default search action
Nicolò Navarin
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j31]Alvise De Biasio, Nicolò Navarin, Dietmar Jannach:
Economic recommender systems - a systematic review. Electron. Commer. Res. Appl. 63: 101352 (2024) - [j30]Alvise De Biasio, Dietmar Jannach, Nicolò Navarin:
Model-based approaches to profit-aware recommendation. Expert Syst. Appl. 249: 123642 (2024) - [j29]Danilo Franco, Vincenzo Stefano D'Amato, Luca Pasa, Nicolò Navarin, Luca Oneto:
Fair graph representation learning: Empowering NIFTY via Biased Edge Dropout and Fair Attribute Preprocessing. Neurocomputing 563: 126948 (2024) - [j28]Nicolò Navarin, Dounia Mulders, Luca Oneto:
Advances in artificial neural networks, machine learning and computational intelligence. Neurocomputing 571: 127098 (2024) - [j27]Giovanni Donghi, Luca Pasa, Luca Oneto, Claudio Gallicchio, Alessio Micheli, Davide Anguita, Alessandro Sperduti, Nicolò Navarin:
Investigating over-parameterized randomized graph networks. Neurocomputing 606: 128281 (2024) - [j26]Luca Pasa, Nicolò Navarin, Wolfgang Erb, Alessandro Sperduti:
A unified framework for backpropagation-free soft and hard gated graph neural networks. Knowl. Inf. Syst. 66(4): 2393-2416 (2024) - [j25]Luca Pasa, Nicolò Navarin, Wolfgang Erb, Alessandro Sperduti:
Empowering Simple Graph Convolutional Networks. IEEE Trans. Neural Networks Learn. Syst. 35(4): 4385-4399 (2024) - [c54]Matteo Zavatteri, Davide Bresolin, Nicolò Navarin:
Automated Synthesis of Certified Neural Networks. ECAI 2024: 1341-1348 - [c53]Nicolò Navarin, Luca Pasa, Alessandro Sperduti:
Towards the application of Backpropagation-Free Graph Convolutional Networks on Huge Datasets. ESANN 2024 - [c52]Luca Oneto, Nicolò Navarin, Alessio Micheli, Luca Pasa, Claudio Gallicchio, Davide Bacciu, Davide Anguita:
Informed Machine Learning for Complex Data. ESANN 2024 - [c51]Giovanni Donghi, Luca Pasa, Alberto Testolin, Marco Zorzi, Alessandro Sperduti, Nicolò Navarin:
Relative Local Signal Strength: The Impact of Normalization on the Analysis of Neuroimaging Data with Deep Learning. ICANN (8) 2024: 373-383 - [c50]Nicolò Navarin, Paolo Frazzetto, Luca Pasa, Pietro Verzelli, Filippo Visentin, Alessandro Sperduti, Cesare Alippi:
Physics-Informed Graph Neural Cellular Automata: an Application to Compartmental Modelling. IJCNN 2024: 1-9 - [c49]Paolo Frazzetto, Luca Pasa, Nicolò Navarin, Alessandro Sperduti:
Beyond the Additive Nodes' Convolutions: a Study on High-Order Multiplicative Integration. SAC 2024: 474-481 - 2023
- [j24]Riccardo Galanti, Massimiliano de Leoni, Merylin Monaro, Nicolò Navarin, Alan Marazzi, Brigida Di Stasi, Stéphanie Maldera:
An explainable decision support system for predictive process analytics. Eng. Appl. Artif. Intell. 120: 105904 (2023) - [j23]Riccardo Galanti, Massimiliano de Leoni, Nicolò Navarin, Alan Marazzi:
Object-centric process predictive analytics. Expert Syst. Appl. 213(Part): 119173 (2023) - [j22]Alvise De Biasio, Andrea Montagna, Fabio Aiolli, Nicolò Navarin:
A systematic review of value-aware recommender systems. Expert Syst. Appl. 226: 120131 (2023) - [j21]Alvise De Biasio, Merylin Monaro, Luca Oneto, Lamberto Ballan, Nicolò Navarin:
On the problem of recommendation for sensitive users and influential items: Simultaneously maintaining interest and diversity. Knowl. Based Syst. 275: 110699 (2023) - [c48]Andrea Montagna, Alvise De Biasio, Nicolò Navarin, Fabio Aiolli:
Graph-based Explainable Recommendation Systems: Are We Rigorously Evaluating Explanations? HCAI4U@CHItaly 2023 - [c47]Davide Bacciu, Federico Errica, Alessio Micheli, Nicolò Navarin, Luca Pasa, Marco Podda, Daniele Zambon:
Graph Representation Learning. ESANN 2023 - [c46]Nicolò Navarin, Luca Pasa, Luca Oneto, Alessandro Sperduti:
An Empirical Study of Over-Parameterized Neural Models based on Graph Random Features. ESANN 2023 - [c45]Valentina Fietta, Nicolò Navarin, Merylin Monaro, Ombretta Gaggi:
Women and Gender Disparities in Computer Science: A Case Study at the University of Padua. GoodIT 2023: 82-91 - [c44]Nicolò Navarin, Luca Pasa, Claudio Gallicchio, Alessandro Sperduti:
An Untrained Neural Model for Fast and Accurate Graph Classification. ICANN (4) 2023: 278-290 - [c43]Paolo Frazzetto, Luca Pasa, Nicolò Navarin, Alessandro Sperduti:
Topology preserving maps as aggregations for Graph Convolutional Neural Networks. SAC 2023: 536-543 - [i16]Davide Rigoni, Nicolò Navarin, Alessandro Sperduti:
RGCVAE: Relational Graph Conditioned Variational Autoencoder for Molecule Design. CoRR abs/2305.11699 (2023) - [i15]Alvise De Biasio, Nicolò Navarin, Dietmar Jannach:
Economic Recommender Systems - A Systematic Review. CoRR abs/2308.11998 (2023) - 2022
- [j20]Merylin Monaro, Stéphanie Maldera, Cristina Scarpazza, Giuseppe Sartori, Nicolò Navarin:
Detecting deception through facial expressions in a dataset of videotaped interviews: A comparison between human judges and machine learning models. Comput. Hum. Behav. 127: 107063 (2022) - [j19]Luca Oneto, Kerstin Bunte, Nicolò Navarin:
Advances in artificial neural networks, machine learning and computational intelligence. Neurocomputing 470: 300-303 (2022) - [j18]Danilo Franco, Nicolò Navarin, Michele Donini, Davide Anguita, Luca Oneto:
Deep fair models for complex data: Graphs labeling and explainable face recognition. Neurocomputing 470: 318-334 (2022) - [j17]Luca Oneto, Nicolò Navarin, Battista Biggio, Federico Errica, Alessio Micheli, Franco Scarselli, Monica Bianchini, Luca Demetrio, Pietro Bongini, Armando Tacchella, Alessandro Sperduti:
Towards learning trustworthily, automatically, and with guarantees on graphs: An overview. Neurocomputing 493: 217-243 (2022) - [j16]Luca Oneto, Nicolò Navarin, Frank-Michael Schleif:
Advances in artificial neural networks, machine learning and computational intelligence. Neurocomputing 507: 311-314 (2022) - [j15]Luca Pasa, Nicolò Navarin, Alessandro Sperduti:
Polynomial-based graph convolutional neural networks for graph classification. Mach. Learn. 111(4): 1205-1237 (2022) - [j14]Luca Pasa, Nicolò Navarin, Alessandro Sperduti:
SOM-based aggregation for graph convolutional neural networks. Neural Comput. Appl. 34(1): 5-24 (2022) - [j13]Merylin Monaro, Emilia I. Barakova, Nicolò Navarin:
Editorial Special Issue Interaction With Artificial Intelligence Systems: New Human-Centered Perspectives and Challenges. IEEE Trans. Hum. Mach. Syst. 52(3): 326-331 (2022) - [j12]Luca Pasa, Nicolò Navarin, Alessandro Sperduti:
Multiresolution Reservoir Graph Neural Network. IEEE Trans. Neural Networks Learn. Syst. 33(6): 2642-2653 (2022) - [c42]Davide Bacciu, Federico Errica, Nicolò Navarin, Luca Pasa, Daniele Zambon:
Deep Learning for Graphs. ESANN 2022 - [c41]Federico Caldart, Luca Pasa, Luca Oneto, Alessandro Sperduti, Nicolò Navarin:
Biased Edge Dropout in NIFTY for Fair Graph Representation Learning. ESANN 2022 - [c40]Luca Pasa, Nicolò Navarin, Wolfgang Erb, Alessandro Sperduti:
Backpropagation-free Graph Neural Networks. ICDM 2022: 388-397 - [c39]Matteo Cardaioli, Alessio Miolla, Mauro Conti, Giuseppe Sartori, Merylin Monaro, Cristina Scarpazza, Nicolò Navarin:
Face the Truth: Interpretable Emotion Genuineness Detection. IJCNN 2022: 1-8 - [c38]Merylin Monaro, Valentina Fietta, Valentina Curró, Giulia Lusetti, Giuseppe Sartori, Nicolò Navarin:
Forged handwriting verification: a public domain dataset for training machine learning models. IJCNN 2022: 1-8 - [c37]Matteo Munari, Luca Pasa, Daniele Zambon, Cesare Alippi, Nicolò Navarin:
Understanding Catastrophic Forgetting of Gated Linear Networks in Continual Learning. IJCNN 2022: 1-8 - [c36]Luca Pasa, Nicolò Navarin, Alessandro Sperduti:
Compact graph neural network models for node classification. SAC 2022: 592-599 - [i14]Riccardo Galanti, Massimiliano de Leoni, Nicolò Navarin, Alan Marazzi:
Object-centric Process Predictive Analytics. CoRR abs/2203.02801 (2022) - [i13]Riccardo Galanti, Massimiliano de Leoni, Merylin Monaro, Nicolò Navarin, Alan Marazzi, Brigida Di Stasi, Stéphanie Maldera:
An Explainable Decision Support System for Predictive Process Analytics. CoRR abs/2207.12782 (2022) - 2021
- [j11]Danilo Franco, Luca Oneto, Nicolò Navarin, Davide Anguita:
Toward Learning Trustworthily from Data Combining Privacy, Fairness, and Explainability: An Application to Face Recognition. Entropy 23(8): 1047 (2021) - [c35]Luca Oneto, Nicolò Navarin, Battista Biggio, Federico Errica, Alessio Micheli, Franco Scarselli, Monica Bianchini, Alessandro Sperduti:
Complex Data: Learning Trustworthily, Automatically, and with Guarantees. ESANN 2021 - [c34]Luca Pasa, Nicolò Navarin, Alessandro Sperduti:
Tangent Graph Convolutional Network. ESANN 2021 - [c33]Danilo Franco, Luca Oneto, Nicolò Navarin, Davide Anguita:
Learn and Visually Explain Deep Fair Models: an Application to Face Recognition. IJCNN 2021: 1-10 - [c32]Luca Pasa, Nicolò Navarin, Alessandro Sperduti:
Simple Multi-resolution Gated GNN. SSCI 2021: 1-7 - [c31]Mirko Polato, Denys Demchenko, Almat Kuanyshkereyev, Nicolò Navarin:
Efficient Multilingual Deep Learning Model for Keyword Categorization. SSCI 2021: 1-8 - [i12]Luca Pasa, Nicolò Navarin, Wolfgang Erb, Alessandro Sperduti:
Simple Graph Convolutional Networks. CoRR abs/2106.05809 (2021) - 2020
- [j10]Nicolò Navarin, Dinh Tran-Van, Alessandro Sperduti:
A framework for the definition of complex structured feature spaces. Neurocomputing 416: 190-201 (2020) - [j9]Manuel Dorado-Moreno, Nicolò Navarin, Pedro Antonio Gutiérrez, Luis Prieto, Alessandro Sperduti, Sancho Salcedo-Sanz, César Hervás-Martínez:
Multi-task learning for the prediction of wind power ramp events with deep neural networks. Neural Networks 123: 401-411 (2020) - [c30]Nicolò Navarin, Dinh Van Tran, Alessandro Sperduti:
Learning Kernel-Based Embeddings in Graph Neural Networks. ECAI 2020: 1387-1394 - [c29]Luca Oneto, Nicolò Navarin, Michele Donini:
Learning Deep Fair Graph Neural Networks. ESANN 2020: 31-36 - [c28]Nicolò Navarin, Wolfgang Erb, Luca Pasa, Alessandro Sperduti:
Linear Graph Convolutional Networks. ESANN 2020: 151-156 - [c27]Luca Pasa, Nicolò Navarin, Alessandro Sperduti:
Deep Recurrent Graph Neural Networks. ESANN 2020: 157-162 - [c26]Davide Rigoni, Nicolò Navarin, Alessandro Sperduti:
A Systematic Assessment of Deep Learning Models for Molecule Generation. ESANN 2020: 547-552 - [c25]Riccardo Galanti, Bernat Coma-Puig, Massimiliano de Leoni, Josep Carmona, Nicolò Navarin:
Explainable Predictive Process Monitoring. ICPM 2020: 1-8 - [c24]Nicolò Navarin, Matteo Cambiaso, Andrea Burattin, Fabrizio Maria Maggi, Luca Oneto, Alessandro Sperduti:
Towards Online Discovery of Data-Aware Declarative Process Models from Event Streams. IJCNN 2020: 1-8 - [c23]Giorgio Nicola, Luca Tagliapietra, Elisa Tosello, Nicolò Navarin, Stefano Ghidoni, Emanuele Menegatti:
Robotic Object Sorting via Deep Reinforcement Learning: a generalized approach. RO-MAN 2020: 1266-1273 - [c22]Davide Rigoni, Nicolò Navarin, Alessandro Sperduti:
Conditional Constrained Graph Variational Autoencoders for Molecule Design. SSCI 2020: 729-736 - [e2]Luca Oneto, Nicolò Navarin, Alessandro Sperduti, Davide Anguita:
Recent Advances in Big Data and Deep Learning, Proceedings of the INNS Big Data and Deep Learning Conference INNSBDDL 2019, held at Sestri Levante, Genova, Italy 16-18 April 2019. Springer 2020, ISBN 978-3-030-16840-7 [contents] - [e1]Luca Oneto, Nicolò Navarin, Alessandro Sperduti, Davide Anguita:
Recent Trends in Learning From Data - Tutorials from the INNS Big Data and Deep Learning Conference (INNSBDDL 2019). Studies in Computational Intelligence 896, Springer 2020, ISBN 978-3-030-43882-1 [contents] - [i11]Riccardo Galanti, Bernat Coma-Puig, Massimiliano de Leoni, Josep Carmona, Nicolò Navarin:
Explainable Predictive Process Monitoring. CoRR abs/2008.01807 (2020) - [i10]Davide Rigoni, Nicolò Navarin, Alessandro Sperduti:
A Systematic Assessment of Deep Learning Models for Molecule Generation. CoRR abs/2008.09168 (2020) - [i9]Davide Rigoni, Nicolò Navarin, Alessandro Sperduti:
Conditional Constrained Graph Variational Autoencoders for Molecule Design. CoRR abs/2009.00725 (2020)
2010 – 2019
- 2019
- [c21]Nicolò Navarin, Dinh Van Tran, Alessandro Sperduti:
On the definition of complex structured feature spaces. ESANN 2019 - [c20]Nicolò Navarin, Dinh Van Tran, Alessandro Sperduti:
Universal Readout for Graph Convolutional Neural Networks. IJCNN 2019: 1-7 - [c19]Luca Oneto, Nicolò Navarin, Alessandro Sperduti, Davide Anguita:
Introduction. INNSBDDL (Tutorials) 2019: 1-4 - 2018
- [j8]Guido Zampieri, Dinh Tran-Van, Michele Donini, Nicolò Navarin, Fabio Aiolli, Alessandro Sperduti, Giorgio Valle:
Scuba: scalable kernel-based gene prioritization. BMC Bioinform. 19(1): 23:1-23:12 (2018) - [j7]Luca Oneto, Nicolò Navarin, Alessandro Sperduti, Davide Anguita:
Multilayer Graph Node Kernels: Stacking While Maintaining Convexity. Neural Process. Lett. 48(2): 649-667 (2018) - [j6]Giovanni Da San Martino, Nicolò Navarin, Alessandro Sperduti:
Tree-Based Kernel for Graphs With Continuous Attributes. IEEE Trans. Neural Networks Learn. Syst. 29(7): 3270-3276 (2018) - [j5]Luca Oneto, Nicolò Navarin, Michele Donini, Sandro Ridella, Alessandro Sperduti, Fabio Aiolli, Davide Anguita:
Learning With Kernels: A Local Rademacher Complexity-Based Analysis With Application to Graph Kernels. IEEE Trans. Neural Networks Learn. Syst. 29(10): 4660-4671 (2018) - [c18]Luca Oneto, Nicolò Navarin, Michele Donini, Davide Anguita:
Emerging trends in machine learning: beyond conventional methods and data. ESANN 2018 - [c17]Dinh Tran-Van, Nicolò Navarin, Alessandro Sperduti:
DEEP: decomposition feature enhancement procedure for graphs. ESANN 2018 - [c16]Nicolò Navarin, Giovanni Da San Martino, Alessandro Sperduti:
Extreme Graph Kernels for Online Learning on a Memory Budget. IJCNN 2018: 1-8 - [c15]Dinh Van Tran, Nicolò Navarin, Alessandro Sperduti:
On Filter Size in Graph Convolutional Networks. SSCI 2018: 1534-1541 - [i8]Nicolò Navarin, Dinh Van Tran, Alessandro Sperduti:
Pre-training Graph Neural Networks with Kernels. CoRR abs/1811.06930 (2018) - [i7]Dinh Van Tran, Nicolò Navarin, Alessandro Sperduti:
On Filter Size in Graph Convolutional Networks. CoRR abs/1811.10435 (2018) - 2017
- [j4]Nicolò Navarin, Fabrizio Costa:
An efficient graph kernel method for non-coding RNA functional prediction. Bioinform. 33(17): 2642-2650 (2017) - [j3]Luca Oneto, Nicolò Navarin, Michele Donini, Alessandro Sperduti, Fabio Aiolli, Davide Anguita:
Measuring the expressivity of graph kernels through Statistical Learning Theory. Neurocomputing 268: 4-16 (2017) - [c14]Michele Donini, Nicolò Navarin, Ivano Lauriola, Fabio Aiolli, Fabrizio Costa:
Fast hyperparameter selection for graph kernels via subsampling and multiple kernel learning. ESANN 2017 - [c13]Nicolò Navarin, Alessandro Sperduti:
Approximated Neighbours MinHash Graph Node Kernel. ESANN 2017 - [c12]Luca Oneto, Nicolò Navarin, Alessandro Sperduti, Davide Anguita:
Deep graph node kernels: A convex approach. IJCNN 2017: 316-323 - [c11]Nicolò Navarin, Beatrice Vincenzi, Mirko Polato, Alessandro Sperduti:
LSTM networks for data-aware remaining time prediction of business process instances. SSCI 2017: 1-7 - [i6]Nicolò Navarin, Beatrice Vincenzi, Mirko Polato, Alessandro Sperduti:
LSTM Networks for Data-Aware Remaining Time Prediction of Business Process Instances. CoRR abs/1711.03822 (2017) - 2016
- [j2]Giovanni Da San Martino, Nicolò Navarin, Alessandro Sperduti:
Ordered Decompositional DAG kernels enhancements. Neurocomputing 192: 92-103 (2016) - [j1]Giovanni Da San Martino, Nicolò Navarin, Alessandro Sperduti:
An empirical study on budget-aware online kernel algorithms for streams of graphs. Neurocomputing 216: 163-182 (2016) - [c10]Luca Oneto, Nicolò Navarin, Michele Donini, Fabio Aiolli, Davide Anguita:
Advances in Learning with Kernels: Theory and Practice in a World of growing Constraints. ESANN 2016 - [c9]Luca Oneto, Nicolò Navarin, Michele Donini, Alessandro Sperduti, Fabio Aiolli, Davide Anguita:
Measuring the Expressivity of Graph Kernels through the Rademacher Complexity. ESANN 2016 - [c8]Carlo M. Massimo, Nicolò Navarin, Alessandro Sperduti:
Hyper-Parameter Tuning for Graph Kernels via Multiple Kernel Learning. ICONIP (2) 2016: 214-223 - 2015
- [c7]Giovanni Da San Martino, Nicolò Navarin, Alessandro Sperduti:
Exploiting the ODD framework to define a novel effective graph kernel. ESANN 2015 - [c6]Nicolò Navarin, Alessandro Sperduti, Riccardo Tesselli:
Extending Local Features with Contextual Information in Graph Kernels. ICONIP (4) 2015: 271-279 - [c5]Fabio Aiolli, Michele Donini, Nicolò Navarin, Alessandro Sperduti:
Multiple Graph-Kernel Learning. SSCI 2015: 1607-1614 - [i5]Giovanni Da San Martino, Nicolò Navarin, Alessandro Sperduti:
An Empirical Study on Budget-Aware Online Kernel Algorithms for Streams of Graphs. CoRR abs/1507.02158 (2015) - [i4]Nicolò Navarin, Alessandro Sperduti, Riccardo Tesselli:
Extending local features with contextual information in graph kernels. CoRR abs/1507.02186 (2015) - [i3]Giovanni Da San Martino, Nicolò Navarin, Alessandro Sperduti:
Ordered Decompositional DAG Kernels Enhancements. CoRR abs/1507.03372 (2015) - [i2]Giovanni Da San Martino, Nicolò Navarin, Alessandro Sperduti:
A tree-based kernel for graphs with continuous attributes. CoRR abs/1509.01116 (2015) - [i1]Giovanni Da San Martino, Nicolò Navarin, Alessandro Sperduti:
Graph Kernels exploiting Weisfeiler-Lehman Graph Isomorphism Test Extensions. CoRR abs/1509.06589 (2015) - 2014
- [b1]Nicolò Navarin:
Learning with Kernels on Graphs: DAG-based kernels, data streams and RNA function prediction. University of Bologna, Italy, 2014 - [c4]Giovanni Da San Martino, Nicolò Navarin, Alessandro Sperduti:
Graph Kernels Exploiting Weisfeiler-Lehman Graph Isomorphism Test Extensions. ICONIP (2) 2014: 93-100 - 2013
- [c3]Giovanni Da San Martino, Nicolò Navarin, Alessandro Sperduti:
A Lossy Counting Based Approach for Learning on Streams of Graphs on a Budget. IJCAI 2013: 1294-1301 - 2012
- [c2]Giovanni Da San Martino, Nicolò Navarin, Alessandro Sperduti:
A memory efficient graph kernel. IJCNN 2012: 1-7 - [c1]Giovanni Da San Martino, Nicolò Navarin, Alessandro Sperduti:
A Tree-Based Kernel for Graphs. SDM 2012: 975-986
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-20 23:01 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint