
Parameters for Correlated Features in
Elastic Net

David S. Rosenberg

Abstract

Zou and Hastie introduce the elastic net in a 2005 paper “Regularization and variable
selection via the elastic net.” What they call the “naive” elastic net, is what most people
just call “elastic net” these days. Theorem 1 in their paper makes precise the statement
that for [naive] elastic net, the more positively correlated two features are, the closer their
parameter values. The original proof is quite readable, but here we’ve translated it to use
our notation and standard definitions.

Recall the elastic net objective function:

J(w) =
1

n
‖Xw − y‖22 + λ1‖w‖1 + λ2‖w‖22,

where X ∈ Rn×d is a design matrix and y ∈ Rn×1 is the vector of responses. Let
ŵ = (ŵ1, . . . , ŵd)

T ∈ Rd×1 be an elastic net solution – that is, ŵ minimizes J(w).
Let’s write xi as the i’th column of the design matrix X . (Note the change from
our usual notation, in which xi ∈ Rd is the ith training example – here xi ∈ Rn is
the ith feature, across all training data.) As we often do in practice, let’s assume
the data are standardized so that every column xi has mean 0, i.e. 1Txi = 0, and
standard deviation 1, i.e. 1

n
xTi xi = 1. Then we can denote the correlation between

any pair of columns xi and xj as ρij = 1
n
xTi xj . In the theorem below, we find that

if xi and xj have high correlation, then their corresponding parameters ŵi and ŵj

are close in value, assuming they have the same sign:

Theorem 1. Under the conditions described above, if ŵiŵj > 0, then

|ŵi − ŵj| ≤
‖y‖2
√
2√

nλ2

√
1− ρij.
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In the original theorem statement from the paper, they also require that y is
centered. Although this is not required for the theorem to be true, replacing y
with a centered version does not change the solution1 ŵ, though it will reduce
‖y‖2 in the bound.

Proof. By assumption, ŵi and ŵj are nonzero, and thus J(w) has partial deriva-
tives w.r.t. ŵi and ŵj . Moreover, we must have ∂J

∂wi
(ŵ) = ∂J

∂wj
(ŵ) = 0. That

is,
∂J

∂wi

(ŵ) =
2

n
(Xŵ − y)T xi + λ1sign (ŵi) + 2λ2ŵi = 0

and
∂J

∂wj

(ŵ) =
2

n
(Xŵ − y)T xj + λ1sign (ŵj) + 2λ2ŵj = 0.

Subtracting the first equation from the second, we get

2

n
(Xŵ − y)T (xj − xi) + 2λ2 (ŵj − ŵi) = 0

⇐⇒ (ŵi − ŵj) =
1

nλ2
(Xŵ − y)T (xj − xi)

Since ŵ is a minimizer of J , we must have J(ŵ) ≤ J(0), so

1

n
‖Xw − y‖22 + λ1‖ŵ‖1 + λ2‖ŵ‖22 ≤

1

n
‖y‖22.

Since the regularization terms are nonnegative, we must have ‖Xw−y‖22 ≤ ‖y‖22.
Meanwhile,

‖xj − xi‖22 = xTj xj + xTi xi − 2xTj xi.

Recall our standardization assumptions were that 1Txi = 1Txj = 0 and 1
n
xTi xi =

1
n
xTj xj = 1, and the correlation between xi and xj is ρij = 1

n
xTi xj . So

‖xj − xi‖22 = 2n− 2nρij.

1 The minimizer of J(w) is unchanged if we replace y by its projection onto the column space
of X . Since the columns of X are centered, XT 1 = 0, so 1 is orthogonal to the column space of
X . Thus y − ȳ1 has the same projection onto the column space of X as y does. So centering y
does not change the solution ŵ. (Thanks Brett Bernstein for suggesting this.)
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Putting things together,

|ŵi − ŵj| =
1

nλ2

∣∣∣(Xŵ − y)T (xj − xi)
∣∣∣

≤ 1

nλ2
‖Xŵ − y‖2 ‖xj − xi‖2 by Cauchy-Schwarz inequality

≤ 1

nλ2
‖y‖2

√
2n (1− ρij)

=
1√
n

√
2 ‖y‖2
λ2

√
1− ρij


