default search action
David Martens
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j61]Dieter Brughmans, Pieter Leyman, David Martens:
NICE: an algorithm for nearest instance counterfactual explanations. Data Min. Knowl. Discov. 38(5): 2665-2703 (2024) - [j60]Koen W. De Bock, Kristof Coussement, Arno De Caigny, Roman Slowinski, Bart Baesens, Robert N. Boute, Tsan-Ming Choi, Dursun Delen, Mathias Kraus, Stefan Lessmann, Sebastián Maldonado, David Martens, María Óskarsdóttir, Carla Vairetti, Wouter Verbeke, Richard Weber:
Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda. Eur. J. Oper. Res. 317(2): 249-272 (2024) - [j59]Raphael Mazzine Barbosa de Oliveira, Kenneth Sörensen, David Martens:
A model-agnostic and data-independent tabu search algorithm to generate counterfactuals for tabular, image, and text data. Eur. J. Oper. Res. 317(2): 286-302 (2024) - [j58]Sofie Goethals, David Martens, Toon Calders:
PreCoF: counterfactual explanations for fairness. Mach. Learn. 113(5): 3111-3142 (2024) - [j57]Yanou Ramon, David Martens, Theodoros Evgeniou, Stiene Praet:
Can metafeatures help improve explanations of prediction models when using behavioral and textual data? Mach. Learn. 113(7): 4245-4284 (2024) - [i22]Sofie Goethals, Toon Calders, David Martens:
Beyond Accuracy-Fairness: Stop evaluating bias mitigation methods solely on between-group metrics. CoRR abs/2401.13391 (2024) - [i21]James Hinns, David Martens:
Exposing Image Classifier Shortcuts with Counterfactual Frequency (CoF) Tables. CoRR abs/2405.15661 (2024) - [i20]Mateusz Cedro, David Martens:
GraphXAIN: Narratives to Explain Graph Neural Networks. CoRR abs/2411.02540 (2024) - 2023
- [j56]Stiene Praet, David Martens, Peter Van Aelst:
Erratum to. Online Soc. Networks Media 34-35: 100246 (2023) - [j55]Bjorge Meulemeester, David Martens:
How sustainable is "common" data science in terms of power consumption? Sustain. Comput. Informatics Syst. 38: 100864 (2023) - [j54]Sofie Goethals, Kenneth Sörensen, David Martens:
The Privacy Issue of Counterfactual Explanations: Explanation Linkage Attacks. ACM Trans. Intell. Syst. Technol. 14(5): 83:1-83:24 (2023) - [c14]Sofie Goethals, David Martens, Toon Calders:
Explainability Methods to Detect and Measure Discrimination in Machine Learning Models. EWAF 2023 - [c13]Sofie Goethals, David Martens, Theodoros Evgeniou:
Manipulation Risks in Explainable AI: The Implications of the Disagreement Problem. PKDD/ECML Workshops (3) 2023: 185-200 - [i19]Travis Greene, Sofie Goethals, David Martens, Galit Shmueli:
Monetizing Explainable AI: A Double-edged Sword. CoRR abs/2304.06483 (2023) - [i18]Dieter Brughmans, Lissa Melis, David Martens:
Disagreement amongst counterfactual explanations: How transparency can be deceptive. CoRR abs/2304.12667 (2023) - [i17]Raphael Mazzine Barbosa de Oliveira, Sofie Goethals, Dieter Brughmans, David Martens:
Unveiling the Potential of Counterfactuals Explanations in Employability. CoRR abs/2305.10069 (2023) - [i16]Bjorge Meulemeester, Raphael Mazzine Barbosa de Oliveira, David Martens:
Calculating and Visualizing Counterfactual Feature Importance Values. CoRR abs/2306.06506 (2023) - [i15]Sofie Goethals, David Martens, Theodoros Evgeniou:
Manipulation Risks in Explainable AI: The Implications of the Disagreement Problem. CoRR abs/2306.13885 (2023) - [i14]David Martens, Camille Dams, James Hinns, Mark Vergouwen:
Tell Me a Story! Narrative-Driven XAI with Large Language Models. CoRR abs/2309.17057 (2023) - [i13]Sofie Goethals, Sandra C. Matz, Foster J. Provost, Yanou Ramon, David Martens:
The Impact of Cloaking Digital Footprints on User Privacy and Personalization. CoRR abs/2312.15000 (2023) - 2022
- [j53]Sofie Goethals, David Martens, Theodoros Evgeniou:
The non-linear nature of the cost of comprehensibility. J. Big Data 9(1): 30 (2022) - [j52]Travis Greene, David Martens, Galit Shmueli:
Barriers to academic data science research in the new realm of algorithmic behaviour modification by digital platforms. Nat. Mach. Intell. 4(4): 323-330 (2022) - [j51]Tom Vermeire, Dieter Brughmans, Sofie Goethals, Raphael Mazzine Barbossa de Oliveira, David Martens:
Explainable image classification with evidence counterfactual. Pattern Anal. Appl. 25(2): 315-335 (2022) - [i12]Bjorge Meulemeester, David Martens:
How sustainable is "common" data science in terms of power consumption? CoRR abs/2207.01934 (2022) - [i11]Sofie Goethals, Kenneth Sörensen, David Martens:
The privacy issue of counterfactual explanations: explanation linkage attacks. CoRR abs/2210.12051 (2022) - 2021
- [j50]Stiene Praet, Peter Van Aelst, Patrick van Erkel, Stephan Van der Veeken, David Martens:
Predictive modeling to study lifestyle politics with Facebook likes. EPJ Data Sci. 10(1): 50 (2021) - [j49]Yanou Ramon, R. A. Farrokhnia, Sandra C. Matz, David Martens:
Explainable AI for Psychological Profiling from Behavioral Data: An Application to Big Five Personality Predictions from Financial Transaction Records. Inf. 12(12): 518 (2021) - [j48]Marija Stankova, Stiene Praet, David Martens, Foster J. Provost:
Node classification over bipartite graphs through projection. Mach. Learn. 110(1): 37-87 (2021) - [j47]Stiene Praet, David Martens, Peter Van Aelst:
Patterns of democracy? Social network analysis of parliamentary Twitter networks in 12 countries. Online Soc. Networks Media 24: 100154 (2021) - [c12]Tom Vermeire, Thibault Laugel, Xavier Renard, David Martens, Marcin Detyniecki:
How to Choose an Explainability Method? Towards a Methodical Implementation of XAI in Practice. PKDD/ECML Workshops (1) 2021: 521-533 - [i10]Dieter Brughmans, David Martens:
NICE: An Algorithm for Nearest Instance Counterfactual Explanations. CoRR abs/2104.07411 (2021) - [i9]Yanou Ramon, Tom Vermeire, Olivier Toubia, David Martens, Theodoros Evgeniou:
Understanding Consumer Preferences for Explanations Generated by XAI Algorithms. CoRR abs/2107.02624 (2021) - [i8]Tom Vermeire, Thibault Laugel, Xavier Renard, David Martens, Marcin Detyniecki:
How to choose an Explainability Method? Towards a Methodical Implementation of XAI in Practice. CoRR abs/2107.04427 (2021) - [i7]Raphael Mazzine, David Martens:
A Framework and Benchmarking Study for Counterfactual Generating Methods on Tabular Data. CoRR abs/2107.04680 (2021) - [i6]Yanou Ramon, Sandra C. Matz, R. A. Farrokhnia, David Martens:
Explainable AI for Psychological Profiling from Digital Footprints: A Case Study of Big Five Personality Predictions from Spending Data. CoRR abs/2111.06908 (2021) - 2020
- [j46]Yanou Ramon, David Martens, Foster J. Provost, Theodoros Evgeniou:
A comparison of instance-level counterfactual explanation algorithms for behavioral and textual data: SEDC, LIME-C and SHAP-C. Adv. Data Anal. Classif. 14(4): 801-819 (2020) - [j45]Jellis Vanhoeyveld, David Martens, Bruno Peeters:
Value-added tax fraud detection with scalable anomaly detection techniques. Appl. Soft Comput. 86 (2020) - [j44]Stiene Praet, David Martens:
Efficient Parcel Delivery by Predicting Customers' Locations. Decis. Sci. 51(5): 1202-1231 (2020) - [j43]Sofie De Cnudde, David Martens, Theodoros Evgeniou, Foster J. Provost:
A benchmarking study of classification techniques for behavioral data. Int. J. Data Sci. Anal. 9(2): 131-173 (2020) - [j42]Jellis Vanhoeyveld, David Martens, Bruno Peeters:
Customs fraud detection. Pattern Anal. Appl. 23(3): 1457-1477 (2020) - [i5]Yanou Ramon, David Martens, Theodoros Evgeniou, Stiene Praet:
Metafeatures-based Rule-Extraction for Classifiers on Behavioral and Textual Data. CoRR abs/2003.04792 (2020) - [i4]Tom Vermeire, David Martens:
Explainable Image Classification with Evidence Counterfactual. CoRR abs/2004.07511 (2020)
2010 – 2019
- 2019
- [j41]Sofie De Cnudde, Yanou Ramon, David Martens, Foster J. Provost:
Deep Learning on Big, Sparse, Behavioral Data. Big Data 7(4): 286-307 (2019) - [j40]Sofie De Cnudde, Julie Moeyersoms, Marija Stankova, Ellen Tobback, Vinayak Javaly, David Martens:
What does your Facebook profile reveal about your creditworthiness? Using alternative data for microfinance. J. Oper. Res. Soc. 70(3): 353-363 (2019) - [c11]Michael Klum, Fabian Leib, Casper Oberschelp, David Martens, Alexandru-Gabriel Pielmus, Timo Tigges, Thomas Penzel, Reinhold Orglmeister:
Wearable Multimodal Stethoscope Patch for Wireless Biosignal Acquisition and Long-Term Auscultation. EMBC 2019: 5781-5785 - [i3]Dorien Herremans, David Martens, Kenneth Sörensen:
Dance Hit Song Prediction. CoRR abs/1905.08076 (2019) - [i2]Yanou Ramon, David Martens, Foster J. Provost, Theodoros Evgeniou:
Counterfactual Explanation Algorithms for Behavioral and Textual Data. CoRR abs/1912.01819 (2019) - 2018
- [j39]Jellis Vanhoeyveld, David Martens:
Imbalanced classification in sparse and large behaviour datasets. Data Min. Knowl. Discov. 32(1): 25-82 (2018) - [j38]Enric Junqué de Fortuny, David Martens, Foster J. Provost:
Wallenius Bayes. Mach. Learn. 107(6): 1013-1037 (2018) - 2017
- [j37]Wouter Verbeke, David Martens, Bart Baesens:
RULEM: A novel heuristic rule learning approach for ordinal classification with monotonicity constraints. Appl. Soft Comput. 60: 858-873 (2017) - [j36]Ellen Tobback, Tony Bellotti, Julie Moeyersoms, Marija Stankova, David Martens:
Bankruptcy prediction for SMEs using relational data. Decis. Support Syst. 102: 69-81 (2017) - 2016
- [j35]David Martens, Foster J. Provost, Jessica Clark, Enric Junqué de Fortuny:
Mining Massive Fine-Grained Behavior Data to Improve Predictive Analytics. MIS Q. 40(4): 869-888 (2016) - [p4]Dorien Herremans, David Martens, Kenneth Sörensen:
Composer Classification Models for Music-Theory Building. Computational Music Analysis 2016: 369-392 - [i1]Julie Moeyersoms, Brian Dalessandro, Foster J. Provost, David Martens:
Explaining Classification Models Built on High-Dimensional Sparse Data. CoRR abs/1607.06280 (2016) - 2015
- [j34]Dorien Herremans, Kenneth Sörensen, David Martens:
Classification and Generation of Composer-Specific Music Using Global Feature Models and Variable Neighborhood Search. Comput. Music. J. 39(3): 71-91 (2015) - [j33]Bart Minnaert, David Martens, Manu De Backer, Bart Baesens:
To tune or not to tune: rule evaluation for metaheuristic-based sequential covering algorithms. Data Min. Knowl. Discov. 29(1): 237-272 (2015) - [j32]Julie Moeyersoms, David Martens:
Including high-cardinality attributes in predictive models: A case study in churn prediction in the energy sector. Decis. Support Syst. 72: 72-81 (2015) - [j31]Sofie De Cnudde, David Martens:
Loyal to your city? A data mining analysis of a public service loyalty program. Decis. Support Syst. 73: 74-84 (2015) - [j30]Foster J. Provost, David Martens, Alan Murray:
Finding Similar Mobile Consumers with a Privacy-Friendly Geosocial Design. Inf. Syst. Res. 26(2): 243-265 (2015) - [j29]Julie Moeyersoms, Enric Junqué de Fortuny, Karel Dejaeger, Bart Baesens, David Martens:
Comprehensible software fault and effort prediction: A data mining approach. J. Syst. Softw. 100: 80-90 (2015) - [j28]Enric Junqué de Fortuny, David Martens:
Active Learning-Based Pedagogical Rule Extraction. IEEE Trans. Neural Networks Learn. Syst. 26(11): 2664-2677 (2015) - [c10]Enric Junqué de Fortuny, Theodoros Evgeniou, David Martens, Foster J. Provost:
Iteratively refining SVMs using priors. IEEE BigData 2015: 46-52 - 2014
- [j27]Wouter Verbeke, David Martens, Bart Baesens:
Social network analysis for customer churn prediction. Appl. Soft Comput. 14: 431-446 (2014) - [j26]Enric Junqué de Fortuny, Tom De Smedt, David Martens, Walter Daelemans:
Evaluating and understanding text-based stock price prediction models. Inf. Process. Manag. 50(2): 426-441 (2014) - [j25]Ellen Tobback, David Martens, Tony Van Gestel, Bart Baesens:
Forecasting Loss Given Default models: impact of account characteristics and the macroeconomic state. J. Oper. Res. Soc. 65(3): 376-392 (2014) - [j24]David Martens, Foster J. Provost:
Explaining Data-Driven Document Classifications. MIS Q. 38(1): 73-99 (2014) - [j23]Bart Minnaert, David Martens:
A Comment on "Correlation as a Heuristic for Accurate and Comprehensible Ant Colony Optimization-Based Classifiers". IEEE Trans. Evol. Comput. 18(5): 790-791 (2014) - [c9]Enric Junqué de Fortuny, Marija Stankova, Julie Moeyersoms, Bart Minnaert, Foster J. Provost, David Martens:
Corporate residence fraud detection. KDD 2014: 1650-1659 - 2013
- [j22]Enric Junqué de Fortuny, David Martens, Foster J. Provost:
Predictive Modeling With Big Data: Is Bigger Really Better? Big Data 1(4): 215-226 (2013) - 2012
- [j21]Wouter Verbeke, Karel Dejaeger, David Martens, Joon Hur, Bart Baesens:
New insights into churn prediction in the telecommunication sector: A profit driven data mining approach. Eur. J. Oper. Res. 218(1): 211-229 (2012) - [j20]Enric Junqué de Fortuny, Tom De Smedt, David Martens, Walter Daelemans:
Media coverage in times of political crisis: A text mining approach. Expert Syst. Appl. 39(14): 11616-11622 (2012) - [j19]Karel Dejaeger, Wouter Verbeke, David Martens, Bart Baesens:
Data Mining Techniques for Software Effort Estimation: A Comparative Study. IEEE Trans. Software Eng. 38(2): 375-397 (2012) - [c8]Enric Junqué de Fortuny, David Martens:
Active Learning Based Rule Extraction for Regression. ICDM Workshops 2012: 926-933 - [c7]Bart Minnaert, David Martens:
Towards a Particle Swarm Optimization-Based Regression Rule Miner. ICDM Workshops 2012: 961-963 - 2011
- [j18]Stijn Goedertier, Jochen De Weerdt, David Martens, Jan Vanthienen, Bart Baesens:
Process discovery in event logs: An application in the telecom industry. Appl. Soft Comput. 11(2): 1697-1710 (2011) - [j17]David Martens, Jan Vanthienen, Wouter Verbeke, Bart Baesens:
Performance of classification models from a user perspective. Decis. Support Syst. 51(4): 782-793 (2011) - [j16]Wouter Verbeke, David Martens, Christophe Mues, Bart Baesens:
Building comprehensible customer churn prediction models with advanced rule induction techniques. Expert Syst. Appl. 38(3): 2354-2364 (2011) - [j15]David Martens, Christine Vanhoutte, Sophie De Winne, Bart Baesens, Luc Sels, Christophe Mues:
Identifying financially successful start-up profiles with data mining. Expert Syst. Appl. 38(5): 5794-5800 (2011) - [j14]David Martens, Bart Baesens, Tom Fawcett:
Editorial survey: swarm intelligence for data mining. Mach. Learn. 82(1): 1-42 (2011) - [j13]Bart Baesens, David Martens, Rudy Setiono, Jacek M. Zurada:
Guest Editorial White Box Nonlinear Prediction Models. IEEE Trans. Neural Networks 22(12): 2406-2408 (2011) - 2010
- [j12]Tony Van Gestel, Bart Baesens, David Martens:
From linear to non-linear kernel based classifiers for bankruptcy prediction. Neurocomputing 73(16-18): 2955-2970 (2010) - [j11]G. Castermans, David Martens, Tony Van Gestel, Bart Hamers, Bart Baesens:
An overview and framework for PD backtesting and benchmarking. J. Oper. Res. Soc. 61(3): 359-373 (2010) - [j10]David Martens, Tony Van Gestel, Manu De Backer, Raf Haesen, Jan Vanthienen, Bart Baesens:
Credit rating prediction using Ant Colony Optimization. J. Oper. Res. Soc. 61(4): 561-573 (2010) - [c6]Rudy Setiono, Karel Dejaeger, Wouter Verbeke, David Martens, Bart Baesens:
Software Effort Prediction Using Regression Rule Extraction from Neural Networks. ICTAI (2) 2010: 45-52 - [p3]David Martens, Bart Baesens:
Building Acceptable Classification Models. Data Mining 2010: 53-74
2000 – 2009
- 2009
- [j9]Bjorn Cumps, David Martens, Manu De Backer, Raf Haesen, Stijn Viaene, Guido Dedene, Bart Baesens, Monique Snoeck:
Inferring comprehensible business/ICT alignment rules. Inf. Manag. 46(2): 116-124 (2009) - [j8]Stijn Goedertier, David Martens, Jan Vanthienen, Bart Baesens:
Robust Process Discovery with Artificial Negative Events. J. Mach. Learn. Res. 10: 1305-1340 (2009) - [j7]Bart Baesens, Christophe Mues, David Martens, Jan Vanthienen:
50 years of data mining and OR: upcoming trends and challenges. J. Oper. Res. Soc. 60(S1) (2009) - [j6]David Martens, Bart Baesens, Tony Van Gestel:
Decompositional Rule Extraction from Support Vector Machines by Active Learning. IEEE Trans. Knowl. Data Eng. 21(2): 178-191 (2009) - [c5]Wouter Verbeke, Bart Baesens, David Martens, Manu De Backer, Raf Haesen:
Including Domain Knowledge in Customer Churn Prediction Using AntMiner+. DMM@ICDM 2009: 10-21 - 2008
- [j5]David Martens, Liesbeth Bruynseels, Bart Baesens, Marleen Willekens, Jan Vanthienen:
Predicting going concern opinion with data mining. Decis. Support Syst. 45(4): 765-777 (2008) - [j4]Olivier Vandecruys, David Martens, Bart Baesens, Christophe Mues, Manu De Backer, Raf Haesen:
Mining software repositories for comprehensible software fault prediction models. J. Syst. Softw. 81(5): 823-839 (2008) - [j3]David Martens:
Building acceptable classification models for financial engineering applications: thesis summary. SIGKDD Explor. 10(2): 30-31 (2008) - [p2]David Martens, Johan Huysmans, Rudy Setiono, Jan Vanthienen, Bart Baesens:
Rule Extraction from Support Vector Machines: An Overview of Issues and Application in Credit Scoring. Rule Extraction from Support Vector Machines 2008: 33-63 - 2007
- [j2]David Martens, Bart Baesens, Tony Van Gestel, Jan Vanthienen:
Comprehensible credit scoring models using rule extraction from support vector machines. Eur. J. Oper. Res. 183(3): 1466-1476 (2007) - [j1]David Martens, Manu De Backer, Raf Haesen, Jan Vanthienen, Monique Snoeck, Bart Baesens:
Classification With Ant Colony Optimization. IEEE Trans. Evol. Comput. 11(5): 651-665 (2007) - [c4]Stijn Goedertier, David Martens, Bart Baesens, Raf Haesen, Jan Vanthienen:
Process Mining as First-Order Classification Learning on Logs with Negative Events. Business Process Management Workshops 2007: 42-53 - 2006
- [c3]David Martens, Manu De Backer, Raf Haesen, Bart Baesens, Christophe Mues, Jan Vanthienen:
Ant-Based Approach to the Knowledge Fusion Problem. ANTS Workshop 2006: 84-95 - [c2]Johan Huysmans, David Martens, Bart Baesens, Jan Vanthienen, Tony Van Gestel:
Country Corruption Analysis with Self Organizing Maps and Support Vector Machines. WISI 2006: 103-114 - [p1]David Martens, Manu De Backer, Raf Haesen, Bart Baesens, Tom Holvoet:
Ants Constructing Rule-Based Classifiers. Swarm Intelligence in Data Mining 2006: 21-43 - 2005
- [c1]Manu De Backer, Raf Haesen, David Martens, Bart Baesens:
A Stigmergy Based Approach to Data Mining. Australian Conference on Artificial Intelligence 2005: 975-978
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-14 21:17 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint