
Linear Support Vector Machines

David S. Rosenberg

1 The Support Vector Machine

For a linear support vector machine (SVM), we use the hypothesis space of
affine functions

F =
{
f(x) = wTx+ b | w ∈ Rd, b ∈ R

}
and evaluate them with respect to the SVM loss function, also known as
the hinge loss. The hinge loss is a margin-based loss defined as `(m) =
(1−m)+, where m = yf(x) is the margin for the prediction function f on
the example (x, y), and (x)+ = x1(x ≥ 0) denotes the “positive part” of
x. The SVM traditionally uses an `2regularization term, and the objective
function is written as

J(w, b) =
1

2
||w||2 + c

n

n∑
i=1

(
1− yi

[
wTxi + b

])
+
.

Note that the w parameter is regularized, while the bias term b is not regu-
larized. An alternative approach (which saves some writing), is to drop the
b and add a a constant feature, say with the value 1, to the representation of
x. With this approach, the bias term will be regularized along with the rest
of the parameters.

Rather than the typical λ regularization parameter attached to the `2
penalty, for SVMs it’s traditional to have a “c” parameter attached to the
empirical risk component. The larger c is, the more relative importance
we attach to minimizing the empirical risk compared to finding a “simple”
hypothesis with small `2-norm.

1

2 3 Compute the Lagrangian Dual

2 Formulating SVM as a QP

The SVM optimization problem is

min
w∈Rd,b∈R

1

2
||w||2 + c

n

n∑
i=1

(
1− yi

[
wTxi + b

])
+
. (2.1)

This is an unconstrained optimization problem (which is nice), but the ob-
jective function is not differentiable, which makes it difficult to work with.
We can formulate an equivalent problem with a differentiable objective, but
we’ll have to add new constraints to do so. Note that 2.1is equivalent to

minimize
1

2
||w||2 + c

n

n∑
i=1

ξi

subject to ξi ≥
(
1− yi

[
wTxi + b

])
+
,

since the minimization will always drive down ξi until ξ∗i =
(
1− yi

[
wTxi + b

])
+
.

We can now break up the inequality into two parts:

minimize
1

2
||w||2 + c

n

n∑
i=1

ξi

subject to ξi ≥ 0 for i = 1, . . . , n

ξi ≥
(
1− yi

[
wTxi + b

])
for i = 1, . . . , n

We now have a differentiable objective function in d + 1 + n variables with
2n affine constraints. This is a quadratic program that can be solved by any
off-the-shelf QP solver.

3 Compute the Lagrangian Dual

The Lagrangian for this formulation is

L(w, b, ξ, α, λ) =
1

2
||w||2 + c

n

n∑
i=1

ξi +
n∑
i=1

αi
(
1− yi

[
wTxi + b

]
− ξi

)
−

n∑
i=1

λiξi

=
1

2
wTw +

n∑
i=1

ξi

(c
n
− αi − λi

)
+

n∑
i=1

αi
(
1− yi

[
wTxi + b

])
.

3

From our study of Lagrangian duality, we know that the original problem
can now be expressed as

inf
w,b,ξ

sup
α,λ�0

L(w, b, ξ, α, λ).

Since our constraints are affine, by Slater’s condition we have strong duality
so long as the problem is feasible (i.e. so long as there is at least one point
in the feasible set). The constraints are satisfied by w = 0 and ξi = 1 for
i = 1, . . . , n, so we have strong duality. Thus we get the same result if
we solve the following dual problem:

sup
α,λ�0

inf
w,b,ξ

L(w, b, ξ, α, λ).

As usual, we capture the inner optimization in the Lagrange dual objec-
tive: g(α, λ) = infw,ξ L(w, b, ξ, α, λ) . Note that if c

n
− αi − λi 6= 0, then the

Lagrangian is unbounded below (by taking ξi → ±∞) and thus the infimum
is −∞. For any given (α, λ), the function (w, ξ) 7→ L(w, b, ξ, α, λ) is differ-
entiable and convex, thus we have an optimal point if and only if all partial
derivatives of L with respect to w, b, and ξ are 0:

∂wL = 0 ⇐⇒ w −
n∑
i=1

αiyixi = 0 ⇐⇒ w =
n∑
i=1

αiyixi (3.1)

∂bL = 0 ⇐⇒ −
n∑
i=1

αiyi = 0 ⇐⇒
n∑
i=1

αiyi = 0

∂ξiL = 0 ⇐⇒ c

n
− αi − λi = 0 ⇐⇒ αi + λi =

c

n
(3.2)

Note that one of the conditions is αi+λi = c
n
, which agrees with our previous

observation that if αi + λi 6= c
n
then L is unbounded below.

Substituting these conditions back into L, the second term disappears,
while the first and third terms become

1

2
wTw =

1

2

n∑
i,j=1

αiαjyiyjx
T
i xj

n∑
i=1

αi(1− yi
[
wTxi + b

]
) =

n∑
i=1

αi −
n∑

i,j=1

αiαjyiyjx
T
j xi − b

n∑
i=1

αiyi︸ ︷︷ ︸
=0

.

4 3 Compute the Lagrangian Dual

In the last expression, we see that if
∑n

i=1 αiyi 6= 0, then by sending b to
±∞, we can send the dual function to −∞.

Putting it together, the dual function is

g(α, λ) =

{∑n
i=1 αi −

1
2

∑n
i,j=1 αiαjyiyjx

T
j xi

∑n
i=1 αiyi = 0, αi + λi =

c
n
, all i

−∞ otherwise.

Thus we can write the dual problem as

sup
α,λ

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjx
T
j xi

s.t.
n∑
i=1

αiyi = 0

αi + λi =
c

n
, i = 1, . . . , n

αi, λi ≥ 0, i = 1, . . . , n

We can actually eliminate the λ variables, replacing the last three constraints
by 0 ≤ αi ≤ c

n
:

sup
α

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjx
T
j xi

s.t.
n∑
i=1

αiyi = 0

αi ∈
[
0,
c

n

]
.

When written in standard form, this has a quadratic objective in n unknowns
and 2n + 1 constraints. The constraints of the form αi ∈

[
0, c

n

]
are called

box constraints, and are particularly easy to handle in optimization.
Let (w∗, b∗, ξ∗) be a solution to the primal problem, and let (α∗, λ∗) be a

solution to the dual problem. Then by strong duality and since everything
is differentiable, the solutions must obey the KKT conditions. In particular,
the solutions must satisfy the first order condition we derived in Eq. (3.1).
So

w∗ =
n∑
i=1

α∗i yixi.

5

• Note that w∗ =
∑n

i=1 α
∗
i yixi only depends on those examples for which

α∗i > 0 (recall that α∗i ≥ 0 by constraint). These examples are called
support vectors.

• Since αi ∈ [0, c
n
], we see that c controls the amount of weight we can

put on any single example.

Note that we still don’t have an expression for the optimal bias term b∗. We’ll
derive this below using complementary slackness conditions.

4 Consequences of Complementary Slackness

Let (w∗, b∗, ξ∗i) and (α∗, λ∗) be optimal solutions to the primal and dual prob-
lems, respectively. For notational convenience, let’s define f ∗(x) = xTi w

∗+b∗.
By strong duality, we have the following complementary slackness condi-
tions:

α∗i (1− yif ∗(xi)− ξ∗i) = 0 (4.1)

λ∗i ξ
∗
i =

(c
n
− α∗i

)
ξ∗i = 0 (4.2)

We now draw many straightforward conclusions:

• As we noted above, ξ∗i is the hinge loss on example i. When ξ∗i = 0,
we’re either “at the margin” (i.e. yif ∗(xi) = 1) or on the “good side of
the margin” (yif ∗(xi) > 1). That is

ξ∗i = 0 =⇒ yif
∗(xi) ≥ 1. (4.3)

• By (4.2), α∗i = 0 implies ξ∗i = 0, which by (4.3) implies yif ∗(x) ≥ 1.

• α∗i ∈
(
0, c

n

)
implies ξ∗i = 0, by 4.2. Then by 4.1 we get yif ∗(xi) = 1.

So the prediction is right on the margin.

• If yif ∗(xi) < 1 then the margin loss is ξ∗i > 0, and (4.2) implies that
α∗i =

c
n
.

• If yif ∗(x) > 1 then the margin loss is ξ∗i = 0, and 4.1 implies α∗i = 0.

• The contrapositive of the previous result is that α∗i > 0 implies yif ∗(x) ≤
1. This seems to be all we can say for the specific case α∗i =

c
n
.

6 4 Consequences of Complementary Slackness

• We also can’t draw any extra information about α∗i for points exactly
on the margin (yif ∗(xi) = 1).

We summarize these results below:

α∗i = 0 =⇒ yif
∗(xi) ≥ 1

α∗i ∈
(
0,
c

n

)
=⇒ yif

∗(xi) = 1

α∗i =
c

n
=⇒ yif

∗(xi) ≤ 1

yif
∗(xi) < 1 =⇒ α∗i =

c

n

yif
∗(xi) = 1 =⇒ α∗i ∈

[
0,
c

n

]
yif
∗(xi) > 1 =⇒ α∗i = 0

4.1 Determining b

Finally, let’s determine b. Suppose there exists an i such that α∗i ∈
(
0, c

n

)
.

Then ξ∗i = 0 by (4.2) and by (4.1) we get yi
[
xTi w

∗ + b∗
]
= 1. Since yi ∈

{−1, 1}, we can multiply on both sides by yi to conclude that

b∗ = yi − xTi w∗.

With exact calculations, we would get the same b∗ for any choice of i with
α∗i ∈

(
0, c

n

)
. With numerical error, however, some people suggest averaging

over all eligible i’s:

b∗ = mean
{
yi − xTi w∗ | α∗i ∈

(
0,
c

n

)}
.

If there are no α∗i ∈
(
0, c

n

)
, then we have a degenerate SVM training

problem1, for which w∗ = 0, and we always predict the majority class.

1 This is shown in Rifkin et al.’s “A Note on Support Vector Machine Degeneracy”, an
MIT AI Lab Technical Report.

