default search action
Sotiris B. Kotsiantis
Person information
- affiliation: University of Patras, Greece
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j90]Andreas F. Gkontzis, Sotiris Kotsiantis, Georgios Feretzakis, Vassilios S. Verykios:
Temporal Dynamics of Citizen-Reported Urban Challenges: A Comprehensive Time Series Analysis. Big Data Cogn. Comput. 8(3): 27 (2024) - [j89]Andreas F. Gkontzis, Sotiris Kotsiantis, Georgios Feretzakis, Vassilios S. Verykios:
Enhancing Urban Resilience: Smart City Data Analyses, Forecasts, and Digital Twin Techniques at the Neighborhood Level. Future Internet 16(2): 47 (2024) - [j88]Aristidis G. Vrahatis, Konstantinos Lazaros, Sotiris Kotsiantis:
Graph Attention Networks: A Comprehensive Review of Methods and Applications. Future Internet 16(9): 318 (2024) - [j87]Konstantinos Lazaros, Dimitris E. Koumadorakis, Aristidis G. Vrahatis, Sotiris Kotsiantis:
A comprehensive review on zero-shot-learning techniques. Intell. Decis. Technol. 18(2): 1001-1028 (2024) - [j86]Pantelis Linardatos, Vasilis Papastefanopoulos, Sotiris Kotsiantis:
Regressor cascading for time series forecasting. Intell. Decis. Technol. 18(2): 1139-1156 (2024) - [j85]Anastasia-Dimitra Lipitakis, George A. Gravvanis, Christos K. Filelis-Papadopoulos, Sotiris Kotsiantis, Dimosthenis Anagnostopoulos:
Sparse Approximate Pseudoinverse Preconditioning for Sparse Supervised Learning Problems with More Features than Samples. Int. J. Artif. Intell. Tools 33(4): 2450011:1-2450011:22 (2024) - [j84]Charalampos M. Liapis, Aikaterini Karanikola, Sotiris Kotsiantis:
Emotion-Driven Energy Load Forecasting: An Ensemble Leveraging Insights from News. Int. J. Artif. Intell. Tools 33(5): 2450013:1-2450013:19 (2024) - [j83]Charalampos M. Liapis, Aikaterini Karanikola, Sotiris Kotsiantis:
Data-efficient software defect prediction: A comparative analysis of active learning-enhanced models and voting ensembles. Inf. Sci. 676: 120786 (2024) - [c92]Vassilios S. Verykios, Evgenia Paxinou, Aris Gkoulalas-Divanis, Manolis Tzagarakis, Sotirios Kotsiantis, Georgios Feretzakis, Dimitris Kalles:
The Faculty Assignment Problem in Higher Education: A Shapley Value-Based Approach. AIAI (4) 2024: 224-237 - [c91]Gregory Davrazos, George Raftopoulos, Theodor Panagiotakopoulos, Sotiris Kotsiantis, Achilles Kameas:
Enhancing Occupancy Detection Through IoT: A Comparative Analysis of Classifiers. IISA 2024: 1-4 - [c90]Gregory Davrazos, George Raftopoulos, Theodor Panagiotakopoulos, Sotiris Kotsiantis, Achilles Kameas:
Enhancing Predictive Maintenance with Interpretable AutoML: A Case Study on Detecting Ball-Bearing Faults Using IoT Data. IISA 2024: 1-4 - [c89]Gregory Davrazos, George Raftopoulos, Theodor Panagiotakopoulos, Sotiris Kotsiantis, Achilles Kameas:
Predictive Vigilance: Harnessing Internet of Things and Machine Learning for Smoke Detection. IISA 2024: 1-4 - [c88]Gregory Davrazos, George Raftopoulos, Georgios Kostopoulos, Sotiris Kotsiantis:
Optimizing Service Efficiency: Incoming Call Forecasting Utilizing Smart City Open Data - A Case Study. SETN 2024: 36:1-36:4 - 2023
- [j82]Emmanuel Pintelas, Ioannis E. Livieris, Sotiris Kotsiantis, Panayiotis E. Pintelas:
A multi-view-CNN framework for deep representation learning in image classification. Comput. Vis. Image Underst. 232: 103687 (2023) - [j81]Charalampos M. Liapis, Aikaterini Karanikola, Sotiris Kotsiantis:
Investigating Deep Stock Market Forecasting with Sentiment Analysis. Entropy 25(2): 219 (2023) - [j80]Aikaterini Karanikola, Gregory Davrazos, Charalampos M. Liapis, Sotiris Kotsiantis:
Financial sentiment analysis: Classic methods vs. deep learning models. Intell. Decis. Technol. 17(4): 893-915 (2023) - [j79]Athanasios I. Salamanis, George A. Gravvanis, Sotiris B. Kotsiantis, Michael N. Vrahatis:
Novel Sparse Feature Regression Method for Traffic Forecasting. Int. J. Artif. Intell. Tools 32(1): 2350008:1-2350008:27 (2023) - [j78]Charalampos M. Liapis, Sotiris Kotsiantis:
Temporal Convolutional Networks and BERT-Based Multi-Label Emotion Analysis for Financial Forecasting. Inf. 14(11): 596 (2023) - [j77]Athanasios I. Salamanis, George A. Gravvanis, Sotiris Kotsiantis, Konstantinos M. Giannoutakis:
A generic sparse regression imputation method for time series and tabular data. Knowl. Based Syst. 279: 110965 (2023) - [j76]Stamatis Karlos, Christos K. Aridas, Vasileios G. Kanas, Sotiris Kotsiantis:
Classification of acoustical signals by combining active learning strategies with semi-supervised learning schemes. Neural Comput. Appl. 35(1): 3-20 (2023) - [j75]Charalampos M. Liapis, Aikaterini Karanikola, Sotiris Kotsiantis:
A multivariate ensemble learning method for medium-term energy forecasting. Neural Comput. Appl. 35(29): 21479-21497 (2023) - [j74]Panagiotis E. Pintelas, Sotiris Kotsiantis, Ioannis E. Livieris:
Special Issue on Machine Learning and AI for Sensors. Sensors 23(5): 2770 (2023) - [c87]Vangjel Kazllarof, Sotiris Kotsiantis:
Active Learning Query Strategy Selection Using Dataset Meta-features Extraction. AIAI (2) 2023: 185-194 - [c86]Gregory Davrazos, Theodor Panagiotakopoulos, Sotiris Kotsiantis:
Water Quality Estimation from IoT Sensors Using a Meta-ensemble. AIAI Workshops 2023: 393-403 - [c85]Gregory Davrazos, Theodor Panagiotakopoulos, Sotiris Kotsiantis, Achilles Kameas:
Predicting Cost of Municipal Waste Management using IoT Data and Machine Learning. IISA 2023: 1-4 - [c84]Gregory Davrazos, Theodor Panagiotakopoulos, Sotiris Kotsiantis, Achilles Kameas:
Android Malware Detection in IoT Mobile Devices using a Meta-ensemble Classifier. IISA 2023: 1-4 - [c83]Gregory Davrazos, Theodor Panagiotakopoulos, Sotiris Kotsiantis, Achilles Kameas:
IoT Device Identification Using a Meta-Ensemble Multi-Class Classifier. IISA 2023: 1-4 - [c82]Gregory Davrazos, Theodor Panagiotakopoulos, Sotiris Kotsiantis, Achilles Kameas:
IoT-Enabled Crop Recommendation in Smart Agriculture Using Machine Learning. IISA 2023: 1-4 - 2022
- [j73]Nikolaos S. Alachiotis, Sotiris Kotsiantis, Evangelos Sakkopoulos, Vassilios S. Verykios:
Supervised machine learning models for student performance prediction. Intell. Decis. Technol. 16(1): 93-106 (2022) - [j72]Stamatios-Aggelos N. Alexandropoulos, Christos K. Aridas, Sotiris B. Kotsiantis, George A. Gravvanis, Michael N. Vrahatis:
Rotation forest of random subspace models. Intell. Decis. Technol. 16(2): 315-324 (2022) - [j71]Andreas F. Gkontzis, Sotiris Kotsiantis, Christos T. Panagiotakopoulos, Vassilios S. Verykios:
A predictive analytics framework as a countermeasure for attrition of students. Interact. Learn. Environ. 30(3): 568-582 (2022) - [j70]Andreas F. Gkontzis, Sotiris Kotsiantis, Christos T. Panagiotakopoulos, Vassilios S. Verykios:
A predictive analytics framework as a countermeasure for attrition of students. Interact. Learn. Environ. 30(6): 1028-1043 (2022) - [j69]Georgia Garani, Dionysios Papadatos, Sotiris Kotsiantis, Vassilios S. Verykios:
Meteorological Data Warehousing and Analysis for Supporting Air Navigation. Informatics 9(4): 78 (2022) - [c81]Charalampos M. Liapis, Aikaterini Karanikola, Sotiris Kotsiantis:
Energy Load Forecasting: Investigating Mid-Term Predictions with Ensemble Learners. AIAI (1) 2022: 343-355 - [c80]Panos K. Syriopoulos, Sotiris B. Kotsiantis, Michael N. Vrahatis:
Survey on KNN Methods in Data Science. LION 2022: 379-393 - [c79]Charalampos M. Liapis, Sotiris Kotsiantis:
Energy Balance Forecasting: An Extensive Multivariate Regression Models Comparison. SETN 2022: 41:1-41:7 - [c78]Vangjel Kazllarof, Sotiris Kotsiantis:
Human Activity Recognition using Time Series Feature Extraction and Active Learning. SETN 2022: 46:1-46:4 - 2021
- [j68]Georgios Kostopoulos, Theodor Panagiotakopoulos, Sotiris Kotsiantis, Christos Pierrakeas, Achilles Kameas:
Interpretable Models for Early Prediction of Certification in MOOCs: A Case Study on a MOOC for Smart City Professionals. IEEE Access 9: 165881-165891 (2021) - [j67]Pantelis Linardatos, Vasilis Papastefanopoulos, Sotiris Kotsiantis:
Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy 23(1): 18 (2021) - [j66]Charalampos M. Liapis, Aikaterini Karanikola, Sotiris Kotsiantis:
A Multi-Method Survey on the Use of Sentiment Analysis in Multivariate Financial Time Series Forecasting. Entropy 23(12): 1603 (2021) - [j65]Athanasios I. Salamanis, Anastasia-Dimitra Lipitakis, George A. Gravvanis, Sotiris Kotsiantis, Dimosthenis Anagnostopoulos:
An adaptive cluster-based sparse autoregressive model for large-scale multi-step traffic forecasting. Expert Syst. Appl. 180: 115093 (2021) - [j64]Aikaterini Karanikola, Charalampos M. Liapis, Sotiris Kotsiantis:
Investigating cluster validation metrics for optimal number of clusters determination. Intell. Decis. Technol. 15(4): 809-824 (2021) - [j63]Maria Tsiakmaki, Georgios Kostopoulos, Sotiris Kotsiantis, Omiros Ragos:
Fuzzy-based active learning for predicting student academic performance using autoML: a step-wise approach. J. Comput. High. Educ. 33(3): 635-667 (2021) - [j62]Emmanuel Pintelas, Meletis Liaskos, Ioannis E. Livieris, Sotiris Kotsiantis, Panagiotis E. Pintelas:
A novel explainable image classification framework: case study on skin cancer and plant disease prediction. Neural Comput. Appl. 33(22): 15171-15189 (2021) - [j61]Gautam Srivastava, Jerry Chun-Wei Lin, Dragan Pamucar, Sotiris Kotsiantis:
Editorial: Applications of Fuzzy Systems in Data Science and Big Data. IEEE Trans. Fuzzy Syst. 29(1): 1-3 (2021) - [c77]Vangjel Kazllarof, Sotiris Kotsiantis:
Active Bagging Ensemble Selection. AIAI Workshops 2021: 455-465 - [c76]Theodor Panagiotakopoulos, Sotiris Kotsiantis, Spiros A. Borotis, Fotis Lazarinis, Achilles Kameas:
Applying Machine Learning to Predict Whether Learners Will Start a MOOC After Initial Registration. AIAI Workshops 2021: 466-475 - [c75]Aikaterini Karanikola, Charalampos M. Liapis, Sotiris Kotsiantis:
A comparative study of validity indices on estimating the optimal number of clusters. IISA 2021: 1-8 - [c74]Iliana Paliari, Aikaterini Karanikola, Sotiris Kotsiantis:
A comparison of the optimized LSTM, XGBOOST and ARIMA in Time Series forecasting. IISA 2021: 1-7 - 2020
- [j60]Christos K. Aridas, Stamatis Karlos, Vasileios G. Kanas, Nikos Fazakis, Sotiris B. Kotsiantis:
Uncertainty Based Under-Sampling for Learning Naive Bayes Classifiers Under Imbalanced Data Sets. IEEE Access 8: 2122-2133 (2020) - [j59]Nikos Fazakis, Georgios Kostopoulos, Sotiris Kotsiantis, Iosif Mporas:
Iterative Robust Semi-Supervised Missing Data Imputation. IEEE Access 8: 90555-90569 (2020) - [j58]Stamatis Karlos, Georgios Kostopoulos, Sotiris Kotsiantis:
A Soft-Voting Ensemble Based Co-Training Scheme Using Static Selection for Binary Classification Problems. Algorithms 13(1): 26 (2020) - [j57]Konstantinos Lavidas, Anthi Achriani, Stavros Athanassopoulos, Ioannis Messinis, Sotiris Kotsiantis:
University students' intention to use search engines for research purposes: A structural equation modeling approach. Educ. Inf. Technol. 25(4): 2463-2479 (2020) - [j56]Stefania Tomasiello, Feng Feng, Sotiris Kotsiantis, Alireza Khastan:
Special issue on "Intelligent and fuzzy systems in data science and big data". Evol. Intell. 13(2): 131 (2020) - [j55]Nikos Fazakis, Georgios Kostopoulos, Stamatis Karlos, Sotiris Kotsiantis, Kyriakos N. Sgarbas:
An active learning ensemble method for regression tasks. Intell. Data Anal. 24(3): 607-623 (2020) - [j54]Andreas F. Gkontzis, Sotiris Kotsiantis, Dimitris Kalles, Christos T. Panagiotakopoulos, Vassilios S. Verykios:
Polarity, emotions and online activity of students and tutors as features in predicting grades. Intell. Decis. Technol. 14(3): 409-436 (2020) - [j53]Vangjel Kazllarof, Stamatis Karlos, Sotiris Kotsiantis:
Investigation of Combining Logitboost(M5P) under Active Learning Classification Tasks. Informatics 7(4): 50 (2020) - [j52]Emmanuel Pintelas, Meletis Liaskos, Ioannis E. Livieris, Sotiris Kotsiantis, Panayiotis E. Pintelas:
Explainable Machine Learning Framework for Image Classification Problems: Case Study on Glioma Cancer Prediction. J. Imaging 6(6): 37 (2020) - [c73]Vangjel Kazllarof, Sotiris B. Kotsiantis:
Active Hidden Naive Bayes. PCI 2020: 38-41 - [c72]Charalampos M. Liapis, Aikaterini Karanikola, Sotiris Kotsiantis:
An ensemble forecasting method using univariate time series COVID-19 data. PCI 2020: 50-52 - [p2]Christos Pierrakeas, Giannis Koutsonikos, Anastasia-Dimitra Lipitakis, Sotiris Kotsiantis, Michalis Xenos, George A. Gravvanis:
The Variability of the Reasons for Student Dropout in Distance Learning and the Prediction of Dropout-Prone Students. Machine Learning Paradigms 2020: 91-111
2010 – 2019
- 2019
- [j51]Vangjel Kazllarof, Stamatis Karlos, Sotiris Kotsiantis:
Active learning Rotation Forest for multiclass classification. Comput. Intell. 35(4): 891-918 (2019) - [j50]Nikos Fazakis, Vasileios G. Kanas, Christos K. Aridas, Stamatis Karlos, Sotiris Kotsiantis:
Combination of Active Learning and Semi-Supervised Learning under a Self-Training Scheme. Entropy 21(10): 988 (2019) - [j49]Christos K. Aridas, Sotiris B. Kotsiantis, Michael N. Vrahatis:
Hybrid local boosting utilizing unlabeled data in classification tasks. Evol. Syst. 10(1): 51-61 (2019) - [j48]Georgios Kostopoulos, Sotiris Kotsiantis, Nikos Fazakis, Giannis Koutsonikos, Christos Pierrakeas:
A Semi-Supervised Regression Algorithm for Grade Prediction of Students in Distance Learning Courses. Int. J. Artif. Intell. Tools 28(4): 1940001:1-1940001:19 (2019) - [j47]Stamatios-Aggelos N. Alexandropoulos, Sotiris B. Kotsiantis, Michael N. Vrahatis:
Data preprocessing in predictive data mining. Knowl. Eng. Rev. 34: e1 (2019) - [j46]Nikos Fazakis, Stamatis Karlos, Sotiris Kotsiantis, Kyriakos N. Sgarbas:
A multi-scheme semi-supervised regression approach. Pattern Recognit. Lett. 125: 758-765 (2019) - [j45]Georgios Kostopoulos, Stamatis Karlos, Sotiris Kotsiantis:
Multiview Learning for Early Prognosis of Academic Performance: A Case Study. IEEE Trans. Learn. Technol. 12(2): 212-224 (2019) - [c71]Stamatios-Aggelos N. Alexandropoulos, Christos K. Aridas, Sotiris B. Kotsiantis, Michael N. Vrahatis:
A Deep Dense Neural Network for Bankruptcy Prediction. EANN 2019: 435-444 - [c70]Stamatis Karlos, Vasileios G. Kanas, Nikos Fazakis, Christos K. Aridas, Sotiris Kotsiantis:
Investigating the Benefits of Exploiting Incremental Learners Under Active Learning Scheme. AIAI 2019: 37-49 - [c69]Stamatios-Aggelos N. Alexandropoulos, Christos K. Aridas, Sotiris B. Kotsiantis, Michael N. Vrahatis:
Stacking Strong Ensembles of Classifiers. AIAI 2019: 545-556 - [c68]Nikos Fazakis, Georgios Kostopoulos, Stamatis Karlos, Sotiris Kotsiantis, Kyriakos N. Sgarbas:
Self-trained eXtreme Gradient Boosting Trees. IISA 2019: 1-6 - [c67]Stamatis Karlos, Vasileios G. Kanas, Christos K. Aridas, Nikos Fazakis, Sotiris Kotsiantis:
Combining Active Learning with Self-train algorithm for classification of multimodal problems. IISA 2019: 1-8 - [c66]Georgios Kostopoulos, Nikos Fazakis, Sotiris Kotsiantis, Kyriakos N. Sgarbas:
Multi-objective Optimization of C4.5 Decision Tree for Predicting Student Academic Performance. IISA 2019: 1-4 - [c65]Georgios S. Temponeras, Stamatios-Aggelos N. Alexandropoulos, Sotiris B. Kotsiantis, Michael N. Vrahatis:
Financial Fraudulent Statements Detection through a Deep Dense Artificial Neural Network. IISA 2019: 1-5 - [c64]Dimitris G. Tsarmpopoulos, Athanasia N. Papanikolaou, Sotiris Kotsiantis, Theodoula N. Grapsa, George S. Androulakis:
Performance Evaluation and Comparison of Multi-objective optimization Algorithms. IISA 2019: 1-6 - [c63]Aikaterini Karanikola, Sotiris Kotsiantis:
A hybrid method for missing value imputation. PCI 2019: 74-79 - 2018
- [j44]George Kostopoulos, Sotiris Kotsiantis, Christos Pierrakeas, Giannis Koutsonikos, George A. Gravvanis:
Forecasting students' success in an open university. Int. J. Learn. Technol. 13(1): 26-43 (2018) - [j43]Georgios Kostopoulos, Ioannis E. Livieris, Sotiris B. Kotsiantis, Vassilis Tampakas:
CST-Voting: A semi-supervised ensemble method for classification problems. J. Intell. Fuzzy Syst. 35(1): 99-109 (2018) - [j42]Georgios Kostopoulos, Stamatis Karlos, Sotiris Kotsiantis, Omiros Ragos:
Semi-supervised regression: A recent review. J. Intell. Fuzzy Syst. 35(2): 1483-1500 (2018) - [c62]Aikaterini Karanikola, Stamatis Karlos, Vangjel Kazllarof, Eirini Kateri, Sotiris Kotsiantis:
Active fuzzy rule induction. EAIS 2018: 1-8 - [c61]Stamatis Karlos, Nikos Fazakis, Konstantinos Kaleris, Vasileios G. Kanas, Sotiris Kotsiantis:
An incremental self-trained ensemble algorithm. EAIS 2018: 1-8 - [c60]Andreas F. Gkontzis, Chris T. Panagiotakopoulos, Sotiris Kotsiantis, Vassilios S. Verykios:
Measuring Engagement to Assess Performance of Students in Distance Learning. IISA 2018: 1-7 - [c59]Maria Tsiakmaki, Georgios Kostopoulos, Giannis Koutsonikos, Christos Pierrakeas, Sotiris Kotsiantis, Omiros Ragos:
Predicting University Students' Grades Based on Previous Academic Achievements. IISA 2018: 1-6 - [c58]Andreas F. Gkontzis, Sotiris Kotsiantis, Rozita Tsoni, Vassilios S. Verykios:
An effective LA approach to predict student achievement. PCI 2018: 76-81 - [c57]Aikaterini Karanikola, Stamatis Karlos, Vangjel Kazllarof, Sotiris Kotsiantis:
An incrementally updateable ensemble learner. PCI 2018: 243-248 - [c56]Nikos Fazakis, Stamatis Karlos, Sotiris Kotsiantis, Kyriakos N. Sgarbas:
A Semi-supervised regressor based on model trees. SETN 2018: 6:1-6:7 - [c55]Stamatis Karlos, Aikaterini Karanikola, Vangjel Kazllarof, Sotiris Kotsiantis:
Local weighted Averaged 2-Dependence Estimator. SETN 2018: 28:1-28:4 - [c54]Stamatis Karlos, Konstantinos Kaleris, Nikos Fazakis, Vasileios G. Kanas, Sotiris Kotsiantis:
Optimized Active Learning Strategy for Audiovisual Speaker Recognition. SPECOM 2018: 281-290 - 2017
- [j41]Stamatis Karlos, Nikos Fazakis, Angeliki-Panagiota Panagopoulou, Sotiris Kotsiantis, Kyriakos N. Sgarbas:
Locally application of naive Bayes for self-training. Evol. Syst. 8(1): 3-18 (2017) - [j40]Stamatis Karlos, Nikos Fazakis, Sotiris Kotsiantis, Kyriakos N. Sgarbas:
Self-Trained Stacking Model for Semi-Supervised Learning. Int. J. Artif. Intell. Tools 26(2): 1750001:1-1750001:21 (2017) - [j39]Sotiris Kotsiantis, Nikolaos K. Tselios, Michalis Xenos:
Students' evaluation of tutors in distance education: a quasi-longitudinal study. Int. J. Learn. Technol. 12(1): 26-41 (2017) - [j38]Nikos Fazakis, Stamatis Karlos, Sotiris Kotsiantis, Kyriakos N. Sgarbas:
Self-trained Rotation Forest for semi-supervised learning. J. Intell. Fuzzy Syst. 32(1): 711-722 (2017) - [c53]Georgios Kostopoulos, Stamatis Karlos, Sotiris Kotsiantis, Vassilis Tampakas:
Evaluating Active Learning Methods for Bankruptcy Prediction. BFAL 2017: 57-66 - [c52]Georgios Kostopoulos, Sotiris Kotsiantis, Vassilios S. Verykios:
A Prognosis of Junior High School Students' Performance Based on Active Learning Methods. BFAL 2017: 67-76 - [c51]Georgios Kostopoulos, Anastasia-Dimitra Lipitakis, Sotiris Kotsiantis, George A. Gravvanis:
Predicting Student Performance in Distance Higher Education Using Active Learning. EANN 2017: 75-86 - [c50]Christos K. Aridas, Stamatios-Aggelos N. Alexandropoulos, Sotiris B. Kotsiantis, Michael N. Vrahatis:
Random Resampling in the One-Versus-All Strategy for Handling Multi-class Problems. EANN 2017: 111-121 - [c49]Stamatis Karlos, Georgios Kostopoulos, Sotiris Kotsiantis, Vassilis Tampakas:
Using Active Learning Methods for Predicting Fraudulent Financial Statements. EANN 2017: 351-362 - [c48]Georgios Kostopoulos, Sotiris Kotsiantis, Omiros Ragos, Theodoula N. Grapsa:
Early dropout prediction in distance higher education using active learning. IISA 2017: 1-6 - [c47]Georgios Kostopoulos, Ioannis E. Livieris, Sotiris Kotsiantis, Vassilis Tampakas:
Enhancing high school students' performance based on semi-supervised methods. IISA 2017: 1-6 - [c46]Vangjel Kazllarof, Stamatis Karlos, Sotiris Kotsiantis, Michalis Xenos:
Automated hand gesture recognition exploiting Active Learning methods. PCI 2017: 3:1-3:6 - 2016
- [j37]Stamatis Karlos, Nikos Fazakis, Sotiris B. Kotsiantis, Kyriakos N. Sgarbas:
A Semisupervised Cascade Classification Algorithm. Appl. Comput. Intell. Soft Comput. 2016: 5919717:1-5919717:14 (2016) - [j36]Nikos Fazakis, Stamatis Karlos, Sotiris B. Kotsiantis, Kyriakos N. Sgarbas:
Self-Trained LMT for Semisupervised Learning. Comput. Intell. Neurosci. 2016: 3057481:1-3057481:13 (2016) - [c45]Christos K. Aridas, Sotiris B. Kotsiantis, Michael N. Vrahatis:
Increasing Diversity in Random Forests Using Naive Bayes. AIAI 2016: 75-86 - [c44]Christos K. Aridas, Sotiris B. Kotsiantis, Michael N. Vrahatis:
Combining Prototype Selection with Local Boosting. AIAI 2016: 94-105 - [c43]Nikos Fazakis, Stamatis Karlos, Sotiris Kotsiantis, Kyriakos N. Sgarbas:
Self-labeled Hidden Naive Bayes algorithm for semi-supervised classification. IISA 2016: 1-6 - [c42]Stamatis Karlos, Sotiris Kotsiantis, Nikos Fazakis, Kyriakos N. Sgarbas:
Effectiveness of semi-supervised learning in bankruptcy prediction. IISA 2016: 1-6 - [c41]Vangjel Kazllarof, Stamatis Karlos, Angeliki-Panagiota Panagopoulou, Sotiris Kotsiantis:
Automated hand gesture recognition for educational applications. PCI 2016: 20 - [c40]Stamatis Karlos, Nikos Fazakis, Sotiris Kotsiantis, Kyriakos N. Sgarbas:
Semi-supervised forecasting of fraudulent financial statements. PCI 2016: 34 - [c39]Stamatis Karlos, Nikos Fazakis, Katerina Karanikola, Sotiris B. Kotsiantis, Kyriakos N. Sgarbas:
Speech Recognition Combining MFCCs and Image Features. SPECOM 2016: 651-658 - 2015
- [c38]Stamatis Karlos, Nikos Fazakis, Sotiris B. Kotsiantis, Kyriakos N. Sgarbas:
Self-Train LogitBoost for Semi-supervised Learning. EANN 2015: 139-148 - [c37]Anastasia-Dimitra Lipitakis, Gerasimos S. Antzoulatos, Sotiris Kotsiantis, Michael N. Vrahatis:
Integrating global and local boosting. IISA 2015: 1-6 - [c36]Anastasia-Dimitra Lipitakis, Sotiris Kotsiantis:
Combining ensembles algorithms of symbolic learners. IISA 2015: 1-6 - [c35]Georgios Kostopoulos, Sotiris B. Kotsiantis, Panagiotis E. Pintelas:
Predicting Student Performance in Distance Higher Education Using Semi-supervised Techniques. MEDI 2015: 259-270 - [c34]Georgios Kostopoulos, Sotiris B. Kotsiantis, Panagiotis E. Pintelas:
Estimating student dropout in distance higher education using semi-supervised techniques. Panhellenic Conference on Informatics 2015: 38-43 - [c33]Christos K. Aridas, Sotiris B. Kotsiantis:
Combining random forest and support vector machines for semi-supervised learning. Panhellenic Conference on Informatics 2015: 123-128 - [c32]Nikos Fazakis, Stamatis Karlos, Sotiris B. Kotsiantis, Kyriakos N. Sgarbas:
Speaker Identification Using Semi-supervised Learning. SPECOM 2015: 389-396 - 2014
- [j35]Sotiris B. Kotsiantis:
Integrating global and local application of naive bayes classifier. Int. Arab J. Inf. Technol. 11(3): 300-307 (2014) - [j34]Sotiris B. Kotsiantis:
A hybrid decision tree classifier. J. Intell. Fuzzy Syst. 26(1): 327-336 (2014) - [j33]Sotiris B. Kotsiantis:
Integrating global and local application of random subspace ensemble. J. Intell. Fuzzy Syst. 26(2): 731-739 (2014) - [j32]Sotiris B. Kotsiantis:
Bagging and boosting variants for handling classifications problems: a survey. Knowl. Eng. Rev. 29(1): 78-100 (2014) - [c31]Anastasia-Dimitra Lipitakis, Sotirios Kotsiantis:
A hybrid Machine Learning methodology for imbalanced datasets. IISA 2014: 252-257 - 2013
- [j31]Sotiris B. Kotsiantis:
Decision trees: a recent overview. Artif. Intell. Rev. 39(4): 261-283 (2013) - 2012
- [j30]Sotiris B. Kotsiantis:
Use of machine learning techniques for educational proposes: a decision support system for forecasting students' grades. Artif. Intell. Rev. 37(4): 331-344 (2012) - [j29]Sotiris B. Kotsiantis:
Integrating Global and Local Voting of Classifiers. Cybern. Syst. 43(5): 398-409 (2012) - [j28]Dimitris Kanellopoulos, Sotiris Kotsiantis:
Evaluating and recommending Greek newspapers' websites using clustering. Program 46(1): 71-91 (2012) - [c30]Emmanuel Pappas, Sotiris B. Kotsiantis:
Integrating Global and Local Application of Discriminative Multinomial Bayesian Classifier for Text Classification. ISI 2012: 49-55 - [c29]Elias Zouboulidis, Sotiris B. Kotsiantis:
Forecasting Fraudulent Financial Statements with Committee of Cost-Sensitive Decision Tree Classifiers. SETN 2012: 57-64 - [c28]Despina Deligianni, Sotiris B. Kotsiantis:
Forecasting Corporate Bankruptcy with an Ensemble of Classifiers. SETN 2012: 65-72 - [c27]Elias Kamos, Foteini Matthaiou, Sotiris B. Kotsiantis:
Credit Rating Using a Hybrid Voting Ensemble. SETN 2012: 165-173 - 2011
- [j27]Sotiris B. Kotsiantis:
Combining bagging, boosting, rotation forest and random subspace methods. Artif. Intell. Rev. 35(3): 223-240 (2011) - [j26]Sotiris B. Kotsiantis:
An incremental ensemble of classifiers. Artif. Intell. Rev. 36(4): 249-266 (2011) - [j25]Sotiris B. Kotsiantis:
Cascade Generalization with Reweighting Data for Handling Imbalanced Problems. Comput. J. 54(9): 1547-1559 (2011) - [j24]Sotiris B. Kotsiantis:
A random subspace method that uses different instead of similar models for regression and classification problems. Int. J. Inf. Decis. Sci. 3(2): 173-188 (2011) - [j23]Dimitris Kanellopoulos, Sotiris B. Kotsiantis, Panayiotis E. Pintelas:
Intelligent Systems and Knowledge Management (Part II). J. Comput. Methods Sci. Eng. 11(3): 89-90 (2011) - 2010
- [j22]Sotiris B. Kotsiantis, Dimitris Kanellopoulos:
Cascade generalisation for ordinal problems. Int. J. Artif. Intell. Soft Comput. 2(1/2): 46-57 (2010) - [j21]Sotiris B. Kotsiantis, Dimitris N. Kanellopoulos:
Bagging different instead of similar models for regression and classification problems. Int. J. Comput. Appl. Technol. 37(1): 20-28 (2010) - [j20]Sotiris B. Kotsiantis:
Rotation-based model trees for classification. Int. J. Data Anal. Tech. Strateg. 2(1): 22-37 (2010) - [j19]Sotiris B. Kotsiantis:
Local rotation-based ensemble. Int. J. Knowl. Eng. Data Min. 1(2): 147-160 (2010) - [j18]Sotiris B. Kotsiantis, Dimitris Kanellopoulos, Vasilis Tampakas:
Financial Application of Multi-Instance Learning: Two Greek Case Studies. J. Convergence Inf. Technol. 5(8): 42-53 (2010) - [j17]Sotiris B. Kotsiantis, Kiriakos Patriarcheas, Michalis Nik Xenos:
A combinational incremental ensemble of classifiers as a technique for predicting students' performance in distance education. Knowl. Based Syst. 23(6): 529-535 (2010)
2000 – 2009
- 2009
- [j16]Sotiris B. Kotsiantis:
Locally application of random subspace with simple Bayesian classifier. Int. J. Data Min. Model. Manag. 1(4): 375-392 (2009) - [j15]Sotiris B. Kotsiantis, Panayiotis E. Pintelas:
Selective costing ensemble for handling imbalanced data sets. Int. J. Hybrid Intell. Syst. 6(3): 123-133 (2009) - [j14]Sotiris B. Kotsiantis:
Educational data mining: a case study for predicting dropout-prone students. Int. J. Knowl. Eng. Soft Data Paradigms 1(2): 101-111 (2009) - 2008
- [j13]Sotiris B. Kotsiantis:
Locally application of cascade generalization for classification problems. Intell. Decis. Technol. 2(4): 239-246 (2008) - [j12]Sotiris B. Kotsiantis:
Local reweight wrapper for the problem of imbalance. Int. J. Artif. Intell. Soft Comput. 1(1): 25-38 (2008) - [j11]Sotiris B. Kotsiantis:
Handling imbalanced data sets with a modification of Decorate algorithm. Int. J. Comput. Appl. Technol. 33(2/3): 91-98 (2008) - [c26]Sotiris B. Kotsiantis, Dimitris Kanellopoulos:
Applying Machine Learning Techniques for Environmental Reporting. NCM (1) 2008: 217-223 - [c25]Sotiris B. Kotsiantis:
Local Grading of Learners. Panhellenic Conference on Informatics 2008: 209-213 - [c24]Sotiris B. Kotsiantis:
Stacking Cost Sensitive Models. Panhellenic Conference on Informatics 2008: 217-221 - 2007
- [j10]Sotiris B. Kotsiantis:
Credit risk analysis using a hybrid data mining model. Int. J. Intell. Syst. Technol. Appl. 2(4): 345-356 (2007) - [j9]Sotiris B. Kotsiantis:
Supervised Machine Learning: A Review of Classification Techniques. Informatica (Slovenia) 31(3): 249-268 (2007) - [j8]Sotiris B. Kotsiantis, Dimitris Tzelepis, Euaggelos Koumanakos, Vasilis Tampakas:
Selective costing voting for bankruptcy prediction. Int. J. Knowl. Based Intell. Eng. Syst. 11(2): 115-127 (2007) - [c23]Dimitris Kanellopoulos, Sotiris B. Kotsiantis, Vasilis Tampakas:
Towards an ontology-based system for intelligent prediction of firms with fraudulent financial statements. ETFA 2007: 1300-1307 - [c22]D. Anyfantis, M. Karagiannopoulos, Sotiris B. Kotsiantis, Panayiotis E. Pintelas:
Robustness of learning techniques in handling class noise in imbalanced datasets. AIAI 2007: 21-28 - [c21]M. Karagiannopoulos, D. Anyfantis, Sotiris B. Kotsiantis, Panayiotis E. Pintelas:
A Wrapper for Reweighting Training Instances for Handling Imbalanced Data Sets. AIAI 2007: 29-36 - [c20]Sotiris B. Kotsiantis, Dimitris Kanellopoulos:
Combining Bagging, Boosting and Dagging for Classification Problems. KES (2) 2007: 493-500 - [p1]Sotiris B. Kotsiantis:
Supervised Machine Learning: A Review of Classification Techniques. Emerging Artificial Intelligence Applications in Computer Engineering 2007: 3-24 - 2006
- [j7]Sotiris B. Kotsiantis, Ioannis D. Zaharakis, Panayiotis E. Pintelas:
Machine learning: a review of classification and combining techniques. Artif. Intell. Rev. 26(3): 159-190 (2006) - [j6]Sotiris B. Kotsiantis:
Local averaging of heterogeneous regression models. Int. J. Hybrid Intell. Syst. 3(2): 99-107 (2006) - [j5]Sotiris B. Kotsiantis, Dimitris Kanellopoulos, Panayiotis E. Pintelas:
Local Boosting of Decision Stumps for Regression and Classification Problems. J. Comput. 1(4): 30-37 (2006) - [c19]Dimitris Kanellopoulos, Sotiris B. Kotsiantis, Panayiotis E. Pintelas:
Ontology-based Learning Applications: A Development Methodology. IASTED Conf. on Software Engineering 2006: 27-32 - [c18]Sotiris B. Kotsiantis, Euaggelos Koumanakos, Dimitris Tzelepis, Vasilis Tampakas:
Financial Application of Neural Networks: Two Case Studies in Greece. ICANN (2) 2006: 672-681 - [c17]Sotiris B. Kotsiantis:
Local Ordinal Classification. AIAI 2006: 1-8 - [c16]Sotiris B. Kotsiantis, Dimitris Kanellopoulos, Ioannis D. Zaharakis:
Bagged Averaging of Regression Models. AIAI 2006: 53-60 - [c15]Sotiris B. Kotsiantis, Dimitris Kanellopoulos, Panayiotis E. Pintelas:
Local Additive Regression of Decision Stumps. SETN 2006: 148-157 - [c14]Sotiris B. Kotsiantis, Euaggelos Koumanakos, Dimitris Tzelepis, Vasilis Tampakas:
Predicting Fraudulent Financial Statements with Machine Learning Techniques. SETN 2006: 538-542 - 2005
- [j4]Sotiris B. Kotsiantis, Panayiotis E. Pintelas:
Logitboost of Simple Bayesian Classifier. Informatica (Slovenia) 29(1): 53-60 (2005) - [j3]Sotiris B. Kotsiantis, Panayiotis E. Pintelas:
Local voting of weak classifiers. Int. J. Knowl. Based Intell. Eng. Syst. 9(3): 239-248 (2005) - [c13]Sotiris B. Kotsiantis, Panayiotis E. Pintelas:
Predicting Students' Marks in Hellenic Open University. ICALT 2005: 664-668 - [c12]Sotiris B. Kotsiantis, George E. Tsekouras, Panayiotis E. Pintelas:
Local Bagging of Decision Stumps. IEA/AIE 2005: 406-411 - [c11]George E. Tsekouras, Dimitris Papageorgiou, Sotiris B. Kotsiantis, Christos Kalloniatis, Panayiotis E. Pintelas:
A Fuzzy Logic-Based Approach for Detecting Shifting Patterns in Cross-Cultural Data. IEA/AIE 2005: 705-708 - [c10]Sotiris B. Kotsiantis, George E. Tsekouras, C. Raptis, Panayiotis E. Pintelas:
Modeling the Organoleptic Properties of Matured Wine Distillates. MLDM 2005: 667-673 - [c9]Sotiris B. Kotsiantis, George E. Tsekouras, Panayiotis E. Pintelas:
Bagging Random Trees for Estimation of Tissue Softness. MLDM 2005: 674-681 - [c8]Sotiris B. Kotsiantis, George E. Tsekouras, Panayiotis E. Pintelas:
Bagging Model Trees for Classification Problems. Panhellenic Conference on Informatics 2005: 328-337 - 2004
- [j2]Sotiris B. Kotsiantis, Christos Pierrakeas, Panayiotis E. Pintelas:
Predicting Students' Performance In Distance Learning Using Machine Learning Techniques. Appl. Artif. Intell. 18(5): 411-426 (2004) - [j1]Sotiris B. Kotsiantis, Panayiotis E. Pintelas:
A decision support prototype tool for predicting student performance in an ODL environment. Interact. Technol. Smart Educ. 1(4): 253-264 (2004) - [c7]Sotiris B. Kotsiantis, Panayiotis E. Pintelas:
Bagged Voting Ensembles. AIMSA 2004: 168-177 - [c6]Sotiris B. Kotsiantis, Panayiotis E. Pintelas:
Increasing the Classification Accuracy of Simple Bayesian Classifier. AIMSA 2004: 198-207 - [c5]Sotiris B. Kotsiantis, Panayiotis E. Pintelas:
A Hybrid Decision Support Tool - Using Ensemble of Classifiers. ICEIS (2) 2004: 448-456 - [c4]George E. Tsekouras, Dimitris Papageorgiou, Sotiris B. Kotsiantis, Christos Kalloniatis, Panayiotis E. Pintelas:
Fuzzy Clustering of Categorical Attributes and its Use in Analyzing Cultural Data. International Conference on Computational Intelligence 2004: 202-206 - [c3]Sotiris B. Kotsiantis, Panayiotis E. Pintelas:
An Online Ensemble of Classifiers. PRIS 2004: 59-68 - [c2]Sotiris B. Kotsiantis, Panayiotis E. Pintelas:
A Cost Sensitive Technique for Ordinal Classification Problems. SETN 2004: 220-229 - 2003
- [c1]Sotiris B. Kotsiantis, Christos Pierrakeas, Panayiotis E. Pintelas:
Preventing Student Dropout in Distance Learning Using Machine Learning Techniques. KES 2003: 267-274
Coauthor Index
aka: Dimitris N. Kanellopoulos
aka: Aikaterini Karanikola
aka: George Kostopoulos
aka: Panagiotis E. Pintelas
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-10 18:34 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint