default search action
Stéphane Canu
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c66]Jordan Patracone, Paul Viallard, Emilie Morvant, Gilles Gasso, Amaury Habrard, Stéphane Canu:
A Theoretically Grounded Extension of Universal Attacks from the Attacker's Viewpoint. ECML/PKDD (4) 2024: 283-300 - [c65]Jordan Patracone, Lucas Anquetil, Yuan Liu, Gilles Gasso, Stéphane Canu:
Linear Modeling of the Adversarial Noise Space. ECML/PKDD (4) 2024: 301-317 - 2023
- [j37]Carole Le Guyader, Samia Ainouz, Stéphane Canu:
A Physically Admissible Stokes Vector Reconstruction in Linear Polarimetric Imaging. J. Math. Imaging Vis. 65(4): 592-617 (2023) - [c64]Julien Denize, Jaonary Rabarisoa, Astrid Orcesi, Romain Hérault, Stéphane Canu:
Similarity Contrastive Estimation for Self-Supervised Soft Contrastive Learning. WACV 2023: 2705-2715 - [e6]Massih-Reza Amini, Stéphane Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, Grigorios Tsoumakas:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part I. Lecture Notes in Computer Science 13713, Springer 2023, ISBN 978-3-031-26386-6 [contents] - [e5]Massih-Reza Amini, Stéphane Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, Grigorios Tsoumakas:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part II. Lecture Notes in Computer Science 13714, Springer 2023, ISBN 978-3-031-26389-7 [contents] - [e4]Massih-Reza Amini, Stéphane Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, Grigorios Tsoumakas:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part III. Lecture Notes in Computer Science 13715, Springer 2023, ISBN 978-3-031-26408-5 [contents] - [e3]Massih-Reza Amini, Stéphane Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, Grigorios Tsoumakas:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part IV. Lecture Notes in Computer Science 13716, Springer 2023, ISBN 978-3-031-26411-5 [contents] - [e2]Massih-Reza Amini, Stéphane Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, Grigorios Tsoumakas:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part V. Lecture Notes in Computer Science 13717, Springer 2023, ISBN 978-3-031-26418-4 [contents] - [e1]Massih-Reza Amini, Stéphane Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, Grigorios Tsoumakas:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part VI. Lecture Notes in Computer Science 13718, Springer 2023, ISBN 978-3-031-26421-4 [contents] - 2022
- [j36]Cyprien Ruffino, Rachel Blin, Samia Ainouz, Gilles Gasso, Romain Hérault, Fabrice Mériaudeau, Stéphane Canu:
Physically-admissible polarimetric data augmentation for road-scene analysis. Comput. Vis. Image Underst. 222: 103495 (2022) - [j35]Fabian Dubourvieux, Romaric Audigier, Angélique Loesch, Samia Ainouz, Stéphane Canu:
A formal approach to good practices in Pseudo-Labeling for Unsupervised Domain Adaptive Re-Identification. Comput. Vis. Image Underst. 223: 103527 (2022) - [j34]Tongxue Zhou, Su Ruan, Pierre Vera, Stéphane Canu:
A Tri-Attention fusion guided multi-modal segmentation network. Pattern Recognit. 124: 108417 (2022) - [j33]Tongxue Zhou, Pierre Vera, Stéphane Canu, Su Ruan:
Missing Data Imputation via Conditional Generator and Correlation Learning for Multimodal Brain Tumor Segmentation. Pattern Recognit. Lett. 158: 125-132 (2022) - [j32]Rachel Blin, Samia Ainouz, Stéphane Canu, Fabrice Mériaudeau:
The PolarLITIS Dataset: Road Scenes Under Fog. IEEE Trans. Intell. Transp. Syst. 23(8): 10753-10762 (2022) - [c63]Rachel Blin, Samia Ainouz, Stéphane Canu, Fabrice Mériaudeau:
Road Scene Analysis: A Study of Polarimetric and Color-based Features under Various Adverse Weather Conditions. VISIGRAPP (4: VISAPP) 2022: 236-244 - [i25]Cyprien Ruffino, Rachel Blin, Samia Ainouz, Gilles Gasso, Romain Hérault, Fabrice Mériaudeau, Stéphane Canu:
Physically-admissible polarimetric data augmentation for road-scene analysis. CoRR abs/2206.07431 (2022) - 2021
- [j31]Fabian Dubourvieux, Angélique Loesch, Romaric Audigier, Samia Ainouz, Stéphane Canu:
Improving Unsupervised Domain Adaptive Re-Identification Via Source-Guided Selection of Pseudo-Labeling Hyperparameters. IEEE Access 9: 149780-149795 (2021) - [j30]Amirhossein Rahbari, Marc Rébillat, Nazih Mechbal, Stéphane Canu:
Unsupervised damage clustering in complex aeronautical composite structures monitored by Lamb waves: An inductive approach. Eng. Appl. Artif. Intell. 97: 104099 (2021) - [j29]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
Feature-enhanced generation and multi-modality fusion based deep neural network for brain tumor segmentation with missing MR modalities. Neurocomputing 466: 102-112 (2021) - [j28]Tongxue Zhou, Stéphane Canu, Su Ruan:
Automatic COVID-19 CT segmentation using U-Net integrated spatial and channel attention mechanism. Int. J. Imaging Syst. Technol. 31(1): 16-27 (2021) - [j27]Ruobing Shen, Bo Tang, Leo Liberti, Claudia D'Ambrosio, Stéphane Canu:
Learning discontinuous piecewise affine fitting functions using mixed integer programming over lattice. J. Glob. Optim. 81(1): 85-108 (2021) - [j26]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
Latent Correlation Representation Learning for Brain Tumor Segmentation With Missing MRI Modalities. IEEE Trans. Image Process. 30: 4263-4274 (2021) - [c62]Rachel Blin, Samia Ainouz, Stéphane Canu, Fabrice Mériaudeau:
Multimodal Polarimetric And Color Fusion For Road Scene Analysis In Adverse Weather Conditions. ICIP 2021: 3338-3342 - [c61]Ismaïla Seck, Gaëlle Loosli, Stéphane Canu:
Linear Program Powered Attack. IJCNN 2021: 1-8 - [c60]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
A Dual Supervision Guided Attentional Network for Multimodal MR Brain Tumor Segmentation. MICAD 2021: 3-11 - [i24]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
3D Medical Multi-modal Segmentation Network Guided by Multi-source Correlation Constraint. CoRR abs/2102.03111 (2021) - [i23]Yi-Shuai Niu, Wentao Ding, Junpeng Hu, Wenxu Xu, Stéphane Canu:
Spatio-Temporal Neural Network for Fitting and Forecasting COVID-19. CoRR abs/2103.11860 (2021) - [i22]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
Latent Correlation Representation Learning for Brain Tumor Segmentation with Missing MRI Modalities. CoRR abs/2104.06231 (2021) - [i21]Fabian Dubourvieux, Angélique Loesch, Romaric Audigier, Samia Ainouz, Stéphane Canu:
Improving Unsupervised Domain Adaptive Re-Identification via Source-Guided Selection of Pseudo-Labeling Hyperparameters. CoRR abs/2110.07897 (2021) - [i20]Tongxue Zhou, Su Ruan, Pierre Vera, Stéphane Canu:
A Tri-attention Fusion Guided Multi-modal Segmentation Network. CoRR abs/2111.01623 (2021) - [i19]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
Feature-enhanced Generation and Multi-modality Fusion based Deep Neural Network for Brain Tumor Segmentation with Missing MR Modalities. CoRR abs/2111.04735 (2021) - [i18]Julien Denize, Jaonary Rabarisoa, Astrid Orcesi, Romain Hérault, Stéphane Canu:
Similarity Contrastive Estimation for Self-Supervised Soft Contrastive Learning. CoRR abs/2111.14585 (2021) - [i17]Fabian Dubourvieux, Romaric Audigier, Angélique Loesch, Samia Ainouz, Stéphane Canu:
A formal approach to good practices in Pseudo-Labeling for Unsupervised Domain Adaptive Re-Identification. CoRR abs/2112.12887 (2021) - 2020
- [j25]Tongxue Zhou, Stéphane Canu, Su Ruan:
Fusion based on attention mechanism and context constraint for multi-modal brain tumor segmentation. Comput. Medical Imaging Graph. 86: 101811 (2020) - [j24]Yuan Liu, Stéphane Canu, Paul Honeine, Su Ruan:
Incoherent dictionary learning via mixed-integer programming and hybrid augmented Lagrangian. Digit. Signal Process. 101: 102703 (2020) - [c59]Rachel Blin, Samia Ainouz, Stéphane Canu, Fabrice Mériaudeau:
A new multimodal RGB and polarimetric image dataset for road scenes analysis. CVPR Workshops 2020: 867-876 - [c58]Fabian Dubourvieux, Romaric Audigier, Angelique Loesch, Samia Ainouz, Stéphane Canu:
Unsupervised Domain Adaptation for Person Re-Identification through Source-Guided Pseudo-Labeling. ICPR 2020: 4957-4964 - [c57]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
3D Medical Multi-modal Segmentation Network Guided by Multi-source Correlation Constraint. ICPR 2020: 10243-10250 - [c56]Tongxue Zhou, Su Ruan, Yu Guo, Stéphane Canu:
A Multi-Modality Fusion Network Based on Attention Mechanism for Brain Tumor Segmentation. ISBI 2020: 377-380 - [c55]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
Brain Tumor Segmentation with Missing Modalities via Latent Multi-source Correlation Representation. MICCAI (4) 2020: 533-541 - [c54]Mahdi Jammal, Stéphane Canu, Maher Abdallah:
Robust and Sparse Support Vector Machines via Mixed Integer Programming. LOD (2) 2020: 572-585 - [c53]Mahdi Jammal, Stéphane Canu, Maher Abdallah:
ℓ 1 Regularized Robust and Sparse Linear Modeling Using Discrete Optimization. LOD (2) 2020: 645-661 - [c52]Guillaume Lorre, Jaonary Rabarisoa, Astrid Orcesi, Samia Ainouz, Stéphane Canu:
Temporal Contrastive Pretraining for Video Action Recognition. WACV 2020: 651-659 - [i16]Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan:
Brain tumor segmentation with missing modalities via latent multi-source correlation representation. CoRR abs/2003.08870 (2020) - [i15]Tongxue Zhou, Stéphane Canu, Su Ruan:
An automatic COVID-19 CT segmentation network using spatial and channel attention mechanism. CoRR abs/2004.06673 (2020) - [i14]Tongxue Zhou, Su Ruan, Stéphane Canu:
A review: Deep learning for medical image segmentation using multi-modality fusion. CoRR abs/2004.10664 (2020) - [i13]Fabian Dubourvieux, Romaric Audigier, Angelique Loesch, Samia Ainouz, Stéphane Canu:
Unsupervised Domain Adaptation for Person Re-Identification through Source-Guided Pseudo-Labeling. CoRR abs/2009.09445 (2020)
2010 – 2019
- 2019
- [j23]Tongxue Zhou, Su Ruan, Stéphane Canu:
A review: Deep learning for medical image segmentation using multi-modality fusion. Array 3-4: 100004 (2019) - [j22]Yuan Liu, Stéphane Canu, Paul Honeine, Su Ruan:
Mixed Integer Programming For Sparse Coding: Application to Image Denoising. IEEE Trans. Computational Imaging 5(3): 354-365 (2019) - [c51]Ismaïla Seck, Gaëlle Loosli, Stéphane Canu:
L1-norm double backpropagation adversarial defense. ESANN 2019 - [c50]Rachel Blin, Samia Ainouz, Stéphane Canu, Fabrice Mériaudeau:
Road scenes analysis in adverse weather conditions by polarization-encoded images and adapted deep learning. ITSC 2019: 27-32 - [c49]Emeric Dynomant, Romain Lelong, Badisse Dahamna, Clément Massonnaud, Gaétan Kerdelhué, Julien Grosjean, Stéphane Canu, Stéfan Jacques Darmoni:
Word Embedding for French Natural Language in Healthcare: A Comparative Study. MedInfo 2019: 118-122 - [c48]Tongxue Zhou, Su Ruan, Haigen Hu, Stéphane Canu:
Deep Learning Model Integrating Dilated Convolution and Deep Supervision for Brain Tumor Segmentation in Multi-parametric MRI. MLMI@MICCAI 2019: 574-582 - [c47]Quentin Debard, Jilles Steeve Dibangoye, Stéphane Canu, Christian Wolf:
Learning 3D Navigation Protocols on Touch Interfaces with Cooperative Multi-agent Reinforcement Learning. ECML/PKDD (3) 2019: 35-52 - [i12]Ismaïla Seck, Gaëlle Loosli, Stéphane Canu:
L 1-norm double backpropagation adversarial defense. CoRR abs/1903.01715 (2019) - [i11]Quentin Debard, Jilles Steeve Dibangoye, Stéphane Canu, Christian Wolf:
Learning 3D Navigation Protocols on Touch Interfaces with Cooperative Multi-Agent Reinforcement Learning. CoRR abs/1904.07802 (2019) - [i10]Jorge Guevara, Roberto Hirata Jr., Stéphane Canu:
Kernels on fuzzy sets: an overview. CoRR abs/1907.12991 (2019) - [i9]Rachel Blin, Samia Ainouz, Stéphane Canu, Fabrice Mériaudeau:
Road scenes analysis in adverse weather conditions by polarization-encoded images and adapted deep learning. CoRR abs/1910.04870 (2019) - [i8]Emeric Dynomant, Stéfan Jacques Darmoni, Émeline Lejeune, Gaétan Kerdelhué, Jean-Philippe Leroy, Vincent Lequertier, Stéphane Canu, Julien Grosjean:
Doc2Vec on the PubMed corpus: study of a new approach to generate related articles. CoRR abs/1911.11698 (2019) - 2018
- [c46]Quentin Debard, Christian Wolf, Stéphane Canu, Julien Arné:
Learning to Recognize Touch Gestures: Recurrent vs. Convolutional Features and Dynamic Sampling. FG 2018: 114-121 - [c45]Yuan Liu, Stéphane Canu, Paul Honeine, Su Ruan:
K-SVD with a Real ℓ0 Optimization: Application to Image Denoising. MLSP 2018: 1-6 - [i7]Quentin Debard, Christian Wolf, Stéphane Canu, Julien Arné:
Learning to recognize touch gestures: recurrent vs. convolutional features and dynamic sampling. CoRR abs/1802.09901 (2018) - 2017
- [j21]Meriem El Azami, Carole Lartizien, Stéphane Canu:
Converting SVDD scores into probability estimates: Application to outlier detection. Neurocomputing 268: 64-75 (2017) - [j20]Stéphane Canu, Dominique Fourdrinier:
Unbiased risk estimates for matrix estimation in the elliptical case. J. Multivar. Anal. 158: 60-72 (2017) - [c44]Jorge Guevara, Roberto Hirata, Stéphane Canu:
Cross product kernels for fuzzy set similarity. FUZZ-IEEE 2017: 1-6 - [c43]Ruobing Shen, Gerhard Reinelt, Stéphane Canu:
A First Derivative Potts Model for Segmentation and Denoising Using ILP. OR 2017: 53-59 - [c42]Stéphane Canu:
Machine Learning, deep learning and optimization in computer vision. QCAV 2017: 103380N - [i6]Yuan Liu, Stéphane Canu, Paul Honeine, Su Ruan:
Une véritable approche $\ell_0$ pour l'apprentissage de dictionnaire. CoRR abs/1709.05937 (2017) - [i5]Ruobing Shen, Gerhard Reinelt, Stéphane Canu:
A First Derivative Potts Model for Segmentation and Denoising Using MILP. CoRR abs/1709.07212 (2017) - 2016
- [j19]Hachem Kadri, Emmanuel Duflos, Philippe Preux, Stéphane Canu, Alain Rakotomamonjy, Julien Audiffren:
Operator-valued Kernels for Learning from Functional Response Data. J. Mach. Learn. Res. 17: 20:1-20:54 (2016) - [j18]Gaëlle Loosli, Stéphane Canu, Cheng Soon Ong:
Learning SVM in Kreĭn Spaces. IEEE Trans. Pattern Anal. Mach. Intell. 38(6): 1204-1216 (2016) - [c41]Meriem El Azami, Carole Lartizien, Stéphane Canu:
Converting SVDD scores into probability estimates. ESANN 2016 - [c40]Igor dos Santos Montagner, Nina Sumiko Tomita Hirata, Roberto Hirata, Stéphane Canu:
NILC: A two level learning algorithm with operator selection. ICIP 2016: 1873-1877 - [c39]Igor dos Santos Montagner, Roberto Hirata Jr., Nina S. T. Hirata, Stéphane Canu:
Kernel Approximations for W-Operator Learning. SIBGRAPI 2016: 386-393 - 2015
- [c38]Denis Rousselle, Stéphane Canu:
Optimal transport for semi-supervised domain adaptation. ESANN 2015 - [i4]Léa Laporte, Rémi Flamary, Stéphane Canu, Sébastien Déjean, Josiane Mothe:
Non-convex Regularizations for Feature Selection in Ranking With Sparse SVM. CoRR abs/1507.00500 (2015) - [i3]Hachem Kadri, Emmanuel Duflos, Philippe Preux, Stéphane Canu, Alain Rakotomamonjy, Julien Audiffren:
Operator-valued Kernels for Learning from Functional Response Data. CoRR abs/1510.08231 (2015) - 2014
- [j17]Emilie Niaf, Rémi Flamary, Olivier Rouvière, Carole Lartizien, Stéphane Canu:
Kernel-Based Learning From Both Qualitative and Quantitative Labels: Application to Prostate Cancer Diagnosis Based on Multiparametric MR Imaging. IEEE Trans. Image Process. 23(3): 979-991 (2014) - [j16]Léa Laporte, Rémi Flamary, Stéphane Canu, Sébastien Déjean, Josiane Mothe:
Nonconvex Regularizations for Feature Selection in Ranking With Sparse SVM. IEEE Trans. Neural Networks Learn. Syst. 25(6): 1118-1130 (2014) - [c37]Meriem El Azami, Carole Lartizien, Stéphane Canu:
Robust outlier detection with L0-SVDD. ESANN 2014 - [c36]Antoine Lachaud, Stéphane Canu, David Mercier, Frédéric Suard:
A robust regularization path for the Doubly Regularized Support Vector Machine. ESANN 2014 - [c35]Jorge Guevara, Roberto Hirata, Stéphane Canu:
Positive definite kernel functions on fuzzy sets. FUZZ-IEEE 2014: 439-446 - 2013
- [c34]Yachen Zhu, Xilan Tian, Guobing Wu, Gilles Gasso, Shangfei Wang, Stéphane Canu:
Emotional Influence on SSVEP Based BCI. ACII 2013: 859-864 - [c33]Abou Keita, Romain Hérault, Colas Calbrix, Stéphane Canu:
Detection and quantification in real-time polymerase chain reaction. ESANN 2013 - [c32]Jorge Guevara, Roberto Hirata, Stéphane Canu:
Kernel functions in Takagi-Sugeno-Kang fuzzy system with nonsingleton fuzzy input. FUZZ-IEEE 2013: 1-8 - [c31]Julien Delporte, Alexandros Karatzoglou, Tomasz Matuszczyk, Stéphane Canu:
Socially Enabled Preference Learning from Implicit Feedback Data. ECML/PKDD (2) 2013: 145-160 - [i2]Hachem Kadri, Philippe Preux, Emmanuel Duflos, Stéphane Canu:
Multiple functional regression with both discrete and continuous covariates. CoRR abs/1301.2656 (2013) - 2012
- [j15]Xilan Tian, Gilles Gasso, Stéphane Canu:
A multiple kernel framework for inductive semi-supervised SVM learning. Neurocomputing 90: 46-58 (2012) - [c30]Julien Delporte, Stéphane Canu, Alexandros Karatzoglou:
Apprentissage et Factorisation pour la Recommandation. AAFD 2012: 1-26 - 2011
- [j14]Alain Rakotomamonjy, Rémi Flamary, Gilles Gasso, Stéphane Canu:
ellp-ellq Penalty for Sparse Linear and Sparse Multiple Kernel Multitask Learning. IEEE Trans. Neural Networks 22(8): 1307-1320 (2011) - [c29]Xilan Tian, Gilles Gasso, Stéphane Canu:
A Multi-kernel Framework for Inductive Semi-supervised Learning. ESANN 2011 - [i1]Emilie Niaf, Rémi Flamary, Carole Lartizien, Stéphane Canu:
Handling uncertainties in SVM classification. CoRR abs/1106.3397 (2011) - 2010
- [c28]Stéphane Canu:
Recent Advances in Kernel Machines. CIARP 2010: 1 - [c27]Hachem Kadri, Emmanuel Duflos, Philippe Preux, Stéphane Canu, Manuel Davy:
Nonlinear functional regression: a functional RKHS approach. AISTATS 2010: 374-380
2000 – 2009
- 2009
- [j13]Gilles Gasso, Alain Rakotomamonjy, Stéphane Canu:
Recovering sparse signals with a certain family of nonconvex penalties and DC programming. IEEE Trans. Signal Process. 57(12): 4686-4698 (2009) - 2008
- [c26]Karina Zapien Arreola, Thomas Gärtner, Gilles Gasso, Stéphane Canu:
Regularization path for Ranking SVM. ESANN 2008: 415-420 - [c25]Yves Grandvalet, Alain Rakotomamonjy, Joseph Keshet, Stéphane Canu:
Support Vector Machines with a Reject Option. NIPS 2008: 537-544 - 2007
- [j12]Gaëlle Loosli, Stéphane Canu:
Comments on the "Core Vector Machines: Fast SVM Training on Very Large Data Sets". J. Mach. Learn. Res. 8: 291-301 (2007) - [c24]Gilles Gasso, Karina Zapien Arreola, Stéphane Canu:
Computing and stopping the solution paths for $\nu$-SVR. ESANN 2007: 253-258 - [c23]Karina Zapien Arreola, Gilles Gasso, Stéphane Canu:
Estimation of tangent planes for neighborhood graph correction. ESANN 2007: 397-402 - [c22]Alain Rakotomamonjy, Francis R. Bach, Stéphane Canu, Yves Grandvalet:
More efficiency in multiple kernel learning. ICML 2007: 775-782 - [c21]Gilles Gasso, Karina Zapien Arreola, Stéphane Canu:
Sparsity regularization path for semi-supervised SVM. ICMLA 2007: 25-30 - [c20]Gaëlle Loosli, Gilles Gasso, Stéphane Canu:
Regularization Paths for nu -SVM and nu -SVR. ISNN (3) 2007: 486-496 - [c19]Gilles Gasso, Karina Zapien Arreola, Stéphane Canu:
Smoothness and sparsity tuning for Semi-Supervised SVM. NATO ASI Mining Massive Data Sets for Security 2007: 85-86 - 2006
- [j11]Stéphane Canu, Alexander J. Smola:
Kernel methods and the exponential family. Neurocomputing 69(7-9): 714-720 (2006) - [j10]Vincent Guigue, Alain Rakotomamonjy, Stéphane Canu:
Translation-invariant classification of non-stationary signals. Neurocomputing 69(7-9): 743-753 (2006) - [j9]Vincent Guigue, Alain Rakotomamonjy, Stéphane Canu:
Kernel Basis Pursuit. Rev. d'Intelligence Artif. 20(6): 757-774 (2006) - [c18]Manuel Davy, Frédéric Desobry, Stéphane Canu:
Estimation of Minimum Measure Sets in Reproducing Kernel Hilbert Spaces and Applications. ICASSP (3) 2006: 668-671 - 2005
- [j8]Alain Rakotomamonjy, Stéphane Canu:
Frames, Reproducing Kernels, Regularization and Learning. J. Mach. Learn. Res. 6: 1485-1515 (2005) - [j7]Gaëlle Loosli, Stéphane Canu, S. V. N. Vishwanathan, Alexander J. Smola, M. Chattopadhyay:
Boîte à outils SVM simple et rapide. Rev. d'Intelligence Artif. 19(4-5): 741-767 (2005) - [c17]Vincent Guigue, Alain Rakotomamonjy, Stéphane Canu:
Kernel Basis Pursuit. CAP 2005: 93-106 - [c16]Gaëlle Loosli, Sans-Goog Lee, Stéphane Canu:
Détection de contexte par l'apprentissage. CAP 2005: 111-112 - [c15]Vincent Guigue, Alain Rakotomamonjy, Stéphane Canu:
Kernel Basis Pursuit. ECML 2005: 146-157 - [c14]Stéphane Canu, Alexander J. Smola:
Kernel methods and the exponential family. ESANN 2005: 447-454 - [c13]Vincent Guigue, Alain Rakotomamonjy, Stéphane Canu:
Translation invariant classification of non-stationary signals. ESANN 2005: 473-478 - [c12]Quoc V. Le, Alexander J. Smola, Stéphane Canu:
Heteroscedastic Gaussian process regression. ICML 2005: 489-496 - [c11]Gaëlle Loosli, Sang-Goog Lee, Stéphane Canu:
Rupture detection for context aware applications. ubiPCMM 2005 - [c10]Bruno Grilhères, Christophe Beauce, Stéphane Canu, Stephan Brunessaux:
A Platform for Semantic Annotations and Ontology Population Using Conditional Random Fields. Web Intelligence 2005: 790-793 - 2004
- [j6]Mikhail F. Kanevski, Roman Parkin, Aleksey Pozdnukhov, Vadim Timonin, Michel Maignan, Vasiliy V. Demyanov, Stéphane Canu:
Environmental data mining and modeling based on machine learning algorithms and geostatistics. Environ. Model. Softw. 19(9): 845-855 (2004) - [c9]Cheng Soon Ong, Xavier Mary, Stéphane Canu, Alexander J. Smola:
Learning with non-positive kernels. ICML 2004 - 2003
- [j5]Icham Sefion, Abdel Ennaji, Marc Gailhardou, Stéphane Canu:
Aide à la décision médicale Contribution pour la prise en charge de l'asthme. Ingénierie des Systèmes d Inf. 8(1): 11-32 (2003) - [c8]Icham Sefion, Abdel Ennaji, Marc Gailhardou, Stéphane Canu:
ADEMA: A Decision Support System for Asthma Health Care. MIE 2003: 623-628 - 2002
- [j4]Alain Rakotomamonjy, Rodolphe Le Riche, David Gualandris, Stéphane Canu:
Comparaison de stratégies de discrimination de masses de véhicules automobiles. Rev. d'Intelligence Artif. 16(6): 753-784 (2002) - [c7]Alain Rakotomamonjy, Stéphane Canu:
Frame Kernels for Learning. ICANN 2002: 707-712 - [c6]Yves Grandvalet, Stéphane Canu:
Adaptive Scaling for Feature Selection in SVMs. NIPS 2002: 553-560 - 2000
- [j3]Skander Soltani, Daniel Boichu, Patrice Y. Simard, Stéphane Canu:
The long-term memory prediction by multiscale decomposition. Signal Process. 80(10): 2195-2205 (2000)
1990 – 1999
- 1998
- [c5]Yves Grandvalet, Stéphane Canu:
Outcomes of the Equivalence of Adaptive Ridge with Least Absolute Shrinkage. NIPS 1998: 445-451 - 1997
- [j2]Yves Grandvalet, Stéphane Canu, Stéphane Boucheron:
Noise Injection: Theoretical Prospects. Neural Comput. 9(5): 1093-1108 (1997) - [c4]Skander Soltani, Stéphane Canu, Daniel Boichu, Yves Grandvalet:
Wavelet Frames Based Estimator. ICANN 1997: 319-324 - [c3]Yves Grandvalet, Stéphane Canu:
Adaptive Noise Injection for Input Variables Relevance Determination. ICANN 1997: 463-468 - 1995
- [j1]Yves Grandvalet, Stéphane Canu:
Comments on "Noise injection into inputs in back propagation learning". IEEE Trans. Syst. Man Cybern. 25(4): 678-681 (1995) - [c2]Yves Grandvalet, Stéphane Canu, Stéphane Boucheron:
Control of complexity in learning with perturbed inputs. ESANN 1995 - 1993
- [c1]Thibault Langlois, Stéphane Canu:
B-Learning: A Reinforcement Learning Algorithm, Comparison with Dynamic Programming. IWANN 1993: 261-266
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-13 00:38 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint