default search action
Hendrik Ranocha
2020 – today
- 2025
- [j26]Hendrik Ranocha, Andrew R. Winters, Michael Schlottke-Lakemper, Philipp Öffner, Jan Glaubitz, Gregor J. Gassner:
On the robustness of high-order upwind summation-by-parts methods for nonlinear conservation laws. J. Comput. Phys. 520: 113471 (2025) - 2024
- [j25]Boris J. P. Kaus, Marcel Thielmann, Pascal Aellig, Albert de Montserrat, Luca de Siena, Jacob Frasukiewicz, Lukas Fuchs, Andrea Piccolo, Hendrik Ranocha, Nicolas Riel, Christian Schuler, Arne Spang, Tatjana Weiler:
GeophysicalModelGenerator.jl: A Julia package to visualise geoscientific data and create numerical model setups. J. Open Source Softw. 9(103): 6763 (2024) - [i39]Joshua Lampert, Hendrik Ranocha:
Structure-Preserving Numerical Methods for Two Nonlinear Systems of Dispersive Wave Equations. CoRR abs/2402.16669 (2024) - [i38]Hanna Bartel, Joshua Lampert, Hendrik Ranocha:
Structure-Preserving Numerical Methods for Fokker-Planck Equations. CoRR abs/2404.07641 (2024) - [i37]Jan Glaubitz, Hendrik Ranocha, Andrew R. Winters, Michael Schlottke-Lakemper, Philipp Öffner, Gregor Gassner:
Generalized upwind summation-by-parts operators and their application to nodal discontinuous Galerkin methods. CoRR abs/2406.14557 (2024) - [i36]Gabriel A. Barrios de León, David I. Ketcheson, Hendrik Ranocha:
Pseudo-Energy-Preserving Explicit Runge-Kutta Methods. CoRR abs/2407.15365 (2024) - [i35]Hendrik Ranocha, Mario Ricchiuto:
Structure-preserving approximations of the Serre-Green-Naghdi equations in standard and hyperbolic form. CoRR abs/2408.02665 (2024) - 2023
- [j24]Hendrik Ranocha:
A discontinuous Galerkin discretization of elliptic problems with improved convergence properties using summation by parts operators. J. Comput. Phys. 491: 112367 (2023) - [j23]David I. Ketcheson, Hendrik Ranocha:
Computing with B-series. ACM Trans. Math. Softw. 49(2): 13:1-13:23 (2023) - [j22]Hendrik Ranocha, Michael Schlottke-Lakemper, Jesse Chan, Andrés M. Rueda-Ramírez, Andrew R. Winters, Florian Hindenlang, Gregor J. Gassner:
Efficient Implementation of Modern Entropy Stable and Kinetic Energy Preserving Discontinuous Galerkin Methods for Conservation Laws. ACM Trans. Math. Softw. 49(4): 37:1-37:30 (2023) - [i34]Hendrik Ranocha:
A discontinuous Galerkin discretization of elliptic problems with improved convergence properties using summation by parts operators. CoRR abs/2302.12488 (2023) - [i33]Viktor Linders, Hendrik Ranocha, Philipp Birken:
Resolving Entropy Growth from Iterative Methods. CoRR abs/2302.13579 (2023) - [i32]Cordula Reisch, Hendrik Ranocha:
Modeling still matters: a surprising instance of catastrophic floating point errors in mathematical biology and numerical methods for ODEs. CoRR abs/2304.02365 (2023) - [i31]Hendrik Ranocha, Jan Giesselmann:
Stability of step size control based on a posteriori error estimates. CoRR abs/2307.12677 (2023) - [i30]Hendrik Ranocha, Jochen Schütz, Eleni Theodosiou:
Functional-preserving predictor-corrector multiderivative schemes. CoRR abs/2308.04876 (2023) - [i29]Hendrik Ranocha, Jochen Schütz:
Multiderivative time integration methods preserving nonlinear functionals via relaxation. CoRR abs/2311.03883 (2023) - [i28]Hendrik Ranocha, Andrew R. Winters, Michael Schlottke-Lakemper, Philipp Öffner, Jan Glaubitz, Gregor J. Gassner:
High-order upwind summation-by-parts methods for nonlinear conservation laws. CoRR abs/2311.13888 (2023) - [i27]Sebastian Bleecke, Hendrik Ranocha:
Step size control for explicit relaxation Runge-Kutta methods preserving invariants. CoRR abs/2311.14050 (2023) - [i26]Thomas Izgin, Hendrik Ranocha:
Using Bayesian Optimization to Design Time Step Size Controllers with Application to Modified Patankar-Runge-Kutta Methods. CoRR abs/2312.01796 (2023) - 2022
- [j21]Rémi Abgrall, Philipp Öffner, Hendrik Ranocha:
Reinterpretation and extension of entropy correction terms for residual distribution and discontinuous Galerkin schemes: Application to structure preserving discretization. J. Comput. Phys. 453: 110955 (2022) - [j20]Hendrik Ranocha:
A note on numerical fluxes conserving a member of Harten's one-parameter family of entropies for the compressible Euler equations. J. Comput. Phys. 462: 111236 (2022) - [i25]Hendrik Ranocha:
A Note on Numerical Fluxes Conserving Harten's Entropies for the Compressible Euler Equations. CoRR abs/2201.03946 (2022) - [i24]Jesse Chan, Hendrik Ranocha, Andrés M. Rueda-Ramírez, Gregor Gassner, Tim Warburton:
On the entropy projection and the robustness of high order entropy stable discontinuous Galerkin schemes for under-resolved flows. CoRR abs/2203.10238 (2022) - [i23]Hendrik Ranocha, Andrew R. Winters, Hugo Guillermo Castro, Lisandro Dalcín, Michael Schlottke-Lakemper, Gregor J. Gassner, Matteo Parsani:
On error-based step size control for discontinuous Galerkin methods for compressible fluid dynamics. CoRR abs/2209.07037 (2022) - [i22]Valentin Churavy, William F. Godoy, Carsten Bauer, Hendrik Ranocha, Michael Schlottke-Lakemper, Ludovic Räss, Johannes P. Blaschke, Mosè Giordano, Erik Schnetter, Samuel Omlin, Jeffrey S. Vetter, Alan Edelman:
Bridging HPC Communities through the Julia Programming Language. CoRR abs/2211.02740 (2022) - 2021
- [j19]Diego Rojas, Radouan Boukharfane, Lisandro Dalcín, David C. Del Rey Fernández, Hendrik Ranocha, David E. Keyes, Matteo Parsani:
On the robustness and performance of entropy stable collocated discontinuous Galerkin methods. J. Comput. Phys. 426: 109891 (2021) - [j18]Michael Schlottke-Lakemper, Andrew R. Winters, Hendrik Ranocha, Gregor J. Gassner:
A purely hyperbolic discontinuous Galerkin approach for self-gravitating gas dynamics. J. Comput. Phys. 442: 110467 (2021) - [j17]Hendrik Ranocha:
SummationByPartsOperators.jl: A Julia library of provably stable discretization techniques with mimetic properties. J. Open Source Softw. 6(64): 3454 (2021) - [j16]Hendrik Ranocha, Jan Nordström:
A New Class of A Stable Summation by Parts Time Integration Schemes with Strong Initial Conditions. J. Sci. Comput. 87(1): 33 (2021) - [j15]Philippe G. LeFloch, Hendrik Ranocha:
Kinetic Functions for Nonclassical Shocks, Entropy Stability, and Discrete Summation by Parts. J. Sci. Comput. 87(2): 55 (2021) - [j14]Dimitrios Mitsotakis, Hendrik Ranocha, David I. Ketcheson, Endre Süli:
A Conservative Fully Discrete Numerical Method for the Regularized Shallow Water Wave Equations. SIAM J. Sci. Comput. 43(2): B508-B537 (2021) - [i21]Hendrik Ranocha, Manuel Quezada de Luna, David I. Ketcheson:
On the Rate of Error Growth in Time for Numerical Solutions of Nonlinear Dispersive Wave Equations. CoRR abs/2102.07376 (2021) - [i20]Hendrik Ranocha, Lisandro Dalcín, Matteo Parsani, David I. Ketcheson:
Optimized Runge-Kutta Methods with Automatic Step Size Control for Compressible Computational Fluid Dynamics. CoRR abs/2104.06836 (2021) - [i19]Hendrik Ranocha, Michael Schlottke-Lakemper, Andrew R. Winters, Erik Faulhaber, Jesse Chan, Gregor J. Gassner:
Adaptive numerical simulations with Trixi.jl: A case study of Julia for scientific computing. CoRR abs/2108.06476 (2021) - [i18]Davide Torlo, Philipp Öffner, Hendrik Ranocha:
A New Stability Approach for Positivity-Preserving Patankar-type Schemes. CoRR abs/2108.07347 (2021) - [i17]David I. Ketcheson, Hendrik Ranocha:
Computing with B-series. CoRR abs/2111.11680 (2021) - [i16]Hendrik Ranocha, Michael Schlottke-Lakemper, Jesse Chan, Andrés M. Rueda-Ramírez, Andrew R. Winters, Florian Hindenlang, Gregor J. Gassner:
Efficient implementation of modern entropy stable and kinetic energy preserving discontinuous Galerkin methods for conservation laws. CoRR abs/2112.10517 (2021) - 2020
- [j13]Hendrik Ranocha, Lisandro Dalcín, Matteo Parsani:
Fully discrete explicit locally entropy-stable schemes for the compressible Euler and Navier-Stokes equations. Comput. Math. Appl. 80(5): 1343-1359 (2020) - [j12]David I. Ketcheson, Matteo Parsani, Zachary Grant, Aron J. Ahmadia, Hendrik Ranocha:
RK-Opt: A package for the design of numerical ODE solvers. J. Open Source Softw. 5(54): 2514 (2020) - [j11]David I. Ketcheson, Hendrik Ranocha, Matteo Parsani, Umair bin Waheed, Yiannis Hadjimichael:
NodePy: A package for the analysis of numerical ODE solvers. J. Open Source Softw. 5(55): 2515 (2020) - [j10]Hendrik Ranocha, David I. Ketcheson:
Relaxation Runge-Kutta Methods for Hamiltonian Problems. J. Sci. Comput. 84(1): 17 (2020) - [j9]Hendrik Ranocha, Lajos Lóczi, David I. Ketcheson:
General relaxation methods for initial-value problems with application to multistep schemes. Numerische Mathematik 146(4): 875-906 (2020) - [j8]Hendrik Ranocha, David I. Ketcheson:
Energy Stability of Explicit Runge-Kutta Methods for Nonautonomous or Nonlinear Problems. SIAM J. Numer. Anal. 58(6): 3382-3405 (2020) - [j7]Hendrik Ranocha, Mohammed Sayyari, Lisandro Dalcín, Matteo Parsani, David I. Ketcheson:
Relaxation Runge-Kutta Methods: Fully Discrete Explicit Entropy-Stable Schemes for the Compressible Euler and Navier-Stokes Equations. SIAM J. Sci. Comput. 42(2): A612-A638 (2020) - [i15]Hendrik Ranocha, David I. Ketcheson:
Relaxation Runge-Kutta Methods for Hamiltonian Problems. CoRR abs/2001.04826 (2020) - [i14]Hendrik Ranocha, Lajos Lóczi, David I. Ketcheson:
General Relaxation Methods for Initial-Value Problems with Application to Multistep Schemes. CoRR abs/2003.03012 (2020) - [i13]Philip Heinisch, Katharina Ostaszewski, Hendrik Ranocha:
Towards Green Computing: A Survey of Performance and Energy Efficiency of Different Platforms using OpenCL. CoRR abs/2003.03794 (2020) - [i12]Hendrik Ranocha, Jan Nordström:
A Class of A Stable Summation by Parts Time Integration Schemes. CoRR abs/2003.03889 (2020) - [i11]Hendrik Ranocha, Lisandro Dalcín, Matteo Parsani:
Fully-Discrete Explicit Locally Entropy-Stable Schemes for the Compressible Euler and Navier-Stokes Equations. CoRR abs/2003.08831 (2020) - [i10]Stephan Nüßlein, Hendrik Ranocha, David I. Ketcheson:
Positivity-Preserving Adaptive Runge-Kutta Methods. CoRR abs/2005.06268 (2020) - [i9]Hendrik Ranocha, Dimitrios Mitsotakis, David I. Ketcheson:
A Broad Class of Conservative Numerical Methods for Dispersive Wave Equations. CoRR abs/2006.14802 (2020) - [i8]Philippe G. LeFloch, Hendrik Ranocha:
Kinetic functions for nonclassical shocks, entropy stability, and discrete summation by parts. CoRR abs/2007.08780 (2020) - [i7]Michael Schlottke-Lakemper, Andrew R. Winters, Hendrik Ranocha, Gregor J. Gassner:
A purely hyperbolic discontinuous Galerkin approach for self-gravitating gas dynamics. CoRR abs/2008.10593 (2020) - [i6]Dimitrios Mitsotakis, Hendrik Ranocha, David I. Ketcheson, Endre Süli:
A conservative fully-discrete numerical method for the regularised shallow water wave equations. CoRR abs/2009.09641 (2020) - [i5]Hendrik Ranocha, Gregor J. Gassner:
Preventing pressure oscillations does not fix local linear stability issues of entropy-based split-form high-order schemes. CoRR abs/2009.13139 (2020)
2010 – 2019
- 2019
- [j6]Philipp Öffner, Hendrik Ranocha:
Error Boundedness of Discontinuous Galerkin Methods with Variable Coefficients. J. Sci. Comput. 79(3): 1572-1607 (2019) - [i4]Rémi Abgrall, Philipp Öffner, Hendrik Ranocha:
Reinterpretation and Extension of Entropy Correction Terms for Residual Distribution and Discontinuous Galerkin Schemes. CoRR abs/1908.04556 (2019) - [i3]Hendrik Ranocha, Katharina Ostaszewski, Philip Heinisch:
Discrete Vector Calculus and Helmholtz Hodge Decomposition for Classical Finite Difference Summation by Parts Operators. CoRR abs/1908.08732 (2019) - [i2]Hendrik Ranocha, David I. Ketcheson:
Energy Stability of Explicit Runge-Kutta Methods for Non-autonomous or Nonlinear Problems. CoRR abs/1909.13215 (2019) - [i1]Diego Rojas, Radouan Boukharfane, Lisandro Dalcín, David C. Del Rey Fernández, Hendrik Ranocha, David E. Keyes, Matteo Parsani:
On the robustness and performance of entropy stable discontinuous collocation methods for the compressible Navie-Stokes equations. CoRR abs/1911.10966 (2019) - 2018
- [j5]Hendrik Ranocha:
Generalised summation-by-parts operators and variable coefficients. J. Comput. Phys. 362: 20-48 (2018) - [j4]Hendrik Ranocha, Philipp Öffner:
L2 Stability of Explicit Runge-Kutta Schemes. J. Sci. Comput. 75(2): 1040-1056 (2018) - [j3]Hendrik Ranocha:
Comparison of Some Entropy Conservative Numerical Fluxes for the Euler Equations. J. Sci. Comput. 76(1): 216-242 (2018) - [c1]Katharina Ostaszewski, Philip Heinisch, Hendrik Ranocha:
Advantages and pitfalls of OpenCL in computational physics. IWOCL 2018: 10:1 - 2017
- [j2]Hendrik Ranocha, Philipp Öffner, Thomas Sonar:
Extended skew-symmetric form for summation-by-parts operators and varying Jacobians. J. Comput. Phys. 342: 13-28 (2017) - 2016
- [j1]Hendrik Ranocha, Philipp Öffner, Thomas Sonar:
Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311: 299-328 (2016)
Coauthor Index
aka: Gregor J. Gassner
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
[+][–] Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
[+][–] Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-20 22:55 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint