brain and level set method. ICDIP 2010: 754618 - [c30]Su Ruan
, Nan Zhang, Stéphane Lebonvallet, Qingmin Liao, Yue Min Zhu:
Fusion and classification of multi-source images by SVM with selected features in a kernel space. IPTA 2010: 17-20 - [c29]Victor Chen, Su Ruan
:
Graph cut segmentation technique for MRI brain tumor extraction. IPTA 2010: 284-287 - [c28]Frédéric Morain-Nicolier, Jérôme Landré
, Su Ruan
:
Binary pattern matching from a local dissimilarity measure. IPTA 2010: 417-420
2000 – 2009
- 2009
- [c27]Yu Guo, Su Ruan, Gilles Millon, Jean-Marc Constans:
Spectrum separation of Magnetic Resonance Spectroscopy based on sparse representation. ICASSP 2009: 453-456 - [c26]Jérôme Landré
, Frédéric Morain-Nicolier, Su Ruan
:
Ornamental Letters Image Classification Using Local Dissimilarity Maps. ICDAR 2009: 186-190 - [c25]Nan Zhang, Su Ruan
, Stéphane Lebonvallet, Qingmin Liao, Yuemin Zhu
:
Multi-kernel SVM based classification for brain tumor segmentation of MRI multi-sequence. ICIP 2009: 3373-3376 - 2008
- [j9]Étienne Baudrier
, Frédéric Nicolier, Gilles Millon, Su Ruan
:
Binary-image comparison with local-dissimilarity quantification. Pattern Recognit. 41(5): 1461-1478 (2008) - [c24]Xiangbo Lin, Tianshuang Qiu, Su Ruan
, Frédéric Morain-Nicolier:
Segmentation of Brain Internal Structures Automatically Using Non-rigid Registration with Simultaneous Intensity and Geometric Match. ISDA (1) 2008: 525-530 - 2007
- [j8]Weibei Dou
, Yuan Ren, Qian Wu, Su Ruan
, Yanping Chen, Daniel Bloyet, Jean-Marc Constans:
Fuzzy kappa for the agreement measure of fuzzy classifications. Neurocomputing 70(4-6): 726-734 (2007) - [j7]Weibei Dou
, Su Ruan
, Yanping Chen, Daniel Bloyet, Jean-Marc Constans:
A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images. Image Vis. Comput. 25(2): 164-171 (2007) - [c23]Su Ruan
, Stéphane Lebonvallet, Abderrahim Merabet, Jean-Marc Constans:
Tumor Segmentation from a Multispectral MRI Images by Using Support Vector Machine Classification. ISBI 2007: 1236-1239 - [c22]Su Ruan, Jonathan Bailleul:
MRI segmentation using multifractal analysis and MRF models. VISAPP (Special Sessions) 2007: 101-106 - [c21]Stéphane Lebonvallet, Sonia Khatchadourian, Su Ruan:
Automated tumor segmentation using level set methods. VISAPP (Special Sessions) 2007: 128-133 - 2006
- [c20]Étienne Baudrier
, Gilles Millon, Frédéric Nicolier, Su Ruan
:
A fast binary-image comparison method with local-dissimilarity quantification. ICPR (3) 2006: 216-219 - [c19]Kun Peng, Liming Chen, Su Ruan:
A Smart Identification Card System Using Facial Biometric: From Architecture to Application. UIC 2006: 61-70 - 2005
- [c18]Kun Peng, Liming Chen, Su Ruan
:
A novel scheme of face verification using active appearance models. AVSS 2005: 247-252 - [c17]Weibei Dou, Yuan Ren, Yanping Chen, Su Ruan, Daniel Bloyet, Jean-Marc Constans:
Histogram-Based Generation Method of Membership Function for Extracting Features of Brain Tissues on MRI Images. FSKD (1) 2005: 189-194 - [c16]Kun Peng, Liming Chen, Su Ruan, Georgy Kukharev:
A Robust and Efficient Algorithm for Eye Detection on Gray Intensity Face. ICAPR (2) 2005: 302-308 - 2004
- [c15]Étienne Baudrier
, Gilles Millon, Frédéric Nicolier, Su Ruan
:
A new similarity measure using hausdorff distance map. ICIP 2004: 669-672 - [c14]Jonathan Bailleul, Su Ruan, Daniel Bloyet, Barbara Romaniuk:
Segmentation of anatomical structures from 3D brain MRI using automatically-built statistical shape models. ICIP 2004: 2741-2744 - [c13]Hua Li, Abderrahim Elmoataz, Jalal Fadili, Su Ruan, Barbara Romaniuk:
3d medical image segmentation approach based on multi-label front propagation. ICIP 2004: 2925-2928 - [c12]Hua Li, Abderrahim Elmoataz, Mohamed-Jalal Fadili, Su Ruan:
A Multi-Label Front Propagation Approach for Object Segmentation. ICPR (1) 2004: 600-603 - [c11]Weibei Dou, Su Ruan
, Daniel Bloyet, Jean-Marc Constans, Yanping Chen:
Segmentation based on information fusion applied to brain tissue on MRI. Image Processing: Algorithms and Systems 2004: 492-503 - [c10]Hua Li, Abderrahim Elmoataz, Mohamed-Jalal Fadili, Su Ruan:
Dual Front Evolution Model and Its Application in Medical Imaging. MICCAI (1) 2004: 103-110 - [c9]Qingmin Liao, Yingying Deng, Weibei Dou, Su Ruan
, Daniel Bloyet:
Possibilistic-clustering-based MR brain image segmentation with accurate initialization. VCIP 2004 - 2003
- [c8]Jonathan Bailleul, Su Ruan, Daniel Bloyet:
Automatic atlas-based building of point distribution model for segmentation of anatomical structures from brain MRI. ISSPA (2) 2003: 629-630 - [c7]Weibei Dou, Su Ruan
, Qingmin Liao, Daniel Bloyet, Jean-Marc Constans:
Knowledge based fuzzy information fusion applied to classification of abnormal brain tissues from MRI. ISSPA (1) 2003: 681-684 - [c6]Weibei Dou, Su Ruan, Qingmin Liao, Daniel Bloyet, Jean-Marc Constans, Yanping Chen:
Fuzzy Information Fusion Scheme Used to Segment Brain Tumor from MR Images. WILF 2003: 208-215 - 2002
- [j6]Su Ruan
, Bruno Moretti, Jalal Fadili, Daniel Bloyet:
Fuzzy Markovian Segmentation in Application of Magnetic Resonance Images. Comput. Vis. Image Underst. 85(1): 54-69 (2002) - [c5]Su Ruan
, Daniel Bloyet, Marinette Revenu, Weibei Dou, Qingmin Liao:
Cerebral magnetic resonance image segmentation using fuzzy Markov Random Fields. ISBI 2002: 237-240 - 2001
- [j5]Mohamed-Jalal Fadili, Su Ruan
, Daniel Bloyet, Bernard Mazoyer
:
On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series. Medical Image Anal. 5(1): 55-67 (2001) - [j4]Jing-Hao Xue, Su Ruan
, Bruno Moretti, Marinette Revenu, Daniel Bloyet:
Knowledge-based segmentation and labeling of brain structures from MRI images. Pattern Recognit. Lett. 22(3/4): 395-405 (2001) - [c4]Su Ruan, Bruno Moretti, Jalal Fadili, Daniel Bloyet:
Segmentation of magnetic resonance images using fuzzy Markov random fields. ICIP (3) 2001: 1051-1054 - 2000
- [j3]Bruno Moretti, Mohamed-Jalal Fadili, Su Ruan, Daniel Bloyet, Bernard Mazoyer:
Phantom-based performance evaluation: Application to brain segmentation from magnetic resonance images. Medical Image Anal. 4(4): 303-316 (2000) - [j2]Su Ruan, Cyril Jaggi, Jing-Hao Xue, Mohamed-Jalal Fadili, Daniel Bloyet:
Brain Tissue Classification of Magnetic Resonance Images Using Partial Volume Modeling. IEEE Trans. Medical Imaging 19(12): 1179-1187 (2000) - [c3]Jing-Hao Xue, Su Ruan, Bruno Moretti, Marinette Revenu, Daniel Bloyet, Wilfried Philips:
Fuzzy Modeling of Knowledge for MRI Brain Structure Segmentation. ICIP 2000: 617-620 - [c2]Su Ruan, Mohamed-Jalal Fadili, Daniel Bloyet, Jing-Hao Xue:
Unsupervised Segmentation of Three-Dimensional Brain Images. ICPR 2000: 3409-3412
1990 – 1999
- 1995
- [c1]Su Ruan, Cyril Jaggi, Jean-Marc Constans, Daniel Bloyet:
Detection of Brain Activation from MRI Data by Likelihood-Ratio Test. CVRMed 1995: 341-350 - 1994
- [j1]Su Ruan
, Alain Bruno, Jean-Louis Coatrieux:
Three-dimensional motion and reconstruction of coronary arteries from biplane cineangiography. Image Vis. Comput. 12(10): 683-689 (1994)
Coauthor Index
aka: Jérôme Lapuyade
aka: Frédéric Nicolier

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-03-20 00:33 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint