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Abstract

A traditional presentation on SVM can be a bit brutal, as it typically includes a
development of convex optimization and Lagrangian duality. In this short note,
we first recap the setup and the results derived in such a lecture, and in the last
section we’ll highlight the practical takeaways.

1 The Support Vector Machine

For a linear support vector machine (SVM), we use the hypothesis space of
affine functions

F={flx)=vw"z+b|weR"beR}

and evaluate them with respect to the SVM loss function, also known as
the hinge loss. The hinge loss is a margin-based loss defined as ¢(m) =
max (0,1 — m), where m = yf(z) is the margin for the prediction function f
on the example (x,y). The SVM traditionally uses an /5 regularization term,
and the objective function is written as

J(w,b) = %||w||2 +%Zmax (0,1 —y; [w'z; +b]).
i=1

Note that the w parameter is regularized, while the bias term b is not regu-
larized.

Rather than the typical A regularization parameter attached to the /5
penalty, for SVMs it’s traditional to have a “¢” parameter attached to the
empirical risk component. The larger c¢ is, the more relative importance
we attach to minimizing the empirical risk compared to finding a “simple”
hypothesis with small 5 norm.
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We reformulated the SVM optimization problem as a quadratic program,
and then we found the dual optimization problem:
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We noted that the primal problem satisfies Slater’s condition, and thus we
have strong duality. This allowed us to find a relationship between the primal
optimal solution and the dual optimal solution:

n
* *
w = E Q; Yil;
i=1
ko T %
bt =y —ajw,

where j is any index for which o} € (0, ﬁ)

We then applied the complementary slackness conditions (guaranteed by
strong duality) to derive the following relations between the margin of a
training point (z;,y;) and the corresponding weight for that training point
o, in the expression for w*:
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3 Key Takeaways

1. The solution w* = """ | afy;z; is a linear combination of the training
input vectors xy,...,x,. People often say that w* is in the span of
the data. While this is not unique to SVMs, and there are much
simpler ways to derive this result (such as with basic linear algebra via
the representer theorem), we need this to understand some of the other
takeaways.

2. While finding w* to be in the span of the data is common with linear
methods, with SVMs we find that the expansion is often sparse in
the data. In other words, many of the af’s may be exactly 0. The
complementary slackness conditions tell us exactly when this happens:
it is guaranteed to happen for any training point with y; f*(z;) > 1
(i.e. on the “good side of the margin”) and may also happen with
yif*(z;) = 1 (exactly on the margin). The z;’s that have nonzero
coefficients (i.e. af > 0) are called support vectors. The sparsity of
the support vectors becomes more important when we introduce the
“kernelized SVM”, for which we need to store all the support vectors to
make new predictions. So sparsity can be important when we have a
very large training set.

3. The amount of weight we can put on any single example in the final
solution is controlled by c, since o € [0, ﬂ So, in a certain sense, no
single training point can have too much influence on the final solution.
However, we shouldn’t read too much into this. Note that a single
training point can still dominate the expression for w* just by being
very far away from the other points in input space. To investigate:
How does the influence of a single extreme training point on w* change

if we use square loss rather than hinge loss?



