default search action
Matthijs van Leeuwen
2020 – today
- 2024
- [j24]Zhong Li, Yuxuan Zhu, Matthijs van Leeuwen:
A Survey on Explainable Anomaly Detection. ACM Trans. Knowl. Discov. Data 18(1): 23:1-23:54 (2024) - [j23]Zhong Li, Sheng Liang, Jiayang Shi, Matthijs van Leeuwen:
Cross-Domain Graph Level Anomaly Detection. IEEE Trans. Knowl. Data Eng. 36(12): 7839-7850 (2024) - [c42]Zhong Li, Jiayang Shi, Matthijs van Leeuwen:
Graph Neural Networks based Log Anomaly Detection and Explanation. ICSE Companion 2024: 306-307 - [i22]Lincen Yang, Matthijs van Leeuwen:
Probabilistic Truly Unordered Rule Sets. CoRR abs/2401.09918 (2024) - [i21]Zhong Li, Simon Geisler, Yuhang Wang, Stephan Günnemann, Matthijs van Leeuwen:
Explainable Graph Neural Networks Under Fire. CoRR abs/2406.06417 (2024) - [i20]Lincen Yang, Matthijs van Leeuwen:
Conditional Density Estimation with Histogram Trees. CoRR abs/2410.11449 (2024) - [i19]Oliver Urs Lenz, Matthijs van Leeuwen:
Directional anomaly detection. CoRR abs/2410.23158 (2024) - 2023
- [j22]Zhong Li, Matthijs van Leeuwen:
Explainable contextual anomaly detection using quantile regression forests. Data Min. Knowl. Discov. 37(6): 2517-2563 (2023) - [j21]Shannon K. S. Kroes, Matthijs van Leeuwen, Rolf H. H. Groenwold, Mart P. Janssen:
Evaluating Cluster-Based Synthetic Data Generation for Blood-Transfusion Analysis. J. Cybersecur. Priv. 3(4): 882-894 (2023) - [j20]Lincen Yang, Mitra Baratchi, Matthijs van Leeuwen:
Unsupervised discretization by two-dimensional MDL-based histogram. Mach. Learn. 112(7): 2397-2431 (2023) - [c41]Antonio Lopez-Martinez-Carrasco, Hugo Manuel Proença, Jose M. Juarez, Matthijs van Leeuwen, Manuel Campos:
Novel Approach for Phenotyping Based on Diverse Top-K Subgroup Lists. AIME 2023: 45-50 - [c40]Antonio Lopez-Martinez-Carrasco, Hugo Manuel Proença, Jose M. Juarez, Matthijs van Leeuwen, Manuel Campos:
Discovering Diverse Top-K Characteristic Lists. IDA 2023: 262-273 - [c39]Ioanna Papagianni, Matthijs van Leeuwen:
Discovering Rule Lists with Preferred Variables. IDA 2023: 340-352 - [i18]Zhong Li, Matthijs van Leeuwen:
Robust and Explainable Contextual Anomaly Detection using Quantile Regression Forests. CoRR abs/2302.11239 (2023) - [i17]Richard van Dijk, Daniela Gawehns, Matthijs van Leeuwen:
WEARDA: recording wearable sensor data for human activity monitoring. CoRR abs/2303.00064 (2023) - [i16]Zhong Li, Jiayang Shi, Matthijs van Leeuwen:
Graph Neural Network based Log Anomaly Detection and Explanation. CoRR abs/2307.00527 (2023) - 2022
- [j19]Hugo Manuel Proença, Peter Grünwald, Thomas Bäck, Matthijs van Leeuwen:
Robust subgroup discovery. Data Min. Knowl. Discov. 36(5): 1885-1970 (2022) - [j18]Shannon K. S. Kroes, Matthijs van Leeuwen, Rolf H. H. Groenwold, Mart P. Janssen:
Generating synthetic mixed discrete-continuous health records with mixed sum-product networks. J. Am. Medical Informatics Assoc. 30(1): 16-25 (2022) - [j17]Zhong Li, Matthijs van Leeuwen:
Feature Selection for Fault Detection and Prediction based on Event Log Analysis. SIGKDD Explor. 24(2): 96-104 (2022) - [c38]Lincen Yang, Tim Opdam, Matthijs van Leeuwen:
Histogram-based Probabilistic Rule Lists for Numeric Targets (short paper). KDID 2022: 17-22 - [c37]Lincen Yang, Matthijs van Leeuwen:
Truly Unordered Probabilistic Rule Sets for Multi-class Classification. ECML/PKDD (5) 2022: 87-103 - [d2]Sander van Rijn, Sebastian Schmitt, Matthijs van Leeuwen, Thomas Bäck:
Finding Efficient Trade-offs in Multi-Fidelity Response Surface Modeling: Generated data files and figures. Version v2. Zenodo, 2022 [all versions] - [i15]Lincen Yang, Matthijs van Leeuwen:
Truly Unordered Probabilistic Rule Sets for Multi-class Classification. CoRR abs/2206.08804 (2022) - [i14]Zhong Li, Matthijs van Leeuwen:
Feature Selection for Fault Detection and Prediction based on Event Log Analysis. CoRR abs/2208.09440 (2022) - [i13]Zhong Li, Yuxuan Zhu, Matthijs van Leeuwen:
A Survey on Explainable Anomaly Detection. CoRR abs/2210.06959 (2022) - 2021
- [j16]Sarang Kapoor, Dhish Kumar Saxena, Matthijs van Leeuwen:
Online summarization of dynamic graphs using subjective interestingness for sequential data. Data Min. Knowl. Discov. 35(1): 88-126 (2021) - [c36]Alexander Marx, Lincen Yang, Matthijs van Leeuwen:
Estimating Conditional Mutual Information for Discrete-Continuous Mixtures using Multi-Dimensional Adaptive Histograms. SDM 2021: 387-395 - [d1]Sander van Rijn, Sebastian Schmitt, Matthijs van Leeuwen, Thomas Bäck:
Finding Efficient Trade-offs in Multi-Fidelity Response Surface Modeling: Generated data files and figures. Version v1. Zenodo, 2021 [all versions] - [i12]Alexander Marx, Lincen Yang, Matthijs van Leeuwen:
Estimating Conditional Mutual Information for Discrete-Continuous Mixtures using Multi-Dimensional Adaptive Histograms. CoRR abs/2101.05009 (2021) - [i11]Sander van Rijn, Sebastian Schmitt, Matthijs van Leeuwen, Thomas Bäck:
Finding Efficient Trade-offs in Multi-Fidelity Response Surface Modeling. CoRR abs/2103.03280 (2021) - [i10]Hugo Manuel Proença, Thomas Bäck, Matthijs van Leeuwen:
Robust subgroup discovery. CoRR abs/2103.13686 (2021) - 2020
- [j15]Hugo Manuel Proença, Matthijs van Leeuwen:
Interpretable multiclass classification by MDL-based rule lists. Inf. Sci. 512: 1372-1393 (2020) - [j14]Sarang Kapoor, Dhish Kumar Saxena, Matthijs van Leeuwen:
Discovering subjectively interesting multigraph patterns. Mach. Learn. 109(8): 1669-1696 (2020) - [c35]Micky Faas, Matthijs van Leeuwen:
Vouw: Geometric Pattern Mining Using the MDL Principle. IDA 2020: 158-170 - [c34]Clément Gautrais, Peggy Cellier, Matthijs van Leeuwen, Alexandre Termier:
Widening for MDL-Based Retail Signature Discovery. IDA 2020: 197-209 - [c33]Hugo Manuel Proença, Peter Grünwald, Thomas Bäck, Matthijs van Leeuwen:
Discovering Outstanding Subgroup Lists for Numeric Targets Using MDL. ECML/PKDD (1) 2020: 19-35 - [i9]Lincen Yang, Mitra Baratchi, Matthijs van Leeuwen:
Unsupervised Discretization by Two-dimensional MDL-based Histogram. CoRR abs/2006.01893 (2020) - [i8]Hugo Manuel Proença, Peter Grünwald, Thomas Bäck, Matthijs van Leeuwen:
Discovering outstanding subgroup lists for numeric targets using MDL. CoRR abs/2006.09186 (2020)
2010 – 2019
- 2019
- [j13]Matthijs van Leeuwen, Polo Chau, Jilles Vreeken, Dafna Shahaf, Christos Faloutsos:
Addendum to the Special Issue on Interactive Data Exploration and Analytics (TKDD, Vol. 12 Iss. 1). ACM Trans. Knowl. Discov. Data 13(1): 13:1-13:2 (2019) - [c32]Marieke Vinkenoog, Mart P. Janssen, Matthijs van Leeuwen:
Challenges and Limitations in Clustering Blood Donor Hemoglobin Trajectories. AALTD@PKDD/ECML 2019: 72-84 - [i7]Hugo Manuel Proença, Matthijs van Leeuwen:
Interpretable multiclass classification by MDL-based rule lists. CoRR abs/1905.00328 (2019) - [i6]Micky Faas, Matthijs van Leeuwen:
Vouw: Geometric Pattern Mining using the MDL Principle. CoRR abs/1911.09587 (2019) - 2018
- [c31]Sander van Rijn, Sebastian Schmitt, Markus Olhofer, Matthijs van Leeuwen, Thomas Bäck:
Multi-fidelity surrogate model approach to optimization. GECCO (Companion) 2018: 225-226 - [c30]Hugo Manuel Proença, Ruben Klijn, Thomas Bäck, Matthijs van Leeuwen:
Identifying flight delay patterns using diverse subgroup discovery. SSCI 2018: 60-67 - 2017
- [j12]Vladimir Dzyuba, Matthijs van Leeuwen, Luc De Raedt:
Flexible constrained sampling with guarantees for pattern mining. Data Min. Knowl. Discov. 31(5): 1266-1293 (2017) - [j11]Sergey Paramonov, Matthijs van Leeuwen, Luc De Raedt:
Relational data factorization. Mach. Learn. 106(12): 1867-1904 (2017) - [j10]Thanh Le Van, Siegfried Nijssen, Matthijs van Leeuwen, Luc De Raedt:
Semiring Rank Matrix Factorization. IEEE Trans. Knowl. Data Eng. 29(8): 1737-1750 (2017) - [c29]Vladimir Dzyuba, Matthijs van Leeuwen:
Learning What Matters - Sampling Interesting Patterns. PAKDD (1) 2017: 534-546 - [c28]Antti Ukkonen, Vladimir Dzyuba, Matthijs van Leeuwen:
Explaining Deviating Subsets Through Explanation Networks. ECML/PKDD (2) 2017: 425-441 - [i5]Vladimir Dzyuba, Matthijs van Leeuwen:
Learning what matters - Sampling interesting patterns. CoRR abs/1702.01975 (2017) - 2016
- [j9]Thanh Le Van, Matthijs van Leeuwen, Ana Carolina Fierro, Dries De Maeyer, Jimmy Van den Eynden, Lieven P. C. Verbeke, Luc De Raedt, Kathleen Marchal, Siegfried Nijssen:
Simultaneous discovery of cancer subtypes and subtype features by molecular data integration. Bioinform. 32(17): 445-454 (2016) - [j8]Matthijs van Leeuwen, Tijl De Bie, Eirini Spyropoulou, Cédric Mesnage:
Subjective interestingness of subgraph patterns. Mach. Learn. 105(1): 41-75 (2016) - [c27]Bas van Stein, Matthijs van Leeuwen, Thomas Bäck:
Local subspace-based outlier detection using global neighbourhoods. IEEE BigData 2016: 1136-1142 - [c26]Matthijs van Leeuwen, Antti Ukkonen:
Expect the Unexpected - On the Significance of Subgroups. DS 2016: 51-66 - [c25]Matthijs van Leeuwen, Esther Galbrun:
Association discovery in two-view data. ICDE 2016: 1480-1481 - [c24]Sander van Rijn, Hao Wang, Matthijs van Leeuwen, Thomas Bäck:
Evolving the structure of Evolution Strategies. SSCI 2016: 1-8 - [i4]Sander van Rijn, Hao Wang, Matthijs van Leeuwen, Thomas Bäck:
Evolving the Structure of Evolution Strategies. CoRR abs/1610.05231 (2016) - [i3]Vladimir Dzyuba, Matthijs van Leeuwen, Luc De Raedt:
Flexible constrained sampling with guarantees for pattern mining. CoRR abs/1610.09263 (2016) - [i2]Bas van Stein, Matthijs van Leeuwen, Thomas Bäck:
Local Subspace-Based Outlier Detection using Global Neighbourhoods. CoRR abs/1611.00183 (2016) - 2015
- [j7]Matthijs van Leeuwen, Esther Galbrun:
Association Discovery in Two-View Data. IEEE Trans. Knowl. Data Eng. 27(12): 3190-3202 (2015) - [c23]Emin Aksehirli, Siegfried Nijssen, Matthijs van Leeuwen, Bart Goethals:
Finding Subspace Clusters Using Ranked Neighborhoods. ICDM Workshops 2015: 831-838 - [c22]Sergey Paramonov, Matthijs van Leeuwen, Marc Denecker, Luc De Raedt:
An Exercise in Declarative Modeling for Relational Query Mining. ILP 2015: 166-182 - [c21]Thanh Le Van, Matthijs van Leeuwen, Siegfried Nijssen, Luc De Raedt:
Rank Matrix Factorisation. PAKDD (1) 2015: 734-746 - [c20]Matthijs van Leeuwen, Lara Cardinaels:
VIPER - Visual Pattern Explorer. ECML/PKDD (3) 2015: 333-336 - [c19]Matthijs van Leeuwen, Antti Ukkonen:
Same bang, fewer bucks: efficient discovery of the cost-influence skyline. SDM 2015: 19-27 - [e3]Élisa Fromont, Tijl De Bie, Matthijs van Leeuwen:
Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA 2015, Saint Etienne, France, October 22-24, 2015, Proceedings. Lecture Notes in Computer Science 9385, Springer 2015, ISBN 978-3-319-24464-8 [contents] - 2014
- [j6]Vladimir Dzyuba, Matthijs van Leeuwen, Siegfried Nijssen, Luc De Raedt:
Interactive Learning of Pattern Rankings. Int. J. Artif. Intell. Tools 23(6) (2014) - [j5]Simon Pool, Francesco Bonchi, Matthijs van Leeuwen:
Description-Driven Community Detection. ACM Trans. Intell. Syst. Technol. 5(2): 28:1-28:28 (2014) - [c18]Thanh Le Van, Matthijs van Leeuwen, Siegfried Nijssen, Ana Carolina Fierro, Kathleen Marchal, Luc De Raedt:
Ranked Tiling. ECML/PKDD (2) 2014: 98-113 - [c17]Matthijs van Leeuwen, Antti Ukkonen:
Fast Estimation of the Pattern Frequency Spectrum. ECML/PKDD (2) 2014: 114-129 - [p2]Matthijs van Leeuwen, Jilles Vreeken:
Mining and Using Sets of Patterns through Compression. Frequent Pattern Mining 2014: 165-198 - [p1]Matthijs van Leeuwen:
Interactive Data Exploration Using Pattern Mining. Interactive Knowledge Discovery and Data Mining in Biomedical Informatics 2014: 169-182 - [e2]Hendrik Blockeel, Matthijs van Leeuwen, Veronica Vinciotti:
Advances in Intelligent Data Analysis XIII - 13th International Symposium, IDA 2014, Leuven, Belgium, October 30 - November 1, 2014. Proceedings. Lecture Notes in Computer Science 8819, Springer 2014, ISBN 978-3-319-12570-1 [contents] - [i1]Matthijs van Leeuwen, Antti Ukkonen:
Estimating the pattern frequency spectrum inside the browser. CoRR abs/1409.7311 (2014) - 2013
- [c16]Vladimir Dzyuba, Matthijs van Leeuwen, Siegfried Nijssen, Luc De Raedt:
Active Preference Learning for Ranking Patterns. ICTAI 2013: 532-539 - [c15]Vladimir Dzyuba, Matthijs van Leeuwen:
Interactive Discovery of Interesting Subgroup Sets. IDA 2013: 150-161 - [c14]Matthijs van Leeuwen, Antti Ukkonen:
Discovering Skylines of Subgroup Sets. ECML/PKDD (3) 2013: 272-287 - [e1]Duen Horng Chau, Jilles Vreeken, Matthijs van Leeuwen, Christos Faloutsos:
Proceedings of the ACM SIGKDD Workshop on Interactive Data Exploration and Analytics, IDEA@KDD 2013, Chicago, Illinois, USA, August 11, 2013. ACM 2013, ISBN 978-1-4503-2329-1 [contents] - 2012
- [j4]Matthijs van Leeuwen, Arno J. Knobbe:
Diverse subgroup set discovery. Data Min. Knowl. Discov. 25(2): 208-242 (2012) - [c13]Thanh Le Van, Ana Carolina Fierro, Tias Guns, Matthijs van Leeuwen, Siegfried Nijssen, Luc De Raedt, Kathleen Marchal:
Mining Local Staircase Patterns in Noisy Data. ICDM Workshops 2012: 139-146 - [c12]Matthijs van Leeuwen, Diyah Puspitaningrum:
Improving Tag Recommendation Using Few Associations. IDA 2012: 184-194 - 2011
- [j3]Jilles Vreeken, Matthijs van Leeuwen, Arno Siebes:
Krimp: mining itemsets that compress. Data Min. Knowl. Discov. 23(1): 169-214 (2011) - [c11]Matthijs van Leeuwen, Arno J. Knobbe:
Non-redundant Subgroup Discovery in Large and Complex Data. ECML/PKDD (3) 2011: 459-474 - [c10]Francesco Bonchi, Matthijs van Leeuwen, Antti Ukkonen:
Characterizing Uncertain Data using Compression. SDM 2011: 534-545 - 2010
- [b1]Matthijs van Leeuwen:
Patterns that matter. Utrecht University, Netherlands, 2010 - [j2]Matthijs van Leeuwen:
Maximal exceptions with minimal descriptions. Data Min. Knowl. Discov. 21(2): 259-276 (2010) - [c9]Wouter Duivesteijn, Arno J. Knobbe, Ad Feelders, Matthijs van Leeuwen:
Subgroup Discovery Meets Bayesian Networks -- An Exceptional Model Mining Approach. ICDM 2010: 158-167
2000 – 2009
- 2009
- [j1]Matthijs van Leeuwen, Jilles Vreeken, Arno Siebes:
Identifying the components. Data Min. Knowl. Discov. 19(2): 176-193 (2009) - [c8]Matthijs van Leeuwen, Francesco Bonchi, Börkur Sigurbjörnsson, Arno Siebes:
Compressing tags to find interesting media groups. CIKM 2009: 1147-1156 - [c7]Matthijs van Leeuwen, Jilles Vreeken, Arno Siebes:
Identifying the Components. ECML/PKDD (1) 2009: 32 - 2008
- [c6]Matthijs van Leeuwen, Arno Siebes:
StreamKrimp: Detecting Change in Data Streams. ECML/PKDD (1) 2008: 672-687 - 2007
- [c5]Jilles Vreeken, Matthijs van Leeuwen, Arno Siebes:
Preserving Privacy through Data Generation. ICDM 2007: 685-690 - [c4]Jilles Vreeken, Matthijs van Leeuwen, Arno Siebes:
Characterising the difference. KDD 2007: 765-774 - 2006
- [c3]Matthijs van Leeuwen, Jilles Vreeken, Arno Siebes:
Compression Picks Item Sets That Matter. PKDD 2006: 585-592 - [c2]Arno Siebes, Jilles Vreeken, Matthijs van Leeuwen:
Item Sets that Compress. SDM 2006: 395-406 - 2002
- [c1]Jean-Christophe Zufferey, Dario Floreano, Matthijs van Leeuwen, Tancredi Merenda:
Evolving Vision-Based Flying Robots. Biologically Motivated Computer Vision 2002: 592-600
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
[+][–] Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
[+][–] Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-20 22:58 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint