default search action
Siamak Ravanbakhsh
Person information
- unicode name: سیامک روانبخش
- affiliation: Carnegie Mellon University, Pittsburgh, Robotics Institute
- affiliation: University of Alberta, Edmonton, Department of Computing Science
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j3]Thuan Nguyen Anh Trang, Nhat Khang Ngo, Hugo Sonnery, Thieu N. Vo, Siamak Ravanbakhsh, Truong Son Hy:
Scalable Hierarchical Self-Attention with Learnable Hierarchy for Long-Range Interactions. Trans. Mach. Learn. Res. 2024 (2024) - [c35]Thuan Anh Trang, Nhat Khang Ngo, Daniel T. Levy, Ngoc Thieu Vo, Siamak Ravanbakhsh, Truong Son Hy:
E(3)-Equivariant Mesh Neural Networks. AISTATS 2024: 748-756 - [c34]Mehran Shakerinava, Motahareh Sohrabi, Siamak Ravanbakhsh, Simon Lacoste-Julien:
Weight-Sharing Regularization. AISTATS 2024: 4204-4212 - [c33]Victor Livernoche, Vineet Jain, Yashar Hezaveh, Siamak Ravanbakhsh:
On Diffusion Modeling for Anomaly Detection. ICLR 2024 - [c32]Arnab Kumar Mondal, Siba Smarak Panigrahi, Sai Rajeswar, Kaleem Siddiqi, Siamak Ravanbakhsh:
Efficient Dynamics Modeling in Interactive Environments with Koopman Theory. ICLR 2024 - [c31]Tara Akhound-Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, Sarthak Mittal, Pablo Lemos, Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, Alexander Tong:
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities. ICML 2024 - [c30]Vineet Jain, Siamak Ravanbakhsh:
Learning to Reach Goals via Diffusion. ICML 2024 - [i40]Thuan N. A. Trang, Nhat Khang Ngo, Daniel T. Levy, Thieu N. Vo, Siamak Ravanbakhsh, Truong Son Hy:
E(3)-Equivariant Mesh Neural Networks. CoRR abs/2402.04821 (2024) - [i39]Tara Akhound-Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, Sarthak Mittal, Pablo Lemos, Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, Alexander Tong:
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities. CoRR abs/2402.06121 (2024) - [i38]Vineet Jain, Tara Akhound-Sadegh, Siamak Ravanbakhsh:
Sampling from Energy-based Policies using Diffusion. CoRR abs/2410.01312 (2024) - 2023
- [c29]Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, Siamak Ravanbakhsh:
Equivariance with Learned Canonicalization Functions. ICML 2023: 15546-15566 - [c28]Tara Akhound-Sadegh, Laurence Perreault Levasseur, Johannes Brandstetter, Max Welling, Siamak Ravanbakhsh:
Lie Point Symmetry and Physics-Informed Networks. NeurIPS 2023 - [c27]Arnab Kumar Mondal, Siba Smarak Panigrahi, Oumar Kaba, Sai Mudumba, Siamak Ravanbakhsh:
Equivariant Adaptation of Large Pretrained Models. NeurIPS 2023 - [i37]Victor Livernoche, Vineet Jain, Yashar Hezaveh, Siamak Ravanbakhsh:
On Diffusion Modeling for Anomaly Detection. CoRR abs/2305.18593 (2023) - [i36]Arnab Kumar Mondal, Siba Smarak Panigrahi, Sai Rajeswar, Kaleem Siddiqi, Siamak Ravanbakhsh:
Efficient Dynamics Modeling in Interactive Environments with Koopman Theory. CoRR abs/2306.11941 (2023) - [i35]Daniel T. Levy, Sékou-Oumar Kaba, Carmelo Gonzales, Santiago Miret, Siamak Ravanbakhsh:
Using Multiple Vector Channels Improves E(n)-Equivariant Graph Neural Networks. CoRR abs/2309.03139 (2023) - [i34]Arnab Kumar Mondal, Siba Smarak Panigrahi, Sékou-Oumar Kaba, Sai Rajeswar, Siamak Ravanbakhsh:
Equivariant Adaptation of Large Pretrained Models. CoRR abs/2310.01647 (2023) - [i33]Vineet Jain, Siamak Ravanbakhsh:
Learning to Reach Goals via Diffusion. CoRR abs/2310.02505 (2023) - [i32]Mehran Shakerinava, Motahareh Sohrabi, Siamak Ravanbakhsh, Simon Lacoste-Julien:
Weight-Sharing Regularization. CoRR abs/2311.03096 (2023) - [i31]Tara Akhound-Sadegh, Laurence Perreault Levasseur, Johannes Brandstetter, Max Welling, Siamak Ravanbakhsh:
Lie Point Symmetry and Physics Informed Networks. CoRR abs/2311.04293 (2023) - [i30]Sékou-Oumar Kaba, Siamak Ravanbakhsh:
Symmetry Breaking and Equivariant Neural Networks. CoRR abs/2312.09016 (2023) - 2022
- [c26]Arnab Kumar Mondal, Vineet Jain, Kaleem Siddiqi, Siamak Ravanbakhsh:
EqR: Equivariant Representations for Data-Efficient Reinforcement Learning. ICML 2022: 15908-15926 - [c25]Christopher Morris, Gaurav Rattan, Sandra Kiefer, Siamak Ravanbakhsh:
SpeqNets: Sparsity-aware permutation-equivariant graph networks. ICML 2022: 16017-16042 - [c24]Mehran Shakerinava, Siamak Ravanbakhsh:
Utility Theory for Sequential Decision Making. ICML 2022: 19616-19625 - [c23]Sékou-Oumar Kaba, Siamak Ravanbakhsh:
Equivariant Networks for Crystal Structures. NeurIPS 2022 - [c22]Mehran Shakerinava, Arnab Kumar Mondal, Siamak Ravanbakhsh:
Structuring Representations Using Group Invariants. NeurIPS 2022 - [i29]Mehran Shakerinava, Arnab Kumar Mondal, Siamak Ravanbakhsh:
Transformation Coding: Simple Objectives for Equivariant Representations. CoRR abs/2202.10930 (2022) - [i28]Christopher Morris, Gaurav Rattan, Sandra Kiefer, Siamak Ravanbakhsh:
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks. CoRR abs/2203.13913 (2022) - [i27]Mehran Shakerinava, Siamak Ravanbakhsh:
Utility Theory for Sequential Decision Making. CoRR abs/2206.13637 (2022) - [i26]Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, Siamak Ravanbakhsh:
Equivariance with Learned Canonicalization Functions. CoRR abs/2211.06489 (2022) - [i25]Sékou-Oumar Kaba, Siamak Ravanbakhsh:
Equivariant Networks for Crystal Structures. CoRR abs/2211.15420 (2022) - 2021
- [c21]Mehran Shakerinava, Siamak Ravanbakhsh:
Equivariant Networks for Pixelized Spheres. ICML 2021: 9477-9488 - [i24]Mehran Shakerinava, Siamak Ravanbakhsh:
Equivariant Networks for Pixelized Spheres. CoRR abs/2106.06662 (2021) - 2020
- [c20]Siamak Ravanbakhsh:
Universal Equivariant Multilayer Perceptrons. ICML 2020: 7996-8006 - [c19]Renhao Wang, Marjan Albooyeh, Siamak Ravanbakhsh:
Equivariant Networks for Hierarchical Structures. NeurIPS 2020 - [i23]Siamak Ravanbakhsh:
Universal Equivariant Multilayer Perceptrons. CoRR abs/2002.02912 (2020) - [i22]Renhao Wang, Marjan Albooyeh, Siamak Ravanbakhsh:
Equivariant Maps for Hierarchical Structures. CoRR abs/2006.03627 (2020)
2010 – 2019
- 2019
- [j2]Jakub M. Tomczak, Szymon Zareba, Siamak Ravanbakhsh, Russell Greiner:
Low-Dimensional Perturb-and-MAP Approach for Learning Restricted Boltzmann Machines. Neural Process. Lett. 50(2): 1401-1419 (2019) - [c18]Bahare Fatemi, Siamak Ravanbakhsh, David Poole:
Improved Knowledge Graph Embedding Using Background Taxonomic Information. AAAI 2019: 3526-3533 - [i21]Devon R. Graham, Siamak Ravanbakhsh:
Deep Models for Relational Databases. CoRR abs/1903.09033 (2019) - [i20]Marjan Albooyeh, Daniele Bertolini, Siamak Ravanbakhsh:
Incidence Networks for Geometric Deep Learning. CoRR abs/1905.11460 (2019) - 2018
- [c17]Siyu He, Siamak Ravanbakhsh, Shirley Ho:
Analysis of Cosmic Microwave Background with Deep Learning. ICLR (Workshop) 2018 - [c16]Jason S. Hartford, Devon R. Graham, Kevin Leyton-Brown, Siamak Ravanbakhsh:
Deep Models of Interactions Across Sets. ICML 2018: 1914-1923 - [c15]Sumedha Singla, Mingming Gong, Siamak Ravanbakhsh, Frank C. Sciurba, Barnabás Póczos, Kayhan N. Batmanghelich:
Subject2Vec: Generative-Discriminative Approach from a Set of Image Patches to a Vector. MICCAI (1) 2018: 502-510 - [i19]Jason S. Hartford, Devon R. Graham, Kevin Leyton-Brown, Siamak Ravanbakhsh:
Deep Models of Interactions Across Sets. CoRR abs/1803.02879 (2018) - [i18]Sumedha Singla, Mingming Gong, Siamak Ravanbakhsh, Frank C. Sciurba, Barnabás Póczos, Kayhan N. Batmanghelich:
Subject2Vec: Generative-Discriminative Approach from a Set of Image Patches to a Vector. CoRR abs/1806.11217 (2018) - [i17]Siyu He, Yin Li, Yu Feng, Shirley Ho, Siamak Ravanbakhsh, Wei Chen, Barnabás Póczos:
Learning to Predict the Cosmological Structure Formation. CoRR abs/1811.06533 (2018) - [i16]Bahare Fatemi, Siamak Ravanbakhsh, David Poole:
Improved Knowledge Graph Embedding using Background Taxonomic Information. CoRR abs/1812.03235 (2018) - 2017
- [c14]Siamak Ravanbakhsh, François Lanusse, Rachel Mandelbaum, Jeff G. Schneider, Barnabás Póczos:
Enabling Dark Energy Science with Deep Generative Models of Galaxy Images. AAAI 2017: 1488-1494 - [c13]Siamak Ravanbakhsh, Jeff G. Schneider, Barnabás Póczos:
Deep Learning with Sets and Point Clouds. ICLR (Workshop) 2017 - [c12]Siamak Ravanbakhsh, Jeff G. Schneider, Barnabás Póczos:
Equivariance Through Parameter-Sharing. ICML 2017: 2892-2901 - [c11]Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan Salakhutdinov, Alexander J. Smola:
Deep Sets. NIPS 2017: 3391-3401 - [c10]Christopher Srinivasa, Inmar E. Givoni, Siamak Ravanbakhsh, Brendan J. Frey:
Min-Max Propagation. NIPS 2017: 5565-5573 - [i15]Siamak Ravanbakhsh, Jeff G. Schneider, Barnabás Póczos:
Equivariance Through Parameter-Sharing. CoRR abs/1702.08389 (2017) - [i14]Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan Salakhutdinov, Alexander J. Smola:
Deep Sets. CoRR abs/1703.06114 (2017) - [i13]Siamak Ravanbakhsh, Junier B. Oliva, Sebastian Fromenteau, Layne C. Price, Shirley Ho, Jeff G. Schneider, Barnabás Póczos:
Estimating Cosmological Parameters from the Dark Matter Distribution. CoRR abs/1711.02033 (2017) - 2016
- [c9]Christopher Srinivasa, Siamak Ravanbakhsh, Brendan J. Frey:
Survey Propagation beyond Constraint Satisfaction Problems. AISTATS 2016: 286-295 - [c8]Siamak Ravanbakhsh, Barnabás Póczos, Jeff G. Schneider, Dale Schuurmans, Russell Greiner:
Stochastic Neural Networks with Monotonic Activation Functions. AISTATS 2016: 809-818 - [c7]Siamak Ravanbakhsh, Barnabás Póczos, Russell Greiner:
Boolean Matrix Factorization and Noisy Completion via Message Passing. ICML 2016: 945-954 - [c6]Siamak Ravanbakhsh, Junier B. Oliva, Sebastian Fromenteau, Layne Price, Shirley Ho, Jeff G. Schneider, Barnabás Póczos:
Estimating Cosmological Parameters from the Dark Matter Distribution. ICML 2016: 2407-2416 - [i12]Siamak Ravanbakhsh, Barnabás Póczos, Jeff G. Schneider, Dale Schuurmans, Russell Greiner:
Stochastic Neural Networks with Monotonic Activation Functions. CoRR abs/1601.00034 (2016) - [i11]Siamak Ravanbakhsh, François Lanusse, Rachel Mandelbaum, Jeff G. Schneider, Barnabás Póczos:
Enabling Dark Energy Science with Deep Generative Models of Galaxy Images. CoRR abs/1609.05796 (2016) - [i10]Chun-Liang Li, Siamak Ravanbakhsh, Barnabás Póczos:
Annealing Gaussian into ReLU: a New Sampling Strategy for Leaky-ReLU RBM. CoRR abs/1611.03879 (2016) - [i9]Siamak Ravanbakhsh, Jeff G. Schneider, Barnabás Póczos:
Deep Learning with Sets and Point Clouds. CoRR abs/1611.04500 (2016) - 2015
- [j1]Siamak Ravanbakhsh, Russell Greiner:
Perturbed message passing for constraint satisfaction problems. J. Mach. Learn. Res. 16: 1249-1274 (2015) - [c5]Farzaneh Mirzazadeh, Siamak Ravanbakhsh, Nan Ding, Dale Schuurmans:
Embedding Inference for Structured Multilabel Prediction. NIPS 2015: 3555-3563 - [i8]Siamak Ravanbakhsh:
Message Passing and Combinatorial Optimization. CoRR abs/1508.05013 (2015) - [i7]Siamak Ravanbakhsh, Russell Greiner:
Boolean Matrix Factorization and Completion via Message Passing. CoRR abs/1509.08535 (2015) - 2014
- [c4]Siamak Ravanbakhsh, Christopher Srinivasa, Brendan J. Frey, Russell Greiner:
Min-Max Problems on Factor Graphs. ICML 2014: 1035-1043 - [c3]Siamak Ravanbakhsh, Reihaneh Rabbany, Russell Greiner:
Augmentative Message Passing for Traveling Salesman Problem and Graph Partitioning. NIPS 2014: 289-297 - [i6]Siamak Ravanbakhsh, Russell Greiner:
Perturbed Message Passing for Constraint Satisfaction Problems. CoRR abs/1401.6686 (2014) - [i5]Siamak Ravanbakhsh, Russell Greiner, Brendan J. Frey:
Training Restricted Boltzmann Machine by Perturbation. CoRR abs/1405.1436 (2014) - [i4]Siamak Ravanbakhsh, Reihaneh Rabbany, Russell Greiner:
Augmentative Message Passing for Traveling Salesman Problem and Graph Partitioning. CoRR abs/1406.0941 (2014) - [i3]Siamak Ravanbakhsh, Philip Liu, Trent C. Bjorndahl, Rupasri Mandal, Jason R. Grant, Michael Wilson, Roman Eisner, Igor Sinelnikov, Xiaoyu Hu, Claudio Luchinat, Russell Greiner, David S. Wishart:
Accurate, fully-automated NMR spectral profiling for metabolomics. CoRR abs/1409.1456 (2014) - [i2]Siamak Ravanbakhsh, Russell Greiner:
Algebra of inference in graphical models revisited. CoRR abs/1409.7410 (2014) - 2012
- [c2]Siamak Ravanbakhsh, Chun-Nam Yu, Russell Greiner:
A Generalized Loop Correction Method for Approximate Inference in Graphical Models. ICML 2012 - [i1]Siamak Ravanbakhsh, Chun-Nam Yu, Russell Greiner:
A Generalized Loop Correction Method for Approximate Inference in Graphical Models. CoRR abs/1206.4654 (2012) - 2010
- [c1]Siamak (Moshen) Ravanbakhsh, Barnabás Póczos, Russell Greiner:
A Cross-Entropy Method that Optimizes Partially Decomposable Problems: A New Way to Interpret NMR Spectra. AAAI 2010: 1280-1286
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-08 20:32 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint