default search action
Max D. Gunzburger
Person information
- affiliation: Florida State University, Department of Scientific Computing, Tallahassee, Fl, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [i20]Yuwei Geng, Olena Burkovska, Lili Ju, Guannan Zhang, Max D. Gunzburger:
An End-to-End Deep Learning Method for Solving Nonlocal Allen-Cahn and Cahn-Hilliard Phase-Field Models. CoRR abs/2410.08914 (2024) - 2023
- [j110]Manuel Klar, Giacomo Capodaglio, Marta D'Elia, Christian Glusa, Max D. Gunzburger, Christian Vollmann:
A scalable domain decomposition method for FEM discretizations of nonlocal equations of integrable and fractional type. Comput. Math. Appl. 151: 434-448 (2023) - [j109]James Cheung, Mauro Perego, Pavel B. Bochev, Max D. Gunzburger:
A coupling approach for linear elasticity problems with spatially non-coincident discretized interfaces. J. Comput. Appl. Math. 425: 115027 (2023) - [j108]Anthony D. Gruber, Max D. Gunzburger, Lili Ju, Zhu Wang:
A Multifidelity Monte Carlo Method for Realistic Computational Budgets. J. Sci. Comput. 94(1): 2 (2023) - [j107]Christian Glusa, Marta D'Elia, Giacomo Capodaglio, Max D. Gunzburger, Pavel B. Bochev:
An Asymptotically Compatible Coupling Formulation for Nonlocal Interface Problems with Jumps. SIAM J. Sci. Comput. 45(3): 1359-1384 (2023) - [i19]Manuel Klar, Giacomo Capodaglio, Marta D'Elia, Christian Glusa, Max D. Gunzburger, Christian Vollmann:
A scalable domain decomposition method for FEM discretizations of nonlocal equations of integrable and fractional type. CoRR abs/2306.00094 (2023) - [i18]Parisa Khodabakhshi, Olena Burkovska, Karen Willcox, Max D. Gunzburger:
Multifidelity Methods for Uncertainty Quantification of a Nonlocal Model for Phase Changes in Materials. CoRR abs/2310.10750 (2023) - 2022
- [j106]Rihui Lan, Lili Ju, Zhu Wang, Max D. Gunzburger, Philip Jones:
High-order multirate explicit time-stepping schemes for the baroclinic-barotropic split dynamics in primitive equations. J. Comput. Phys. 457: 111050 (2022) - [j105]Max D. Gunzburger, Buyang Li, Jilu Wang, Zongze Yang:
A mass conservative, well balanced, tangency preserving and energy decaying method for the shallow water equations on a sphere. J. Comput. Phys. 457: 111067 (2022) - [i17]Christian Glusa, Marta D'Elia, Giacomo Capodaglio, Max D. Gunzburger, Pavel B. Bochev:
An asymptotically compatible coupling formulation for nonlocal interface problems with jumps. CoRR abs/2203.07565 (2022) - [i16]Anthony D. Gruber, Max D. Gunzburger, Lili Ju, Zhu Wang:
Energetically Consistent Model Reduction for Metriplectic Systems. CoRR abs/2204.08049 (2022) - [i15]Anthony D. Gruber, Max D. Gunzburger, Lili Ju, Zhu Wang:
A Multifidelity Monte Carlo Method for Realistic Computational Budgets. CoRR abs/2206.07572 (2022) - 2021
- [j104]Parisa Khodabakhshi, Karen E. Willcox, Max D. Gunzburger:
A multifidelity method for a nonlocal diffusion model. Appl. Math. Lett. 121: 107361 (2021) - [i14]Anthony D. Gruber, Max D. Gunzburger, Lili Ju, Yuankai Teng, Zhu Wang:
Nonlinear Level Set Learning for Function Approximation on Sparse Data with Applications to Parametric Differential Equations. CoRR abs/2104.14072 (2021) - [i13]Rihui Lan, Lili Ju, Zhu Wang, Max D. Gunzburger, Philip Jones:
High-Order Multirate Explicit Time-Stepping Schemes for the Baroclinic-Barotropic Split Dynamics in Primitive Equations. CoRR abs/2105.13484 (2021) - [i12]Rihui Lan, Wei Leng, Zhu Wang, Lili Ju, Max D. Gunzburger:
Parallel Exponential Time Differencing Methods for Geophysical Flow Simulations. CoRR abs/2106.12038 (2021) - [i11]Anthony D. Gruber, Max D. Gunzburger, Lili Ju, Zhu Wang:
A Comparison of Neural Network Architectures for Data-Driven Reduced-Order Modeling. CoRR abs/2110.03442 (2021) - 2020
- [j103]Marta D'Elia, Qiang Du, Christian Glusa, Max D. Gunzburger, Xiaochuan Tian, Zhi Zhou:
Numerical methods for nonlocal and fractional models. Acta Numer. 29: 1-124 (2020) - [j102]John V. Burkardt, Max D. Gunzburger, Wenju Zhao:
High-precision computation of the weak Galerkin methods for the fourth-order problem. Numer. Algorithms 84(1): 181-205 (2020) - [j101]Olena Burkovska, Max D. Gunzburger:
Affine Approximation of Parametrized Kernels and Model Order Reduction for Nonlocal and Fractional Laplace Models. SIAM J. Numer. Anal. 58(3): 1469-1494 (2020) - [i10]Giacomo Capodaglio, Marta D'Elia, Pavel B. Bochev, Max D. Gunzburger:
An energy-based coupling approach to nonlocal interface problems. CoRR abs/2001.03696 (2020) - [i9]Marta D'Elia, Qiang Du, Christian Glusa, Max D. Gunzburger, Xiaochuan Tian, Zhi Zhou:
Numerical methods for nonlocal and fractional models. CoRR abs/2002.01401 (2020) - [i8]Olena Burkovska, Max D. Gunzburger:
On a nonlocal Cahn-Hilliard model permitting sharp interfaces. CoRR abs/2004.14379 (2020) - [i7]Marta D'Elia, Max D. Gunzburger, Christian Vollmann:
A cookbook for finite element methods for nonlocal problems, including quadrature rules and approximate Euclidean balls. CoRR abs/2005.10775 (2020) - [i6]Giacomo Capodaglio, Marta D'Elia, Max D. Gunzburger, Pavel B. Bochev, Manuel Klar, Christian Vollmann:
A general framework for substructuring-based domain decomposition methods for models having nonlocal interactions. CoRR abs/2008.11780 (2020)
2010 – 2019
- 2019
- [j100]Max D. Gunzburger, Nan Jiang, Zhu Wang:
A Second-Order Time-Stepping Scheme for Simulating Ensembles of Parameterized Flow Problems. Comput. Methods Appl. Math. 19(3): 681-701 (2019) - [j99]Konstantin Pieper, Kenneth C. Sockwell, Max D. Gunzburger:
Exponential time differencing for mimetic multilayer ocean models. J. Comput. Phys. 398 (2019) - [j98]Max D. Gunzburger, Michael Schneier, Clayton G. Webster, Guannan Zhang:
An Improved Discrete Least-Squares/Reduced-Basis Method for Parameterized Elliptic PDEs. J. Sci. Comput. 81(1): 76-91 (2019) - [j97]Max D. Gunzburger, Traian Iliescu, Muhammad Mohebujjaman, Michael Schneier:
An Evolve-Filter-Relax Stabilized Reduced Order Stochastic Collocation Method for the Time-Dependent Navier-Stokes Equations. SIAM/ASA J. Uncertain. Quantification 7(4): 1162-1184 (2019) - [j96]Max D. Gunzburger, Buyang Li, Jilu Wang:
Sharp convergence rates of time discretization for stochastic time-fractional PDEs subject to additive space-time white noise. Math. Comput. 88(318): 1715-1741 (2019) - [j95]James Cheung, Mauro Perego, Pavel B. Bochev, Max D. Gunzburger:
Optimally accurate higher-order finite element methods for polytopial approximations of domains with smooth boundaries. Math. Comput. 88(319): 2187-2219 (2019) - [j94]Max D. Gunzburger, Buyang Li, Jilu Wang:
Convergence of finite element solutions of stochastic partial integro-differential equations driven by white noise. Numerische Mathematik 141(4): 1043-1077 (2019) - [j93]Max D. Gunzburger, Jilu Wang:
Error Analysis of Fully Discrete Finite Element Approximations to an Optimal Control Problem Governed by a Time-Fractional PDE. SIAM J. Control. Optim. 57(1): 241-263 (2019) - [j92]Max D. Gunzburger, Wenju Zhao:
Descriptions, Discretizations, and Comparisons of Time/Space Colored and White Noise Forcings of the Navier-Stokes Equations. SIAM J. Sci. Comput. 41(4): A2579-A2602 (2019) - [i5]Giacomo Capodaglio, Max D. Gunzburger:
Piecewise polynomial approximation of probability density functions with application to uncertainty quantification for stochastic PDEs. CoRR abs/1906.10869 (2019) - [i4]Sara Calandrini, Konstantin Pieper, Max D. Gunzburger:
Exponential Time Differencing for the Tracer Equations Appearing in Primitive Equation Ocean Models. CoRR abs/1910.02189 (2019) - 2018
- [j91]Max D. Gunzburger, Nan Jiang, Feifei Xu:
Analysis and approximation of a fractional Laplacian-based closure model for turbulent flows and its connection to Richardson pair dispersion. Comput. Math. Appl. 75(6): 1973-2001 (2018) - [j90]Huanhuan Yang, Max D. Gunzburger, Lili Ju:
Fast spherical centroidal Voronoi mesh generation: A Lloyd-preconditioned LBFGS method in parallel. J. Comput. Phys. 367: 235-252 (2018) - [j89]Benjamin Peherstorfer, Max D. Gunzburger, Karen Willcox:
Convergence analysis of multifidelity Monte Carlo estimation. Numerische Mathematik 139(3): 683-707 (2018) - [j88]Max D. Gunzburger, Xiaoming He, Buyang Li:
On Stokes-Ritz Projection and Multistep Backward Differentiation Schemes in Decoupling the Stokes-Darcy Model. SIAM J. Numer. Anal. 56(1): 397-427 (2018) - [j87]Benjamin Peherstorfer, Karen Willcox, Max D. Gunzburger:
Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization. SIAM Rev. 60(3): 550-591 (2018) - [i3]Benjamin Peherstorfer, Karen Willcox, Max D. Gunzburger:
Survey of multifidelity methods in uncertainty propagation, inference, and optimization. CoRR abs/1806.10761 (2018) - 2017
- [j86]Hyung-Chun Lee, Max D. Gunzburger:
Comparison of approaches for random PDE optimization problems based on different matching functionals. Comput. Math. Appl. 73(8): 1657-1672 (2017) - [j85]Marta D'Elia, Qiang Du, Max D. Gunzburger, Richard B. Lehoucq:
Nonlocal Convection-Diffusion Problems on Bounded Domains and Finite-Range Jump Processes. Comput. Methods Appl. Math. 17(4): 707-722 (2017) - [j84]Qingguang Guan, Max D. Gunzburger:
Analysis and approximation of a nonlocal obstacle problem. J. Comput. Appl. Math. 313: 102-118 (2017) - [j83]Luca Bertagna, Max D. Gunzburger:
Well Posedness Of A Coupled ICE-Hydrology Problem Arising In Glaciology. SIAM J. Math. Anal. 49(2): 699-722 (2017) - [j82]Max D. Gunzburger, Nan Jiang, Michael Schneier:
An Ensemble-Proper Orthogonal Decomposition Method for the Nonstationary Navier-Stokes Equations. SIAM J. Numer. Anal. 55(1): 286-304 (2017) - 2016
- [j81]Xiaochuan Tian, Qiang Du, Max D. Gunzburger:
Asymptotically compatible schemes for the approximation of fractional Laplacian and related nonlocal diffusion problems on bounded domains. Adv. Comput. Math. 42(6): 1363-1380 (2016) - [j80]Irene Sonja Monnesland, Eunjung Lee, Max D. Gunzburger, Ryeongkyung Yoon:
A least-squares finite element method for a nonlinear Stokes problem in glaciology. Comput. Math. Appl. 71(11): 2421-2431 (2016) - [j79]Guannan Zhang, Weidong Zhao, Clayton G. Webster, Max D. Gunzburger:
Numerical methods for a class of nonlocal diffusion problems with the use of backward SDEs. Comput. Math. Appl. 71(11): 2479-2496 (2016) - [j78]Xiaoping Zhang, Max D. Gunzburger, Lili Ju:
Quadrature rules for finite element approximations of 1D nonlocal problems. J. Comput. Phys. 310: 213-236 (2016) - [j77]Max D. Gunzburger, Lisheng Hou, Ju Ming:
Stochastic Steady-State Navier-Stokes Equations with Additive Random Noise. J. Sci. Comput. 66(2): 672-691 (2016) - [j76]Feifei Xu, Max D. Gunzburger, John V. Burkardt, Qiang Du:
A Multiscale Implementation Based on Adaptive Mesh Refinement for the Nonlocal Peridynamics Model in One Dimension. Multiscale Model. Simul. 14(1): 398-429 (2016) - [j75]Wenbin Chen, Max D. Gunzburger, Dong Sun, Xiaoming Wang:
An efficient and long-time accurate third-order algorithm for the Stokes-Darcy system. Numerische Mathematik 134(4): 857-879 (2016) - [j74]Guannan Zhang, Clayton G. Webster, Max D. Gunzburger, John V. Burkardt:
Hyperspherical Sparse Approximation Techniques for High-Dimensional Discontinuity Detection. SIAM Rev. 58(3): 517-551 (2016) - [j73]Benjamin Peherstorfer, Karen Willcox, Max D. Gunzburger:
Optimal Model Management for Multifidelity Monte Carlo Estimation. SIAM J. Sci. Comput. 38(5) (2016) - [i2]Ulrich Rüde, Karen Willcox, Lois Curfman McInnes, Hans De Sterck, George Biros, Hans-Joachim Bungartz, James Corones, Evin Cramer, James Crowley, Omar Ghattas, Max D. Gunzburger, Michael Hanke, Robert J. Harrison, Michael A. Heroux, Jan S. Hesthaven, Peter K. Jimack, Chris Johnson, Kirk E. Jordan, David E. Keyes, Rolf H. Krause, Vipin Kumar, Stefan Mayer, Juan Meza, Knut Martin Mørken, J. Tinsley Oden, Linda R. Petzold, Padma Raghavan, Suzanne M. Shontz, Anne E. Trefethen, Peter R. Turner, Vladimir V. Voevodin, Barbara I. Wohlmuth, Carol S. Woodward:
Research and Education in Computational Science and Engineering. CoRR abs/1610.02608 (2016) - 2015
- [j72]Qingguang Guan, Max D. Gunzburger:
θ schemes for finite element discretization of the space-time fractional diffusion equations. J. Comput. Appl. Math. 288: 264-273 (2015) - [j71]Hans-Werner van Wyk, Max D. Gunzburger, John Burkhardt, Miroslav Stoyanov:
Power-Law Noises over General Spatial Domains and on Nonstandard Meshes. SIAM/ASA J. Uncertain. Quantification 3(1): 296-319 (2015) - [j70]Aretha L. Teckentrup, Peter Jantsch, Clayton G. Webster, Max D. Gunzburger:
A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data. SIAM/ASA J. Uncertain. Quantification 3(1): 1046-1074 (2015) - [j69]Guannan Zhang, Clayton G. Webster, Max D. Gunzburger, John V. Burkardt:
A Hyperspherical Adaptive Sparse-Grid Method for High-Dimensional Discontinuity Detection. SIAM J. Numer. Anal. 53(3): 1508-1536 (2015) - 2014
- [j68]Max D. Gunzburger, Clayton G. Webster, Guannan Zhang:
Stochastic finite element methods for partial differential equations with random input data. Acta Numer. 23: 521-650 (2014) - [j67]Pavel B. Bochev, Leszek F. Demkowicz, Jay Gopalakrishnan, Max D. Gunzburger:
Minimum Residual and Least Squares Finite Element Methods. Comput. Math. Appl. 68(11): 1479 (2014) - [j66]Clayton G. Webster, Guannan Zhang, Max D. Gunzburger:
An adaptive sparse-grid iterative ensemble Kalman filter approach for parameter field estimation. Int. J. Comput. Math. 91(4): 798-817 (2014) - [j65]Qingshan Chen, Max D. Gunzburger:
Goal-oriented a posteriori error estimation for finite volume methods. J. Comput. Appl. Math. 265: 69-82 (2014) - [j64]Wei Leng, Lili Ju, Yan Xie, Tao Cui, Max D. Gunzburger:
Finite element three-dimensional Stokes ice sheet dynamics model with enhanced local mass conservation. J. Comput. Phys. 274: 299-311 (2014) - [j63]Rui Gu, Xiaoqiang Wang, Max D. Gunzburger:
Simulating vesicle-substrate adhesion using two phase field functions. J. Comput. Phys. 275: 626-641 (2014) - [j62]Alexander E. Labovsky, Max D. Gunzburger:
An Efficient and Accurate Method for the Identification of the Most Influential Random Parameters Appearing in the Input Data for PDEs. SIAM/ASA J. Uncertain. Quantification 2(1): 82-105 (2014) - [j61]Yanzhao Cao, Max D. Gunzburger, Xiaoming He, Xiaoming Wang:
Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems. Math. Comput. 83(288): 1617-1644 (2014) - [j60]Marta D'Elia, Max D. Gunzburger:
Optimal Distributed Control of Nonlocal Steady Diffusion Problems. SIAM J. Control. Optim. 52(1): 243-273 (2014) - [i1]Nicolas R. Gauger, Michael B. Giles, Max D. Gunzburger, Uwe Naumann:
Adjoint Methods in Computational Science, Engineering, and Finance (Dagstuhl Seminar 14371). Dagstuhl Reports 4(9): 1-29 (2014) - 2013
- [j59]Marta D'Elia, Max D. Gunzburger:
The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66(7): 1245-1260 (2013) - [j58]Qingshan Chen, Todd Ringler, Max D. Gunzburger:
A co-volume scheme for the rotating shallow water equations on conforming non-orthogonal grids. J. Comput. Phys. 240: 174-197 (2013) - [j57]James O. Berger, Donald J. Estep, Max D. Gunzburger:
Message from the Editors. SIAM/ASA J. Uncertain. Quantification 1(1): 1 (2013) - [j56]Marta D'Elia, Max D. Gunzburger:
Coarse-Grid Sampling Interpolatory Methods for Approximating Gaussian Random Fields. SIAM/ASA J. Uncertain. Quantification 1(1): 270-296 (2013) - [j55]Qingshan Chen, Max D. Gunzburger, Mauro Perego:
Well-Posedness Results for a Nonlinear Stokes Problem Arising in Glaciology. SIAM J. Math. Anal. 45(5): 2710-2733 (2013) - [j54]Wenbin Chen, Max D. Gunzburger, Dong Sun, Xiaoming Wang:
Efficient and Long-Time Accurate Second-Order Methods for the Stokes-Darcy System. SIAM J. Numer. Anal. 51(5): 2563-2584 (2013) - [j53]Geoffrey Womeldorff, Janet S. Peterson, Max D. Gunzburger, Todd Ringler:
Unified Matching Grids for Multidomain Multiphysics Simulations. SIAM J. Sci. Comput. 35(6) (2013) - 2012
- [j52]Jungmin Choi, Max D. Gunzburger:
Approximation and application of the Musiela stochastic PDE in forward rate models. Int. J. Comput. Math. 89(9): 1269-1280 (2012) - [j51]Guannan Zhang, Max D. Gunzburger:
Error Analysis of a Stochastic Collocation Method for Parabolic Partial Differential Equations with Random Input Data. SIAM J. Numer. Anal. 50(4): 1922-1940 (2012) - [j50]Qiang Du, Max D. Gunzburger, Richard B. Lehoucq, Kun Zhou:
Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints. SIAM Rev. 54(4): 667-696 (2012) - 2011
- [j49]Yanzhao Cao, Max D. Gunzburger, Xiaoming He, Xiaoming Wang:
Robin-Robin domain decomposition methods for the steady-state Stokes-Darcy system with the Beavers-Joseph interface condition. Numerische Mathematik 117(4): 601-629 (2011) - [j48]Max D. Gunzburger, Angela Kunoth:
Space-Time Adaptive Wavelet Methods for Optimal Control Problems Constrained by Parabolic Evolution Equations. SIAM J. Control. Optim. 49(3): 1150-1170 (2011) - [j47]Wenbin Chen, Max D. Gunzburger, Fei Hua, Xiaoming Wang:
A Parallel Robin-Robin Domain Decomposition Method for the Stokes-Darcy System. SIAM J. Numer. Anal. 49(3): 1064-1084 (2011) - [j46]Eunjung Lee, Max D. Gunzburger:
Analysis of Finite Element Discretizations of an Optimal Control Formulation of the Image Registration Problem. SIAM J. Numer. Anal. 49(4): 1321-1349 (2011) - [j45]Max D. Gunzburger, Hyung-Chun Lee, Jangwoon Lee:
Error Estimates of Stochastic Optimal Neumann Boundary Control Problems. SIAM J. Numer. Anal. 49(4): 1532-1552 (2011) - [j44]Max D. Gunzburger, Ju Ming:
Optimal Control of Stochastic Flow over a Backward-Facing Step Using Reduced-Order Modeling. SIAM J. Sci. Comput. 33(5): 2641-2663 (2011) - 2010
- [j43]Yanzhao Cao, Zheng Chen, Max D. Gunzburger:
Error analysis of finite element approximations of the stochastic Stokes equations. Adv. Comput. Math. 33(2): 215-230 (2010) - [j42]Eunjung Lee, Max D. Gunzburger:
An Optimal Control Formulation of an Image Registration Problem. J. Math. Imaging Vis. 36(1): 69-80 (2010) - [j41]Max D. Gunzburger, Eunjung Lee, Yuki Saka, Catalin Trenchea, Xiaoming Wang:
Analysis of Nonlinear Spectral Eddy-Viscosity Models of Turbulence. J. Sci. Comput. 45(1-3): 294-332 (2010) - [j40]Max D. Gunzburger, Richard B. Lehoucq:
A Nonlocal Vector Calculus with Application to Nonlocal Boundary Value Problems. Multiscale Model. Simul. 8(5): 1581-1598 (2010) - [j39]Yanzhao Cao, Max D. Gunzburger, Xiaolong Hu, Fei Hua, Xiaoming Wang, Weidong Zhao:
Finite Element Approximations for Stokes-Darcy Flow with Beavers-Joseph Interface Conditions. SIAM J. Numer. Anal. 47(6): 4239-4256 (2010)
2000 – 2009
- 2009
- [b1]Pavel B. Bochev, Max D. Gunzburger:
Least-Squares Finite Element Methods. Applied mathematical sciences 166, Springer 2009, ISBN 978-0-387-30888-3, pp. I-XXII, 1-660 - [j38]Hoa Nguyen, John V. Burkardt, Max D. Gunzburger, Lili Ju, Yuki Saka:
Constrained CVT meshes and a comparison of triangular mesh generators. Comput. Geom. 42(1): 1-19 (2009) - [j37]Jungmin Choi, Max D. Gunzburger:
Option pricing in the presence of random arbitrage return. Int. J. Comput. Math. 86(6): 1068-1081 (2009) - [j36]Pablo Seleson, Michael L. Parks, Max D. Gunzburger, Richard B. Lehoucq:
Peridynamics as an Upscaling of Molecular Dynamics. Multiscale Model. Simul. 8(1): 204-227 (2009) - [j35]Max D. Gunzburger, Yanzhi Zhang:
A Quadrature-Rule Type Approximation to the Quasi-Continuum Method. Multiscale Model. Simul. 8(2): 571-590 (2009) - [c4]Pavel B. Bochev, Max D. Gunzburger:
A Locally Conservative Mimetic Least-Squares Finite Element Method for the Stokes Equations. LSSC 2009: 637-644 - 2008
- [j34]Santiago Badia, Michael L. Parks, Pavel B. Bochev, Max D. Gunzburger, Richard B. Lehoucq:
On Atomistic-to-Continuum Coupling by Blending. Multiscale Model. Simul. 7(1): 381-406 (2008) - 2007
- [j33]Marcus Calhoun-Lopez, Max D. Gunzburger:
The efficient implementation of a finite element, multi-resolution viscosity method for hyperbolic conservation laws. J. Comput. Phys. 225(2): 1288-1313 (2007) - [c3]Santiago Badia, Pavel B. Bochev, Max D. Gunzburger, Richard B. Lehoucq, Michael L. Parks:
Bridging Methods for Coupling Atomistic and Continuum Models. LSSC 2007: 16-27 - 2006
- [j32]Max D. Gunzburger, L. S. Hou, Lili Ju:
A numerical method for exact boundary controllability problems for the wave equation. Comput. Math. Appl. 51(5): 721-750 (2006) - [j31]Max D. Gunzburger, Kwang Ik Kim, Sang Dong Kim, Hyung-Chun Lee:
Preface. Comput. Math. Appl. 51(5): i (2006) - [j30]Qiang Du, Max D. Gunzburger, Lili Ju, Xiaoqiang Wang:
Centroidal Voronoi Tessellation Algorithms for Image Compression, Segmentation, and Multichannel Restoration. J. Math. Imaging Vis. 24(2): 177-194 (2006) - [j29]Vicente J. Romero, John V. Burkardt, Max D. Gunzburger, Janet S. Peterson:
Comparison of pure and "Latinized" centroidal Voronoi tessellation against various other statistical sampling methods. Reliab. Eng. Syst. Saf. 91(10-11): 1266-1280 (2006) - [j28]Pavel B. Bochev, Max D. Gunzburger:
Least-Squares Finite Element Methods for Optimality Systems Arising in Optimization and Control Problems. SIAM J. Numer. Anal. 43(6): 2517-2543 (2006) - [j27]Pavel B. Bochev, Clark R. Dohrmann, Max D. Gunzburger:
Stabilization of Low-order Mixed Finite Elements for the Stokes Equations. SIAM J. Numer. Anal. 44(1): 82-101 (2006) - [j26]John V. Burkardt, Max D. Gunzburger, Hyung-Chun Lee:
Centroidal Voronoi Tessellation-Based Reduced-Order Modeling of Complex Systems. SIAM J. Sci. Comput. 28(2): 459-484 (2006) - [j25]Lili Ju, Max D. Gunzburger, Weidong Zhao:
Adaptive Finite Element Methods for Elliptic PDEs Based on Conforming Centroidal Voronoi-Delaunay Triangulations. SIAM J. Sci. Comput. 28(6): 2023-2053 (2006) - 2005
- [j24]A. V. Fursikov, Max D. Gunzburger, L. S. Hou:
Optimal Boundary Control for the Evolutionary Navier--Stokes System: The Three-Dimensional Case. SIAM J. Control. Optim. 43(6): 2191-2232 (2005) - [j23]Pavel B. Bochev, Max D. Gunzburger:
On Least-Squares Finite Element Methods for the Poisson Equation and Their Connection to the Dirichlet and Kelvin Principles. SIAM J. Numer. Anal. 43(1): 340-362 (2005) - [j22]Marcus Calhoun-Lopez, Max D. Gunzburger:
A Finite Element, Multiresolution Viscosity Method for Hyperbolic Conservation Laws. SIAM J. Numer. Anal. 43(5): 1988-2011 (2005) - [c2]Max D. Gunzburger, Janet S. Peterson:
Reduced-Order Modeling of Complex Systems with Multiple System Parameters. LSSC 2005: 15-27 - 2004
- [j21]Qiang Du, Max D. Gunzburger, L. Steven Hou, J. Lee:
Semidiscrete Finite Element Approximations of a Linear Fluid-Structure Interaction Problem. SIAM J. Numer. Anal. 42(1): 1-29 (2004) - [j20]Pavel B. Bochev, Max D. Gunzburger:
An Absolutely Stable Pressure-Poisson Stabilized Finite Element Method for the Stokes Equations. SIAM J. Numer. Anal. 42(3): 1189-1207 (2004) - [j19]Teri Barth, Pavel B. Bochev, Max D. Gunzburger, John N. Shadid:
A Taxonomy of Consistently Stabilized Finite Element Methods for the Stokes Problem. SIAM J. Sci. Comput. 25(5): 1585-1607 (2004) - 2003
- [j18]Qiang Du, Max D. Gunzburger, Lili Ju:
Constrained Centroidal Voronoi Tessellations for Surfaces. SIAM J. Sci. Comput. 24(5): 1488-1506 (2003) - 2002
- [j17]Qiang Du, Max D. Gunzburger:
Grid generation and optimization based on centroidal Voronoi tessellations. Appl. Math. Comput. 133(2-3): 591-607 (2002) - [j16]Lili Ju, Qiang Du, Max D. Gunzburger:
Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations. Parallel Comput. 28(10): 1477-1500 (2002) - 2000
- [j15]Max D. Gunzburger, Hyung-Chun Lee:
A penalty/least-squares method for optimal control problems for first-order elliptic systems. Appl. Math. Comput. 107(1): 57-75 (2000) - [j14]Max D. Gunzburger, Matthias Heinkenschloss, Hyesuk K. Lee:
Solution of elliptic partial differential equations by an optimization-based domain decomposition method. Appl. Math. Comput. 113(2-3): 111-139 (2000) - [j13]Max D. Gunzburger, Sandro Manservisi:
The Velocity Tracking Problem for Navier-Stokes Flows With Boundary Control. SIAM J. Control. Optim. 39(2): 594-634 (2000) - [j12]Max D. Gunzburger, Hyesuk Kwon Lee:
An Optimization-Based Domain Decomposition Method for the Navier-Stokes Equations. SIAM J. Numer. Anal. 37(5): 1455-1480 (2000) - [j11]Max D. Gunzburger, Sandro Manservisi:
Analysis and Approximation of the Velocity Tracking Problem for Navier-Stokes Flows with Distributed Control. SIAM J. Numer. Anal. 37(5): 1481-1512 (2000) - [j10]Qiang Du, Max D. Gunzburger:
A Gradient Method Approach to Optimization-Based Multidisciplinary Simulations and Nonoverlapping Domain Decomposition Algorithms. SIAM J. Numer. Anal. 37(5): 1513-1541 (2000) - [c1]Max D. Gunzburger, Hong-Chul Kim, Sandro Manservisi:
Shape design of channel flows for steady, incompressible flows. CDC 2000: 4473-4478
1990 – 1999
- 1999
- [j9]Max D. Gunzburger, Hyung-Chun Lee:
Analysis and approximation of optimal control problems for first-order elliptic systems in three dimensions. Appl. Math. Comput. 100(1): 49-70 (1999) - [j8]Qiang Du, Max D. Gunzburger, Hyesuk K. Lee:
Analysis and computation of a mean-field model for superconductivity. Numerische Mathematik 81(4): 539-560 (1999) - [j7]Qiang Du, Vance Faber, Max D. Gunzburger:
Centroidal Voronoi Tessellations: Applications and Algorithms. SIAM Rev. 41(4): 637-676 (1999) - 1998
- [j6]Pavel B. Bochev, Max D. Gunzburger:
Finite Element Methods of Least-Squares Type. SIAM Rev. 40(4): 789-837 (1998) - [j5]Jennifer M. Deang, Max D. Gunzburger:
Issues Related to Least-Squares Finite Element Methods for the Stokes Equations. SIAM J. Sci. Comput. 20(3): 878-906 (1998) - 1995
- [j4]S. Jonathan Chapman, Qiang Du, Max D. Gunzburger:
On the Lawrence-Doniach and Anisotropic Ginzburg-Landau Models for Layered Superconductors. SIAM J. Appl. Math. 55(1): 156-174 (1995) - [j3]Max D. Gunzburger:
Viscous Vortical Flows (L. Ting and R. Klein). SIAM Rev. 37(1): 124-127 (1995) - 1993
- [j2]Qiang Du, Max D. Gunzburger, Janet S. Peterson:
Modeling and Analysis of a Periodic Ginzburg-Landau Model for Type-II Superconductors. SIAM J. Appl. Math. 53(3): 689-717 (1993) - 1992
- [j1]Qiang Du, Max D. Gunzburger, Janet S. Peterson:
Analysis and Approximation of the Ginzburg-Landau Model of Superconductivity. SIAM Rev. 34(1): 54-81 (1992)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-10 18:34 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint