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General Latent Variable Model

@ Two sets of random variables: z and x.
@ z consists of unobserved hidden variables.
@ x consists of observed variables.

@ Joint probability model parameterized by 6 € ©:

p(x,z[9)

Definition
A latent variable model is a probability model for which certain variables are never observed. J

e.g. The Gaussian mixture model is a latent variable model.
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Complete and Incomplete Data

@ Suppose we have a data set D = (x1,...,Xn).

@ To simplify notation, take x to represent the entire dataset
x=(x1,.... %),

and z to represent the corresponding unobserved variables
z=(z1,....2zn).

@ An observation of x is called an incomplete data set.

@ An observation (x, z) is called a complete data set.
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Our Objectives

Learning problem: Given incomplete dataset D = x = (xg,...,x,), find MLE

A

0 =argmaxp(D | 0).
0

Inference problem: Given x, find conditional distribution over z:

plzilxi,0).

For Gaussian mixture model, learning is hard, inference is easy.

For more complicated models, inference can also be hard. (See DSGA-1005)
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Log-Likelihood and Terminology

@ Note that
argmaxp(x | 0) = argmax[log p(x | 0)].
0 [S)

Often easier to work with this “log-likelihood".
We often call p(x) the marginal likelihood,
o because it is p(x,z) with z “marginalized out™:

p(x) =) plx,2)

We often call p(x,y) the joint. (for “joint distribution™)

Similarly, log p(x) is the marginal log-likelihood.

~ David 5. Rosenberg (Bloomberg ML EDU) ML 101 December 15, 2017 6 /35



The EM Algorithm Key ldea

o Marginal log-likelihood is hard to optimize:

max log p(x | 0)

o Typically the complete data log-likelihood is easy to optimize:

max logp(x,z]0)

@ What if we had a distribution g(z) for the latent variables z?7
@ Then maximize the expected complete data log-likelihood:

maqu Jlogp(x,z|0)

o EM assumes this maximization is relatively easy.
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Lower Bound for Marginal Log-Likelihood

o Let g(z) be any PMF on Z, the support of z:

logp(x|0) = log [Z p(x,z| 9)]

= log [Zq < plx. 2| 9))] (log of an expectation)

;q(z) log (Z(Zzie)) (expectation of log)

WV

£(q,0)

@ Inequality is by Jensen's, by concavity of the log.

This inequality is the basis for “variational methods”, of which EM is a basic example.
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The ELBO

@ For any PMF ¢(z), we have a lower bound on the marginal log-likelihood

e oo (P50

£(q,0)

e Marginal log likelihood log p(x | 0) also called the evidence.

e L(q,0) is the evidence lower bound, or “ELBQO".

In EM algorithm (and variational methods more generally), we maximize £(q,0) over g and 0.
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MLE, EM, and the ELBO

@ For any PMF g(z), we have a lower bound on the marginal log-likelihood
log p(x|0) > £L(q,0).
@ The MLE is defined as a maximum over 0:

BmLe = argmaxlogp(x | 0).
0
e In EM algorithm, we maximize the lower bound (ELBO) over 6 and g:

Bem = arg max [maxﬁ(q,e)]
0 q
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A Family of Lower Bounds

@ For each g, we get a lower bound function: logp(x|0) > £(q,0) V0.
@ Two lower bounds (blue and green curves), as functions of 0:

@ lIdeally, we'd find the maximum of the red curve. Maximum of green is close.

From Bishop's Pattern recognition and machine learning, Figure 9.14.
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EM: Coordinate Ascent on Lower Bound

e Choose sequence of g's and 0's by “coordinate ascent”.
e EM Algorithm (high level):

@ Choose initial 0°'9.

Q Let g* = argmaqu(q,9°'d)

© Let 0" = argmaxg £(g*,0°).

© Go to step 2, until converged.

o Will show: p(x|6™W) > p(x | 6°')

o Get sequence of 0’s with monotonically increasing likelihood.
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EM: Coordinate Ascent on Lower Bound

gold grew

© Start at 0°9.
@ Find q giving best lower bound at 6°4 — £(q,9).
© 0" =argmaxg L(q,0).

From Bishop's Pattern recognition and machine learning, Figure 9.14.
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EM: Next Steps

@ We now give 2 different re-expressions of £(g,0) that make it easy to compute
o argmax, £(q,0), for a given 0, and
e argmaxg £(q,0), for a given gq.
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ELBO in Terms of KL Divergence and Entropy

@ Let's investigate the lower bound:

£(q,0) = ) qlz)log

p(z

oz > +Zq )log p(x
= —KL[q(Z).p(2|x,9)]+|ogp( )

@ Amazing! We get back an equality for the marginal likelihood:

logp(x |8) =L(q,0)+KLI[g(z),p(z] x,0)]
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Maxizing over q for fixed 6 = 0°d.

e Find g maximizing

£(q,0°9) = —KLIg(2),p(z]x,0%)]+logp(x|6°9)
—_——
no q here
@ Recall KL(p||g) >0, and KL(p||p) =0.
@ Best g is g*(z) = p(z | x,0°9) and

£(q*,0°9) = —KLIp(z| x,0°%), p(z | x,0°9)] +log p(x | 6°)

=0

@ Summary:

logp(x|0°Y) = £(g*,0°) (tangent at 6°'%).
logp(x|08) > L(q",6) VO
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Tight lower bound for any chosen 6

Inp(X]6)

’ gold gnew !

For 0°!d, take g(z) = p(z | x,0°9). Then
Q logp(x|0) > L(q,0) V0. [Global lower bound].
@ logp(x|0°) = £(q,0°). [Lower bound is tight at 6°'9 ]

From Bishop's Pattern recognition and machine learning, Figure 9.14.
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Maximizing over 0 for fixed g

@ Consider maximizing the lower bound £(q,0):

cun - Zoam(222)
= Zq Jogp(x,z|0) Zq Jogq(z

E[complete data log-likelihood] no O here

e Maximizing £(q,0) equivalent to maximizing E [complete data log-likelihood] (for fixed q).
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General EM Algorithm

@ Choose initial 6°'9.
© Expectation Step
o Let g*(z) = p(z|x,0°9). [¢* gives best lower bound at 6°']

o Let 0
J(0) = Zq )log <XZ|)>

q*(z)

expectation w.r.t. z~g*(z)

© Maximization Step

enew

=argmaxJ(0).
0

[Equivalent to maximizing expected complete log-likelihood.]

@ Go to step 2, until converged.
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Does EM Work? J

ML 101 December 15, 2017 20 / 35



EM Gives Monotonically Increasing Likelihood: By Picture

gold gmew

From Bishop's Pattern recognition and machine learning, Figure 9.14.
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EM Gives Monotonically Increasing Likelihood: By Math
@ Start at 6°d.
@ Choose g*(z) = arg maqu(q,6°'d). We've shown
log p(x | °) = £(q*,0°)
© Choose 0™ = argmaxg £(g*,0). So
L(g".0™") > L(q*0%9).
Putting it together, we get

log p(x | 6™Y) L(g*,0m™") L is a lower bound

>
> L(q*,0°9) By definition of 6"
= logp(x|0°) Bound is tight at 0°!9.
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Suppose We Maximize the ELBO...

@ Suppose we have found a global maximum of £(q,0):
£(q",07) > £L(q,0) Vq,0,
where of course
q*(z) = p(z|x,0%).

o Claim: 0* is a global maximum of logp(x|06*).

@ Proof: For any 0, we showed that for q’(z) = p(z | x,0’) we have

logp(x|6') = L(q'.8")+KLI[g" p(z]x,6")]
= L(q",0")

L(g*,6%)

log p(x | 0%)

N
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Convergence of EM

o Let 0, be value of EM algorithm after n steps.

@ Define “transition function” M(-) such that 6,,1 = M(6,).

@ Suppose log-likelihood function £(0) =logp(x | 8) is differentiable.
@ Let S be the set of stationary points of £(0). (i.e. Vg{(0) =0)

Theorem
Under mild regularity conditions®, for any starting point 0,
@ lim, .0, =0* for some stationary point 8* € S and
@ 0% is a fixed point of the EM algorithm, i.e. M(0*) =0*. Moreover,

@ {(0,) strictly increases to £(0*) as n — oo, unless 0, = 06*.

@For details, see “Parameter Convergence for EM and MM Algorithms” by Florin Vaida in
Statistica Sinica (2005). http://www3.stat.sinica.edu.tw/statistica/oldpdf/a15n316.pdf
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Variations on EM J
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EM Gives Us Two New Problems

@ The "E" Step: Computing

J(0):=L(q".0)=) q*(z)log <M>

q*(z)
@ The “M" Step: Computing

enew

=argmaxJ(0).
0

@ Either of these can be too hard to do in practice.
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Generalized EM (GEM)

@ Addresses the problem of a difficult “M" step.
@ Rather than finding

enew

=argmaxJ(0),
0

find any "W for which
@ Can use a standard nonlinear optimization strategy
e e.g. take a gradient step on J.

@ We still get monotonically increasing likelihood.
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EM and More General Variational Methods

@ Suppose “E” step is difficult:
o Hard to take expectation w.r.t. ¢*(z) = p(z | x,0°).

@ Solution: Restrict to distributions Q that are easy to work with.
@ Lower bound now looser:

q* =argminKL[q(z), p(z | x,09)]
qeqQ
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EM in Bayesian Setting

@ Suppose we have a prior p(0).
o Want to find MAP estimate: Oyap = argmaxg p(0 | x):

p(O[x) = p(x|0)p(0)/p(x)
logp(0]x) = logp(x|0)+logp(0)—logp(x)

@ Still can use our lower bound on logp(x,0).

I A

@ Maximization step becomes
0"W — argmax [J(0) + log p(0)]
0
@ Homework: Convince yourself our lower bound is still tight at 6.
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Summer Homework: Gaussian Mixture Model (Hints) J
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Homework: Derive EM for GMM from General EM Algorithm

@ Subsequent slides may help set things up.
o Key skills:

e MLE for multivariate Gaussian distributions.
o Lagrange multipliers
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Gaussian Mixture Model (k Components)

o GMM Parameters

Cluster probabilities : = (709, ...,70)
Cluster means:: w= (..., 1)
Cluster covariance matrices: L =(Xq,...%)

o Let 0= (m LX)

e Marginal log-likelihood

k
logp(x10) = |0g{ZTCzN(X| Hz,zz)}
z=1
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qg*(z) are “Soft Assignments’

@ Suppose we observe n points: X = (xi,...,x,) € R™9 .
o Let z,..., znefl, ..., k} be corresponding hidden variables.
o Optimal distribution g* is:

q'(z2) = plz]x,6).

@ Convenient to define the conditional distribution for z; given x; as
Yi = plz=jlx)
N (% | wy, L))
YA N (x| e, Ze)
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Expectation Step
@ The complete log-likelihood is
logp(x,218) =} log[m:N (x| pz Zz)]

i=1

simplifies nicely
@ Take the expected complete log-likelihood w.r.t. g*:

J(e) = Zq Jlogp(x,z|0)

- ZZﬁ[IognijIogN(Xi | wj, Z;)]

i=1 j=1
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Maximization Step

@ Find 0* maximizing J(0):

new

He

new
ZC
new

foreach c=1,... k.

- D ¥§ (xi— uwmee) (5 — umee)
Cc .
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