
Fine Grained Kernel Logging with KLogger:
Experience and Insights

Yoav Etsion† Dan Tsafrir†Ψ Scott Kirkpatrick† Dror G. Feitelson†

†School of Computer Science and Engineering
The Hebrew University of Jerusalem, Israel

ΨIBM T. J. Watson Research Center
Yorktown Heights, NY

{etsman,dants,kirk,feit}@cs.huji.ac.il

ABSTRACT
Understanding the detailed behavior of an operating systemis cru-
cial for making informed design decisions. But such an understand-
ing is very hard to achieve, due to the increasing complexityof such
systems and the fact that they are implemented and maintained by
large and diverse groups of developers. Tools like KLogger —pre-
sented in this paper — can help by enabling fine-grained logging
of system events and the sharing of a logging infrastructurebe-
tween multiple developers and researchers, facilitating amethodol-
ogy where design evaluation can be an integral part of kerneldevel-
opment. We demonstrate the need for such methodology by a host
of case studies, using KLogger to better understand varioussubsys-
tems in the Linux kernel, and pinpointing overheads and problems
therein.

Categories and Subject Descriptors
D.4.8 [Performance]: Measurements; C.4 [Performance of Sys-
tems]: Design studies

General Terms
Measurement,Performance,Experimentation

Keywords
operating systems, Linux, kernel logging, KLogger, performance
evaluation, scheduling, locking, overheads

1. INTRODUCTION
In the late 1970s, UNIX version 6 consisted of ˜60,000 lines of
code [17]. Today, version 2.6 of the Linux kernel consists ofover
5,500,000 lines of code, and almost 15,000 source files. Thisis a
great testimony to the complexity of modern operating systems.

Modern, general purpose operating systems need to manage a plethora
of hardware devices: storage devices, networking, human interface
devices, and the CPU itself. This is done using software layers
such as device drivers, file-systems, and communications proto-
cols. The software is designed and implemented by hundreds of
programmers writing co-dependent code. This is especiallytrue
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for community-developed operating systems such as Linux and the
BSD family. While such open-source approaches benefit from the
talents and scrutiny of multiple avid developers, they may also lead
to situations where different pieces of code clash, and do not inter-
operate correctly [2].

Adding to this problem is the power of modern CPUs and the in-
creasing parallelism introduced by symmetric multi-processing and
multi-core CPUs. While increasing CPU power might mask perfor-
mance problems, the increasing parallelism introduces a myriad of
issues system designers need to deal with — most of which stem
from the need to synchronize parallel events.

The resulting software is too complex for a human programmer
to contain, and might even display counter-intuitive behavior [15].
Analyzing system behavior based on measurements is often thwarted
by measurement overheads that overshadow the effects beingin-
vestigated. This sometimes described as theHeisenberg effectfor
software [28]. All this has detrimental effects on the engineering
of critical system components. For example, it is not uncommon
that code is submitted to the Linux kernel, and sometimes even ac-
cepted, based on a subjective“feels better” argument [19].

This situation raises the need for better system analysis tools, that
will aid developers and researchers in obtaining a better under-
standing of system behavior. Given systems’ complexity, one can-
not expect an all encompassing system analyzer, because that would
require a full understanding of the operating system’s code. A more
promising approach is a framework allowing developers to build
event loggers specific to the subsystem at hand. This framework
should be integrated into the kernel development methodology, by
designing a subsystem’s event logger along with the subsystem it-
self. In fact, an event logger based on the subsystem’s logiccan
also complement the subsystem’s documentation. Ultimately, such
a framework may facilitate the creation of a collection of system
loggers based on the experience of developers writing the code in
the first place.

In this paper we introduceKLogger, a fine-grained, scalable, and
highly flexible kernel logger. KLogger is designed for post-mortem
analysis, logging the configured kernel events with very lowover-
head. It is reliable in the sense that event loss due to bufferoverflow
is rare, and can be detected by the user by tracking gaps in theevent
serial numbers (indicating a serial number was allocated but the
corresponding event not logged for lack of buffer space). Further-
more, events can be logged from any point in the running kernel.
Logging is done into per-CPU buffers, making KLogger scalable,
a required feature for the increasingly parallel modern processors.



KLogger can be specialized for specific subsystems using an event
configuration file, which leads to the generation of event-specific
code at kernel compilation time. This structured specialization
mechanism, calledKLogger schemata, allows kernel developers to
share their expertise and insights, thus allowing other researchers to
analyze code without having to fully understand its intricacies. The
idea behind this design is based on the notion that a high level un-
derstanding of a subsystem should be enough to evaluate it, rather
than having to know the gory details of the implementation.

To better demonstrate the ease ofusinga schema vs. the difficulties
in creatingone, we present the process scheduler as an example.
At the base of every multiprogramming operating system there is a
point in time where one process is scheduled out (either preempted
or blocked), and another is scheduled in. This operation is known
as a context switch. However, the exact code snippet performing
the context switch — saving one process’s state and restoring an-
other’s — is implementation dependent; in Linux, it is a preproces-
sor macro with different versions for each supported architecture
(and most versions are implemented using hand crafted assembly
code). This is called from a variety of locations, includingbut not
limited to thecontextswitchfunction.

Pinpointing the base code performing a context switch requires ker-
nel expertise, but the real problem is verifying that this istheonly
place where a process may be resumed. In Linux, a new process
is created using the fork system call. However, a process actually
starts running only from inside the context switch code, in which
one process’s state is saved and another’s state is restored. Obvi-
ously, the state saved is the state of a process as seen by the context
switch function. After a process’s state is restored, the function per-
forming the context switch completes some accounting and returns,
thereby resuming the execution of the newly scheduled process.
Had the fork system call duplicated the parent’s running state to the
child process as seen by the fork system call itself, the child pro-
cess would have continued to run from inside the fork system call in
the first time it is scheduled. But this would skip the post-context-
switch accounting, thus threatening the consistency of theprocess
scheduler’s internal data structures. Therefore the fork code ac-
tually constructs a stack frame for a new process that uses a spe-
cialized version of the context switch function for newly created
processes — in which the new process will start its first quantum
after it is scheduled in. These are extremely intricate implemen-
tation details that anyone placing logging calls must be aware of,
but are not relevant for higher level tracking of schedulingevents,
either for evaluation of a process scheduler’s performanceor for
investigating the interaction of scheduling with other subsystems
such as the file system or memory manager.

We believe that the KLogger framework offers a solution to this
problem in its formalization of KLogger schemata. Specifically to
our example, the scheduler developer — who knows all the imple-
mentation intricacies — will create a schema for scheduler-related
events, including a context switch logging call in the correct code
snippets. This will enable the community to use that event for
keeping track of which process is running at each instant, orfor
measuring scheduler performance, without having to overcome the
hurdle of fully understanding the fine implementation details de-
scribed above. Moreover, once a KLogger schema is available, it
can be used to shed light on the implementation details of therele-
vant kernel subsystem, acting as code annotations complementing
the subsystem’s documentation.

KLogger currently supports the Linux kernel — both the 2.4.xand
the 2.6.x kernel versions. Although a newer series exists, we can-
not dismiss the 2.4.x kernel series as it is still favored by many ad-
ministrators, especially since the 2.6.x series has been considered
unstable for a long time, even by some kernel developers [5, 33].

To demonstrate the power and flexibility of KLogger, we dedicate
over half of this paper to describing several case studies inwhich
KLogger uncovered bottlenecks or mis-features — includingex-
amples of what we have learned about the behavior of the Linux
kernel using KLogger.

The rest of this paper is organized as follows. Section 2 reviews
related work. Sections 3, 4, and 5 describe the design principles,
programmer/user interface, and implementation of the KLogger in-
frastructure. Section 6 describes our testbed, after whichwe de-
scribe the case studies in sections 7 through 10.

2. RELATED WORK
KLogger is a software tool used to log events from the operating
system’s kernel, with the developers defining the events at compi-
lation time. This is not a novel approach, and there exist several
tools which operate on the same principle. Unfortunately, these
tools have various limitations, chief among which is high overhead
that limits the granularity of events that can be investigated.

The simplest logging tool in Linux isprintk, the kernel’s console
printing utility [4, 18], whose semantics are identical to those ofC’s
standardprintf. This tool incurs a substantial overhead for format-
ting, and is not reliable — it uses a cyclic buffer which that is read
by an external unsynchronized daemon. The buffer can therefore
be easily overrun, causing event loss.

The most effective Linux tool we have found is theLinux Trace
Toolkit (LTT) [35]. LTT logs a set of some 45 predefined events,
including interrupts, system calls, network packet arrivals, etc. The
tool’s effectiveness is enhanced by its relatively low overhead and a
visualization tool that helps analyzing the logged data. However, it
is not flexible nor easily extensible to allow for specific instrumen-
tation.

IBM’s K42 operating system has an integrated logging tool that
shares some features with KLogger [34]. These features include
fine-grained logging of events from every point in the kernel, variable-
length timestamped events and logging binary data that is decoded
post-mortem, among others. There is currently and attempt to in-
tegrate some of this system’s features into LTT, such as efficient
transfer of logged data from the kernel to user-level [36].

A more flexible approach is taken byKerninst[30], and what seem
to be its successors —DTrace [8] on Sun’s Solaris 10 operating
system, andKprobes[23] from IBM in Linux. These tools dy-
namically modify kernel code in order to instrument it: either by
changing the opcode at the requested address to a jump instruction
or by asserting the processor’s debug registers, thus transferring
control to the instrumentation code. After the data is logged, con-
trol returns to the original code. The ability to add events at runtime
makes these tools more flexible than KLogger.

None of the above tools provide data about the overhead they incur
per logging a single event (with the exception ofKerninst), which
is the principal metric in evaluating a tool’s granularity.We there-
fore measured them using the KLogger infrastructure and found



that their overhead is typically much higher than that of KLogger.
This measurement is described below (in the section dealingwith
KLogger’sstopwatchcapabilities), and is summarized in Table 1.

TIPME [10] is a specialized tool aimed at studying system laten-
cies, which logs system state into a memory resident buffer when-
ever the system’s latencies were perceived as problematic.This
tool partly inspired the design of KLogger, which also logs events
into a special buffer. It is no longer supported, though.

The Windows family also has a kernel mechanism enabling logging
some events, calledWindows Performance Monitors[29], but very
little is known about its implementation.

An alternative to logging all events is to use sampling [1]. This
approach is used inOProfile, which is the underlying infrastruc-
ture for HP’sProspecttool. OProfile uses Intel’s hardware perfor-
mance counters [14] to generate traps everyN occurrences of some
hardware event — be it clock cycles, cache misses, etc. The over-
head includes a hardware trap and function call, so logging 10,000
events/second can lead to 3-10% overall overhead (depending on
which hardware counter is being used). Also, this tool is periodic,
and thus bound to miss events whose granularity is finer than the
sampling rate.

Yet another approach for investigating operating system events is to
simulate the hardware. For example,SimOS[25] was effective in
uncovering couplings between the operating system and its under-
lying CPU [26], but is less effective when it comes to understanding
the effects of specific workloads on the operating system per-se.

Finally, architectures with programmable microcode have the op-
tion to modify the microcode itself to instrument and analyze the
operating system, as has been done on the VAX [21]. In princi-
ple, this approach is also viable for Intel’s Pentium IV processors,
which internally map op-codes toµops using some firmware. The
problem is that this firmware is one of Intel’s best guarded secrets,
and is not available for developers.

3. KLOGGER DESIGN PRINCIPLES
KLogger is a framework for logging important events to be ana-
lyzed offline. Events are logged into a memory buffer, which is
dumped to disk by a special kernel thread whenever its free space
drops below some low-water mark.

The design of KLogger originated from the need for a tool that
would enable kernel researchers and developers direct, unabridged,
access to the “darkest” corners of the operating system kernel. None
of the tools surveyed above provides the combination of qualities
we required from a fine grained kernel logging tool. Thus, KLogger
was designed with the following goals in mind:

A Tool for Researchers and Developers.KLogger is tar-
geted at researchers and developers, and not at fine tuning produc-
tion systems. This goal forces us to maintain strict event ordering,
so events are logged in the same order as executed by the hard-
ware. Also, events must not get lost so logging must be reliable.
These two features also make KLogger a very handy debug tool.
On the other hand, this goal also allows for event logging code to
incur some minimal overhead even when logging is disabled. An
additional requirement was support for logging the hardware’s per-
formance counters. While such counters are now available onmost

platforms, we currently only support the Intel Pentium IV perfor-
mance monitoring counters [14].

Low overhead.When monitoring the behavior of any system,
our goal is “to be but a mere fly on the wall”. Thus overhead
must be extremely low, so as not to perturb the system behavior.
The overhead can be categorized into two orthogonal parts:direct
overhead— the time needed to take the measurement, andindirect
overhead— caused by cache lines and TLB entries evicted as a re-
sult of the logging. These issues are discussed below in the section
dealing with KLogger’s stopwatch capabilities.

Flexibility. KLogger must be flexible, in that it can be used in
any part of the kernel, log any event the researcher/developer can
think of, and allow simplicity in adding new types of events.Also,
it must allow for researchers to share methodologies: if onere-
searcher comes up with a set of events that measure some subsys-
tem, she should be able to easily share her test platform withother
researchers, who are not familiar with the gritty implementation
details of that particular subsystem. This goal is important since
it allows for KLogger users to easily incorporate the ideas and in-
sights of others. KLogger’s flexibility is further discussed in the
section titled “KLogger Schemata” and demonstrated later on in
several case studies.

Ease of Use.Using KLogger should be intuitive. For this reason
we have decided to use semantics similar to printing kernel data to
the system log, leaving the analysis of the results for later. These
semantics, along with the strictly ordered, reliable logging, make
KLogger a very handy debugging tool. Another aspect of this goal
is that configuration parameters should be settable when thesystem
is up, avoiding unnecessary reboots or recompilations. KLogger’s
programmer/user interface is further discussed below.

The design goals are specified with no particular order. Eventhough
we have found them to be conflicting at times, we believe we have
managed to combine them with minimal tradeoffs.

4. THE PROGRAMMER/USER INTERFACE
This section will discuss the business end of KLogger — how to
operate and configure this tool.

KLogger’s operation philosophy is quite simple: when designing a
measurement we first need to define what we want to log. In KLog-
ger’s lingo, this means defining an event and the data it holds. Sec-
ond, we need to declare when we want this event logged. Third,
we have to configure runtime parameters, the most important of
which is the toggle switch — start and stop the measurement. The
last step is analyzing the data, the only part in which the user is on
her own. Since analyzing the data is task specific to the data gath-
ered, the user needs to write a specific analyzing program to extract
whatever information she chooses, be it averaging some value, or
replaying a set of events to evaluate an alternate algorithm. To sim-
plify analysis, KLogger’s log is text based, and formatted as a Perl
array of events, each being a Perl hash (actually, the log is dumped
in binary format for efficiency, and later converted into itstextual
form using a special filter).

To simplify the description of the interface, we will go overthe
different components with a step by step example: defining an



event that logs which process is scheduled to run. The event should
be logged each time the process scheduler chooses a process,and
should hold thepid of the selected process and the number of L2
cache misses processes experienced since the measurement started
(granting a glimpse into the processes’ cache behavior).

4.1 Event Configuration File
The event configuration file is located at the root of the kernel
source tree. A kernel can have multiple configuration files — to
allow for modular event schemata — all of which must be named
with the same prefix,.klogger.conf(unlisted dot-files, following the
UNIX convention for configuration files). The configuration file
contains both the event definitions and the hardware performance
counters definitions (if needed).

Performance counter definitions are a binding between a virtual
counter number and an event type. The number of counters is lim-
ited only by the underlying hardware, which has a limited number
of registers. Sometimes certain events can only be counted using a
specific subset of those registers, further limiting the performance
counters variety. The KLogger infrastructure defines a set of well
known event names as abstractions, and allows the user to bind vir-
tual counters to these event types. When reading the configuration
files, the KLogger code generator uses a set of architecture-specific
modules to generate the correct (mostly assembly) code for the un-
derlying hardware. In our example we set virtual hardware counter
0 to count L2 cache misses:

arch PentiumIV {
counter0 l2_cache_misses

}

Accessing a predefined hardware counter is described below.

Event definitions areC-like structure entities, declaring the event’s
name and the data fields it contains. The data types are similar to
primitive C types, and the names can be any legalC identifier. The
event used in our example is

event SCHEDIN {
int pid
ulonglong L2_cache_misses

}

This defines an event calledSCHEDINthat has three fields — the
two specified, and a generic header which contains the event type,
its serial number in the log, and a timestamp indicating whenthe
event occurred. The timestamp is taken from the underlying hard-
ware’s cycle counter, which produces the best possible timing res-
olution. This event will appear in the log file as the following Perl
hash:

{
header => {

"type" => "SCHEDIN",
"serial" => "119",
"timestamp" => "103207175760",

},
"pid" => "1073",
"L2_cache_misses" => "35678014",

},

A more detailed description of the configuration file is beyond the
scope of this paper.

4.2 Event Logging
Logging events inside the kernel code is similar to using theker-
nel’s printk function. KLogger calls are made using a specialC
macro calledklogger, which is mapped at preprocessing time to
an inlined logging function specific to the event. This optimiza-
tion saves the function call overhead, as the klogger logging code
simply stores the logged data on the log buffer.

The syntax of the logging call is:

klogger(EVENT, field1, field2, ...);

where the arguments are listed in the same order as they are de-
clared in the event definition. KLogger usesC’s standard type
checks. In our scheduler example, the logging command would
be:

klogger(SCHEDIN, task->pid,
klogger_get_l2_cache_misses());

with the last argument being a specially auto-generated inline func-
tion that reads the appropriate hardware counter.

Note that when KLogger is disabled in the kernel configuration
(e.g. not compiled in the kernel), the logging calls are eliminated
using C’s preprocessor, so as not to burden the kernel with any
overhead.

4.3 Runtime-Configurable Parameters
KLogger has a number of parameters that are tunable at runtime,
rather than compile time. These parameters are accessible using the
Linux sysctlinterface, or its equivalent/procfilesystem counterpart
— namely by writing values into files in the/proc/sys/klogger/di-
rectory. Accessing these parameters using the general filesystem
abstraction greatly simplifies KLogger usage, as it enablesusers to
write shell scripts executing specific scenarios to be logged. It also
allows a running program to turn on logging when a certain phase
of the computation is reached.

The most important parameter is KLogger’s general on/off switch.
Logging is enabled by simply writing “1” into the/proc/sys/klogger/enable
file. Writing “0” into that file turns logging off. This file canalso
be read to determine whether the system is currently logging.

Even though the kernel is capable of logging a variety of events,
at times we want to disable some so only a subset of the events
actually get logged. Each event is associated with a file named after
the event in the/proc/sys/klogger/directory. Like the main toggle
switch, writing a value of 0 or 1 to this file disables or enables the
logging of that event, respectively.

Another important configuration parameter is the buffer size, set
by default to 4MB. However, as the periodic flushing of the buffer
to disk obviously perturbs the system, a bigger buffer is needed in
scenarios where a measurement might take longer to run and the
user does not want it disturbed. The/proc/sys/klogger/buffersize
file shows the size of each CPU’s buffer (in MBs). Writing a new
number into that file reallocates each CPU’s buffer to the requested
number of MBs (if enough memory is not available an error is
logged in the system log).

The last parameter we review is the low-water mark. This parame-
ter determines when the buffer will be flushed to disk, and itsunits
are percents of the full buffer. KLogger’s logging buffer acts as an



asymmetric double buffer, where the part above the low-water mark
is the main buffer, and the part below the low-water mark is the re-
serve buffer that is only used when during flushing. This is further
explained in Section 5.2. By default, the buffer is flushed when its
free space drops below 10%. In some scenarios the flushing action
itself may generate events, therefore the threshold shouldbe in-
creased to avoid overflowing the buffer. If an overflow does occur
the kernel simply starts skipping event serial numbers until space
is available, allowing verification of the log’s integrity.Changing
the parameter’s value is done by simply writing the new low-level
mark (in percents) to the/proc/sys/klogger/lowwaterfile.

4.4 Internal Benchmarking Mechanism
The final part of KLogger’s interface is its internal benchmarking
mechanism. When designing a benchmark, one needs to pay at-
tention to the overhead incurred by the logging itself, in order to
evaluate the quality of the data collected. When KLogger gen-
erates its logging code, it also generates benchmarking code for
each event that iteratively logs this event using dummy data, and
measures the aggregate time using the hardware’s cycle counter.
The number of iterations defaults to 1000, and is settable using the
sysctl/proc interface at runtime. The average overhead (asan inte-
gral division) for each event is reported using per-event files in the
/proc/sys/klogger/benchmarks/directory. This estimate can then
be used by the developer/researcher to evaluate whether an event
incurs an intolerable overhead, in which case it can be simply dis-
abled at runtime with no need to recompile the kernel.

The calculated average overhead gives a good estimate for the over-
head incurred by KLogger, but it is important to remember that this
overhead only accounts for the time spentlogging the information,
but not the time spentobtaining the real information to be logged
from kernel data structures, or even directly from the hardware. Es-
timating the overhead of the latter is not feasible within the KLog-
ger framework, and is left for the user to cautiously evaluate.

Finishing with ourSCHEDINexample, the event’s logging over-
head takes less than 200 cycles on our 2.8GHz Pentium IV ma-
chine — or70 nanoseconds. In fact, we have found this value to
be typical for logging events containing up to 32 bytes (8 × 32bit

integers). The overhead incurredobtainingthe information in this
case cannot be neglected, and is mainly attributed to reading the
number of cache misses from the hardware’s performance monitor-
ing counters — measured at another 180 cycles. Nevertheless, this
measurement is a demonstrates KLogger’s low logging overhead.

5. KLOGGER IMPLEMENTATION
In this section we discuss the details of KLogger’s implementation
and how its design principles — mainly the low overhead and flex-
ibility — were achieved.

5.1 Per-CPU Buffers
As noted in previously, KLogger’s buffer operates as an asymmetric
double buffer, with the low-water mark separating the main buffer
from the reserve, flush time, buffer.

KLogger employs per-CPU, logically contiguous, memory locked
buffers. In this manner allocating buffer space need not involve any
inter-CPU locks, but only care for local CPU synchronization (as
opposed to the physical memory buffer used in [9]). On a single
CPU, race conditions can only occur between system context and
interrupt context, so blocking interrupts is the only synchronization

construct required. In fact, since the buffer is only written linearly,
maintaining acurrent positionpointer to the first free byte in the
buffer is all the accounting needed, and safely allocatingeventsize
bytes on the buffer only requires the following operations:

1. block local interrupts
2. eventptr = next free byte ptr
3. next free byte ptr += eventsize
4. unblock local interrupts

Interrupt blocking is required to prevent the same space allocated to
several events, since thenext free byteptr pointer is incremented
on every event allocation. Furthermore, we want to prevent the pos-
sibility that the buffer will be flushed between the event allocation
and the actual event logging. As flushing requires the kernelto con-
text switch into the kernel thread in charge of flushing the specific
per-CPU buffer (Section 5.2), disabling kernel preemptionduring
the logging operation assures reliability. This simple synchroniza-
tion imposes minimal interference with the kernel’s normalopera-
tion, as it only involves intra-CPU operations — allowing KLogger
to be efficiently used in SMP environments1.

Logging buffers are written-to sequentially, and only read-from at
flush time. With these memory semantics caching does not improve
performance, but quite the contrary: it can only pollute themem-
ory caches. We therefore set the buffers’ cache policy toWrite-
Combining(WC). This semantics, originally introduced by Intel
with its Pentium-Proprocessor [14], is intended for memory that
is sequentially written-to and is rarely read-from, such asframe
buffers. WC does not cache data on reads, and accumulates adja-
cent writes in a CPU internal buffer, issuing them in one bus burst.

5.2 Per-CPU Threads
During the boot process, KLogger spawns per-CPU kernel threads,
that are in charge of flushing the buffers when the low-water mark
is reached. Although the logging operation should not disturb the
logged system, flushing the buffer to disk obviously does. Tomin-
imize the disturbance KLogger threads run at the highest priority
under the real time SCHEDFIFO scheduler class. This class, man-
dated by Posix, has precedence over all other scheduling classes,
preventing other processes from interfering with KLogger’s threads.

Each thread dumps the per-CPU buffer to a per-CPU file. The sep-
arate files can be interleaved using timestamps in the events’ head-
ers, as Linux synchronizes the per-CPU cycle counters on SMP
machines [4, 18].

Flushing the buffer might cause additional events to be logged, so
the buffer should be flushed before it is totally full. As described
above, KLogger’s full buffer is split into an asymmetric double
buffer by the low-water parameter. This split enables the flushing
thread to safely dump the two parts of the buffer. The full four step
flushing process is described in Figure 1.

To prevent the logged data from being tainted by KLogger-induced
events, the log is annotated when the flush begins and finisheswith
two special events:DUMP BEGINandDUMP FINISH. The pres-
ence of these two events in the log allows for cleaning the data from
artifacts introduced by the logging function itself, further diminish-
ing the Heisenberg effect.
1In fact, locking interrupts is only needed because there is no
atomic “fetch and add” operation in the x86 ISA. Such an op-code
could have further reduced the overhead
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Figure 1: The four steps of the flush operation: (1) The log buffer
reaches the low-water mark and wakes up the dump thread. (2)
Thread writes the data between the beginning of the buffer and
the current position, possibly causing new events to be logged to
the reserve part. (3) Atomically resetting the buffer’s current po-
sition (with interrupts disabled). (4) Events from the reserve part
are flushed to disk, possibly causing new events to be logged at the
beginning of the buffer.

When KLogger is being disabled, the KLogger threads are awak-
ened in order to empty all CPU buffers, and only then is KLogger
ready for another logging session.

5.3 Low Overhead Through Code Generation
KLogger generates specific encoding and decoding code for each
user defined event, as two complementing inlinedC functions.

The decision to generate specific code for each event, ratherthan
use generic code, is motivated by the desire to reduce the overhead
as much as possible. An important part of KLogger is its sim-
ple, yet powerful code generator. The generator produces specially
crafted code for each event that simply allocates space on the CPU’s
buffer and copies the logged data field by field. The code avoids us-
ing any taken branches or extra memory which might cause cache
misses, in order to reduce the uncertainty induced by the logging
action as much as possible. It is optimized for the common code
path: successfully allocating space and logging the data without
any branches. The resulting overhead is indeed minimal, as re-
ported in Section 7.1. Moreover, if the event is disabled thecode
incurs an overhead of only a few ALU operation and one forward
branch, resulting in minimal runtime interference.

Neither the code generation nor executing the event specificcode
requires intervention from the user — generating the code isan
implicit part of the compilation process, and event loggingis done
using the genericklogger Cmacro which is replaced with the event-
specific inlined function by theC preprocessor.

5.4 Extent of Changes to the Linux Kernel
Knowing the complexity of the Linux kernel, and the rate of code
evolution therein, we have tried to make KLogger’s code selfcon-
tained in its own files, non-intrusive to the kernel sources.

The full KLogger patch consists of about 4600 lines of code, of
which, under 40 lines modify kernel sources, and 13 modify kernel
Makefiles. The rest of the patch consists of KLogger’s own files.
This fact makes KLogger highly portable between kernel versions
— the same patch can apply to several minor kernel revisions.

Moreover, KLogger only uses a minimal set of kernel constructs:
kernel thread creation, memory allocation, atomic bit operations,
and just a few others. As such, porting it to other operating systems
should be a feasible task.

5.5 KLogger Schemata
KLogger’s schemata are its most powerful mode of operation.A
schema is simply a set of complementary events, that providecom-
prehensive coverage of a certain subsystem or issue. For example,
if KLogger is set up to log all kernel interrupts, we say it is using
the Interrupt Logging Schema (our own Interrupt Logging Schema
is described later on). Such schemata turn KLogger into a flexible
framework enabling easy instrumentation of kernel subsystems and
provide a platform with which the research community can discuss
and standardize the evaluation of these subsystems. This modular
design enables the evaluation of separate subsystems individually,
but also as a whole.

In practice, a KLogger schema is composed of one or more config-
uration files, and a kernel patch incorporating the necessary KLog-
ger calls. Such a kernel patch is considered a light patch, asit just
places KLogger calls in strategic locations. This combination gives
KLogger schemata the power of simplicity: first, it is very easy
to create new schemata, assuming one knows his way around the
kernel well enough to place the KLogger calls. Second, usinga
schema only involves copying its configuration files and applying
its kernel patch.

Even though KLogger simplifies the process of evaluating kernel
subsystems, creating a new schema requires a good understanding
of the subsystem at hand, as demonstrated by the process context
switch example described earlier. Similar circumstances apply to
almost all the kernel subsystems. For example, the network sub-
system is based on a stack of protocols. A network researcher
may want to study network latencies, in which case she must know
when a packet was received at the Ethernet layer, submitted to the
IP layer and so on, until finally the user process is scheduledand
reads the payload. While this high level understanding is enough
for most studies, having to find the exact places in the network sub-
system code when the described events occur is an arduous task.
But this task can be avoided once the proper Klogger schema exists
— hopefully even created by the developer. Note that this example
involves two subsystem — the network and the process scheduler
— each with its own intricacies and the resulting code learning
curve.

Our vision is to collect a host of schemata, created by kernelre-
searchers and developers, incorporating their knowledge and in-
sights. In particular, developers of new kernel facilitiesjust need
to write a schema able to log and evaluate their work. We believe
such a collection can be a valuable asset for the operating system
research community.

The following sections will describe some case studies utilizing a
few of the basic schemata we designed, and show some interesting
findings and insights we have gathered when using KLogger.

6. TESTBED
Our case studies demonstrating KLogger’s abilities were conducted
on klogger-enhanced 2.6.9 and 2.4.29 Linux kernels, representing
the 2.6 and 2.4 kernel series, respectively. KLogger was setto use
a 128MB memory buffer, to avoid buffer flushing during measure-
ments.

Our default hardware was a 2.8GHz Pentium IV machine, equipped
with 512KB L2 cache, 16KB L1 data cache, 12Kµops L1 instruc-
tion cache, and 512MB RAM. Other hardware used is specified
when relevant.



Tool Direct Overhead L1 Cache Misses

KLogger 321±35.66 6.55±0.56

LTT 1844±1090.24 69.03±25.94

printk 4250±40.80 227.40±2.73

H/W Trap 392±1.95 N/A

Table 1: The mean overhead± standard deviation incurred
by different logging facilities, measured using theStopwatch
schema. Direct overheads are shown in cycles, after sanitiz-
ing the worst 0.1% of the results for each measurement and
subtracting the Stopwatch events’ overhead.

7. CASE STUDY: STOPWATCH SCHEMA
TheStopwatchschema defines two event types:STARTandSTOP.
As the name suggests, it is used to measure the time it takes toper-
form an action, simply by locating the two events before and after
the action takes place. In fact, when used in conjunction with the
hardware performance counters it can measure almost any type of
system metric: cache misses, branch mis-prediction, and instruc-
tions per cycle (IPC), just to name a few.

7.1 Measuring Kernel Loggers
A good demonstration of KLogger’s flexibility is its abilityto mea-
sure the overhead incurred by other logging tools. We have used
three interference metrics:direct overhead, the number of comput-
ing cycles consumed by the logging action, andL1 andL2 cache
misses estimating theindirect overheadcaused by cache pollution
— a well known cause of uncertainty in fine grained computation,
and in operating systems in general [31].

The logging tools measured are Linux’s system log printingprintk
[18] (whose intuitive semantics KLogger uses), theLinux Trace
Toolkit (LTT)[35], a well known logging tool in the Linux commu-
nity, and KLogger itself. In order to create a meaningful measure-
ment, we needed the logging mechanisms to log the same infor-
mation, so we implemented a subset of LTT’s events as a KLogger
schema. Another promising tool is Sun’sDTrace[8], which is an
integral part of the new Solaris 10 operating system. At the time
of writing, however, we did not have access to its source code. In-
stead, we estimated its direct overhead by measuring the number of
cycles consumed by a hardware trap (which is the logging method
used in thex86 version of Solaris). A hardware trap is also at the
core of Linux’sKprobestool.

Table 1 shows the results of one of the most common and sim-
ple events — checking if there is any delayed work pending in
the kernel (softirq). This event is logged at a rate of 1000Hzin
the 2.6.x Linux kernel series, each time saving just two integers
to the log. To eliminate suspicious outliers we have removedthe
worst 0.1% ( 1

1000
th) of the results for each measurement. This

greatly reduced the standard deviation for all measurements, as the
removed samples contained extremely high values reflectingsys-
tem interference. For example, the removed samples of the H/W
trap measurements — which mostly contained nested interrupts —
reduced the standard deviation from265 to 1.9.

The table shows that KLogger incurs much less overhead than the
other tools: by a factor of 5 less than LTT, and more than an order of
magnitude for printk. The difference between indirect overheads is
even greater (we only show L1 misses, as L2 misses were negligible
for all tools). As for Dtrace, while KLogger incurs less overhead
than a single hardware trap — DTrace’s basic building block on

the x86 architecture — we only see a small difference in the direct
overhead. DTrace however, is based on a virtualized environment,
so its direct overhead is assumed to be considerably greater.

8. CASE STUDY: LOCKING SCHEMA
Modern operating systems employ fine grained mutual exclusion
mechanisms in order to avoid inter-CPU race conditions on SMPs
[3, 27]. KLogger’slocking schemais intended to explore the over-
heads of using inter-CPU locks.

Fine grained mutual exclusion in Linux is done through two basic
busy-wait locks:spinlockandrwlock [4, 18]. The first is the sim-
plest form of busy-wait mutual exclusion, where only one CPUis
allowed inside the critical section at any given time. The second
lock separates code that does not modify the critical resource — a
reader— from code that modifies that resource — awriter, allow-
ing multiple readers to access the resource simultaneously, while
writers are granted exclusive access.

The goal of the locking schema is to measure lock contention,
and identify bottlenecks and scalability issues in the kernel. The
schema tracks the locks by the locking variable’s memory address,
and is composed of 5 events. The first two are initialization events
(RWINIT/SPININIT) which are logged whenever KLogger first en-
counters a lock — these events log the lock’s address and name
(throughC macro expansion). The three other events —READ,
WRITE, andSPIN— are logged whenever a lock is acquired. Each
log entry logs the lock’s address and the number of cycles spent
spinning on the lock. The lock’s memory address is logged to
uniquely identify the lock, and to allow correlation with the ker-
nel’s symbol table. This schema is the most intrusive as it wraps the
kernel’s inlined lock functions with macros to allow for accounting.
Still, its overhead is only ˜10% of the cycles required to acquire a
free lock (let alone a busy one).

8.1 Overhead of Locking
How many cycles are spent by the kernel spinning on locks? Very
little data is known on the matter: Bryant and Hawkes [7] wrote
a specialized tool to measure lock contention in the Linux kernel
which they used to analyze filesystem performance [6]. Kravetz
and Franke [16] focused on contention in the 2.4.x kernel CPU
scheduler, which has since been completely rewritten. A more
general approach was taken by Mellor-Crummey and Scott [20].
Their goal however was to measure the time for aquiring a lockin
a Non-Uniform Memory Architecture (NUMA). Unrau et al. [32]
extended this work for the experimentalHurricane operating sys-
tem. Both papers did not address the overall overhead of locking
on common workloads, hardware, and operating systems. Suchan
evaluation is becoming important with the increasing popularity of
SMP (and the emerging multi-core) architectures both in servers
and on the desktop.

Locking is most pronounced with applications that access shared
resources, such as the virtual filesystem (VFS) and network,and
applications that spawn many processes. In order to identify con-
tended locks, we chose a few applications that stress these subsys-
tems, using varying degrees of parallelization.

• Make, running a parallel compilation of the Linux kernel.
This application is intended to uncover bottlenecks in the
VFS subsystem. In order to isolate the core VFS subsys-
tem from the hardware, compilations were performed both
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Figure 2: Percentage of cycles spent spinning on locks for each of
the test applications.

on memory resident and disk based filesystems.

• Netperf, a network performance evaluation tool. We mea-
sured the server side, with multiple clients sending communi-
cations using the message sizes in Netperf’s standard round-
robin TCP benchmark — 1:1, 64:64, 100:200, and 128:8192,
where the first number is the size of the message sent by the
client, and the second is the size of the reply. Each con-
necting client causes the creation of a corresponding Netperf
process on the server machine.

• Apache, the popular web server was used to stress both the
network and the filesystem. Apache was using the default
configuration, serving Linux kernel source files from a RAM
based filesystem. To simulate dynamic content generation
(a common web server configuration), the files are filtered
through a Perl CGI script that annotates the source files with
line numbers. Stressing was done using the Apache project’s
own flood tool. Its performance peaked at 117Req/s

In this case study we used the largest SMP available to us: a 4-way
Pentium III Xeon processors (512KB L2 cache), equipped with
2GB of RAM. Its network interface card (NIC) is 100Mb/s Eth-
ernet card. The stressing clients are a cluster of 2-way Pentium IV
3.06GHz machines (512KB L2 cache, 4GB RAM), equipped with
1Gb/s Ethernet cards. KLogger was set with a 128MB buffer for
each of the server’s CPUs. To verify the results obtained on this
somewhat aging hardware, we repeated all measurements running
the box with only 2 CPUs, and compared the results with those of
the modern 2-way SMP. The similarity of these results indicate that
although the processors are older, the SMP behavior of the systems
has not changed. For lack of space, we only show the results for
the 4-way SMP hardware.

Tests consisted of running each application with differentlevels of
parallelism — 1, 2, 4, 8, 16, and 32 concurrent processes: when
N was the degree of parallelism, Make was run with the-jN flag
spawningN parallel jobs, while Apache and Netperf simply served
N clients. During test execution KLogger logged all locking events
within a period of 30 seconds. The reason for this methodology
is that the kernel uses locks very frequently, generating a huge
amounts of data. The 30 seconds period was set so KLogger could
maximize its buffer utilization, while avoiding flushing itand inter-
fering with the measurement.
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Figure 3: Portion of the cycles spend on BKL and other locks, for
ramdisk-based Make.

Using the logged data, we aggregated the total number of cycles
spent spinning on locks in the kernel, as percents of the overall
number of cycles used. The results are shown in Figure 2.

At the highest level of parallelism, running Apache has the CPUs
spend over 20% of their cycles waiting for locks, and both mea-
surements of Make exceed 15% overhead. Netperf however, suf-
fers from only a little more than 6% overhead — simply because
the 100Mb/s network link gets saturated.

If we focus on the point of full utilization, which is at 4 compet-
ing processes for our 4-way SMP, we see that Apache loses ˜9%
to spinning. This is a substantial amount of cycles that the CPUs
spend waiting.

The case of the Make benchmarks is especially interesting. When
using a memory based filesystem vs. a disk based one, we would
expect better performance from the memory based filesystem,as it
does not involve accessing the slower hard disk media. But when
using 4 processes, the results for both mediums were roughlythe
same. The answer lies in the locking overhead: while the ramdisk
based Make loses just over 3% to spinning, the disk based one loses
just over 1%. It appears time spent by processes waiting for disk
data actually eases the load on the filesystem locks, thus compen-
sating for the longer latencies.

The next step was to identify the bottlenecks: which locks are most
contended? It seems the cause of this behavior in all but the Netperf
example is just one lock — Linux’sBig Kernel Lock(BKL).

The BKL is a relic from the early days of Linux’s SMP support.
When SMP support was first introduced to the kernel, only one
processor was allowed to run kernel code at any given time. The
BKL was introduced somewhere between the 2.0.x and 2.2.x ker-
nel versions as a hybrid solution that will ease the transition from
this earlier monolithic SMP support, to the modern, fine grained
support. Its purpose was to serve as a wildcard lock for subsys-
tems not yet modified for fine-grained locking. The BKL has been
deemed a deprecated feature for quite some time, and developers
are instructed not to use it in new code. It is still extensively used,
however, in filesystem code, and in quite a few device drivers.

Figure 3 shows the portion of the BKL in the overall lock over-
head for the ramdisk based Make benchmark. Results for the disk-
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Figure 4: Overheads of different lock types for the Netperf bench-
mark, using the 100:200 message sizes.

based version and Apache are similar. Obviously BKL accounts
for the lion’s share of the overhead, with all other locks taking no
more than 2% of the overall cycles, and only roughly 0.5% in the
common case. In addition, we found that the memory-based Make
accesses BKL twice as often as the disk-based one.

The picture is completely different for the Netperf benchmark (Fig-
ure 4). BKL is completely missing from this picture, as both the
networking and scheduling subsystems were completely rewritten
since the introduction of BKL, and have taken it out of use. Instead,
locking overhead is shared by the device driver lock, socketlocks,
and all other locks. The device driver lock protects the driver’s
private settings and is locked whenever a packet is transmitted or
received and when driver settings change — even when the device’s
LED blinks. basically, this lock is held almost every time the de-
vice driver code is executed. In fact, it is locked more timesthan
any other lock in the system by a factor of almost 3. The socket
locks refer toall the sockets in the system, meaning at least the
number of running Netperf processes: each Netperf process owns
one socket. This figure is a rough estimate of the aggregate lock-
ing overhead caused by the networking subsystem. Both the device
driver lock and the socket locks indicate the saturation of the net-
working link when running somewhere between 8-16 competing
processes. All other locks in the system are responsible for˜33%
of all the locking activity, peaking when running 8 competing pro-
cesses. The majority of those cycles are spent on various process
wait queues, probably related to the networking subsystem.We did
not, however, find any group of locks causing the 8 process peak.

In conclusion, our measurements demonstrate the continuing liabil-
ities caused by BKL even in the recent 2.6.9 kernel, and the harmful
effects of device drivers with a questionable design. This is just a
simple analysis of critical fine-grained locking mechanisms in the
Linux kernel, made possible by KLogger’s low overhead. The fact
that we immediately came by such bottlenecks only strengthens
the assumption that many more of these performance problemsare
found in the kernel, but we simply lack the tools and the methodol-
ogy to identify them.

9. CASE STUDY: SCHEDULER SCHEMA
Thescheduler schemaconsists of 8 basic events which allow for an
accurate replay of process CPU consumption. Essential informa-
tion about each event is also logged. The events are:

1. TRYTO WAKEUP— some process has been awakened.
2. REMOVEFROM RUNQ— a process has been removed from

the run queue.
3. ADD TO RUNQ— a process has been added to the run queue.
4. SCHEDOUT— the running process has been scheduled off

a CPU.
5. SCHEDIN— a process has been scheduled to run.
6. FORK— a new process has been forked.
7. EXEC— theexecsystem call was called
8. EXIT — process termination.

Using KLogger, creating these events is technically very easy. How-
ever, designing this schema and the data it logs requires in-depth
knowledge about the design and behavior of the Linux CPU sched-
uler, as described above.

9.1 Evaluating the Scheduler’s
Maximal Time Quantum

KLogger’s scheduling schema can be used to empirically evaluate
aspects of the Linux scheduler’s design. The maximal CPU times-
lice is an example of a kernel parameter that has changed several
times in the past few years. It was 200ms by default in the 2.2.x
kernels. The 2.4.x kernels set it to a default 60ms, but it could be
changed in the 10–110ms range based on the process’s dynamic
priority. Today, the 2.6.x kernels set it to a value in the range of 5–
800ms based onnice(the static priority),with a 100ms default when
nice is 0, which it nearly always is. When searching the Linuxker-
nel mailing list we failed to find any real reasoning behind these
decisions.

An interesting question is whether these settings matter atall. We
refer to aneffective quantumas the time that passed from the mo-
ment the process was chosen to run on a processor, until the mo-
ment the processor was given to another process (either voluntarily
or as a result of preemption). In this case study, we wish to deter-
mine whether the effective quanta of various common workloads
correspond to the maximum quantum length.

Using KLogger’s scheduling schema, determining the adequacy of
the maximum quanta is very simple. The applications were chosen
as representatives of a few common workloads:

• Multimedia — Playing a 45 second MPEG2 clip using the
multithreadedXine and the single threadedMPlayer movie
players. Both players are popular in the Linux community,
with xine’s library being the display engine behind many
other movie players.

• Network — Downloading a ˜30MB kernel image using the
wgetnetwork downloader.

• Disk Utilities — Copying a 100MB file, and usingfind to
search for a filename pattern on a subtree of the/usr filesys-
tem.

• Computation+Disk — Kernel compilation.

• Pure Computation— A synthetic CPU-bound program, con-
tinuously adding integers and never yielding the CPU volun-
tarily, running for 60 seconds.

Measurements were run with the defaultnice value, meaning a
100ms maximum time quantum on the 2.6.9 Linux kernel. We ran
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each application on a dedicated machine, competing only with the
default system daemons. The results are shown in Figure 5.

Let us first discuss the synthetic CPU-bound application: even this
synthetic workload only reaches the maximum quantum in ˜40%
of its runs, with a similar percentage not even reaching halfthe
maximal quantum. Thus ˜60 % of the quanta were shortened by
some system daemon waking up — the only background load in
the system. These interruptions hardly consumed any CPU: only
0.00675% of the total run. They occured at an average rate of 5
times per second. With the maximal quantum set at 100ms, at most
50% of the quanta should have been affected, contrary to the re-
sults displayed in figure 5 which show that 60% were affected.The
explanation is simple: an interrupted quantum is split intoat least
two effective quanta (a quantum can be broken down more than
once), so the effect of the noise generated by system applications is
actually amplified.

As for the other workloads, it is clear that the maximum quantum
is almost a theoretical bound that is never reached: ˜90% of the
effective quanta of all applications but Make and the CPU-bound
are shorter then 100µs — a thousandth of the maximum quantum.
The kernel Make is an exception, with its 90th percentile lying at
1ms (this is still a negligible 1% of the maximum quantum). In
fact, if not for the logarithmic scaling of theX axis we would not
have been able to show any differences.

Our conclusion is that although required to prevent starvation, the
actual length of the time quantum has little importance in modern
systems. The only workload affected by it is CPU-bound. It would
need to be shortened by more than 100 to affect other application
types (regardless of what the effect would actually be), butas Linux
currently uses a 1000Hz clock (on thex86 architecture) it cannot
support a sub-millisecond quantum. Lengthening the maximum
time quantum on CPU servers in an attempt to reduce the context
switch overhead (measured using KLogger to be 3608±1630 cycles
and 140±38 L1 misses) is also futile in light of the scheduling noise
generated by system daemons. This is an example of how a con-
sistent use of logging tools such as KLogger by kernel developers
can help make more informed decisions about parameter settings,
adapting them to common workloads.

9.2 How Adding Load Can Actually
Improve Performance

The advent of chip multiprocessors (CMP) and symmetric multi-
threading (SMT) has raised the question whether modern general
purpose operating systems are capable of adequately handling the
resulting increase in software parallelism [12]. To evaluate the ad-
equacy of the scheduler to such workloads we used the Xine mul-
tithreaded movie player and the synthetic CPU-bound stressors de-
scribed in the previous section.

In our experiment, we ran Xine alongside an increasing number of
stressors on a 4-way, 550MHz Pentium III machine. The machine
was chosen so that together, Xine and the X server (the two appli-
cations involved in displaying the movie) consume less than100%
of a single CPU’s cycles. However, since they are both prioritized
by the scheduler as interactive applications, assigning them to the
same CPU causes them to compete with each other every time a
frame is to be displayed — potentially resulting in failure to dis-
play the frame on time. In contradistinction, when assignedto a
CPU alongside a stressor, their identification as interactive yields a
priority boost over a competing stressor.

The results of this experiment are shown in Figure 6. This fig-
ure shows that using the default Linux scheduler Xine’s perfor-
mance degrades as the load increases. Surprisingly though,this
degradation is not monotonic in the number of CPU stressors —
we observe temporary performancelossof Xine when running 3
stressors, whereas running 10 stressors results in temporary per-
formancegain (this is consistent in repeated runs). Using KLog-
ger’s scheduler schema we analysed the migration patterns on all 4
CPUs, and how each CPU’s cycles were allocated to the different
processes.

When running less than 3 stressors, both Xine and the X server
get a dedicated CPU each. When running 3 stressors however, the
scheduler attempts to balance the load by pushing both Xine and
X onto the same processor — as each consumes less than 100% of
a CPU’s cycles — making them compete against each other, and
leading to degraded performance. When running 4-7 stressors the
scheduler is unable to balance the load and again separates Xine
and X, letting each compete with a different stressor; but since it
considers both Xine and the X server to be interactive, they both
receive an interactive priority gain, giving them priorityover the
co-located stressors. Note that while intuitively running7 stressors
may seem similar to running only 3, that is not the case from the
scheduler’s point of view: the scheduler sees all CPUs engaged
in computation and that some imbalance is necessary. The result
is that Xine and the X server are not pushed to the same CPU, but
rather compute on different CPUs with one or two stressors — over
which they have priority. Conversely, when running 10 stressors
the same imbalance leads to a positive effect when Xine’s threads
and the X server align on different CPUs, achieving a much better
performance than expected.

This case study exemplifies how KLogger can uncover migration
patterns in multiprocessing environments, explaining an unexpected
behaviour that at a first glance may indicate that increasingthe load
on a multiprocessor may actually improve performance. In fact,
this result suggests that Linux’s process scheduler might be inade-
quate for non-trivial parallel workloads.
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Figure 6: Aggregate CPU percentage utilized by each application, alongside the frame loss experienced by Xine.

9.3 When 8 Competitors Are
(Slightly) Better Than 1

During our work we needed to evaluate the effects of multipro-
gramming on the overall throughput of the computation. Our testbed
was the Linux 2.4.29 kernel, and the benchmark we used was a sin-
gle threaded program sorting an integer array whose size is one
half the L2 cache. Our throughput metric is simple: how many
times was the array sorted during a specified time frame? (thear-
ray was reinitialized to the same random values after each sort). We
expected that this CPU-bound benchmark would achieve lowerag-
gregate throughput if we ran several competing copies of it,since
that would require the operating system to spend CPU time on con-
text switching (with its corresponding cache pollution).

Our results, however, showed that throughput improved slightly
with more processors, and peaked at 8 — a ˜0.3% improvement. In
fact, this slight difference almost tempted us to dismiss it, but since
it was consistent we decided to check whether KLogger can help
explain this discrepancy. Using the scheduler schema, we mea-
sured the CPU scheduling overhead, only to find it has a U shape
(Figure 7). In particular, the total time spent on context switches
(accumulating the time between allSCHEDOUTevents and their
immediately followingSCHEDINevents) was much greater for the
single process case than for the 8 process case: 30.2ms vs. 13.24ms
respectively.

Unearthing the reason for this required a careful examination of
the kernel’s scheduling code. The 2.4.x scheduler linearlyiterates
over all the runnable processes to choose the one with the highest
priority. If no runnable process exists, the scheduler iterates over
all existing processes, recalculating their CPU timeslice[4]. When
running the benchmark with a single process this recalculation took
place at almost every scheduling point. This is inefficient,as it con-
siders dozens of system daemons which are dormant most of the
time. With more user processes the frequency of these recalcula-
tions was decreased, saving much overhead (even though the num-
ber of cycles consumed by each recalculation increased). Onthe
other hand, the time to recalculate priorities, and the timeto select
a runnable process became longer — but these only grew enough
to dominate the overhead at more than 8 processes — leading to8
being the sweet spot.

Both the recalculation and the process selection loops wereelimi-
nated from the kernel as part of a complete scheduler redesign [18]
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Figure 7: Analysis of the scheduling overhead into its components:
choosing a new process to run (bottom) and recalculating priorities.
Also shown are the number of recalculations for each run.

between 2.4.x and 2.6.x versions. Still, this case study serves as a
good example of how KLogger was used to understand extremely
fine inconsistencies in results which were initially attributed to com-
mon system noise. Using KLogger we were able to correctly link
these results to a specific design issue.

10. CASE STUDY: INTERRUPT SCHEMA
KLogger’s interrupt schemameasures the start and finish of all in-
terrupts in the system, including IRQs, traps, and exceptions, as
well as L1 and L2 cache misses caused by the operating system
code.

10.1 Operating System Noise
Noise caused by the operating system is becoming a growing con-
cern. Interrupts, scheduling, TLB and cache contention areall
causes for computational uncertainty, affecting multimedia and HPC
applications [13, 24, 31].

In order to characterize interrupt noise we designed a synthetic ap-
plication, based on a calibrated loop taking 1ms on average.The
only memory activity is reading the counting index from the stack,
incrementing it, and writing it back to the stack. This loop is re-
peated 1,000,000 times, keeping track of the number of CPU cycles
consumed by each repetition. We ran the application on a klogger
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Figure 9: Number of L1 and L2 cache misses, when running a
2.6.9 Linux kernel with 100Hz and 1000Hz timer frequency.

enabled 2.6.9 Linux kernel under the Posix FIFO scheduler, so the
only operating system noise that can disrupt the application is hard-
ware interrupts.

Figure 8 shows a CDF of the repetition’s times, zooming in on the
head and tail. The figure shows that over 40% of the repetitions
exceed 1ms, and about 1% of them even exceed 1.5ms, reaching a
maximum of 2ms. When examining the head we notice that more
than 1

1000
th of the iterations took less than 800µs. The meaning of

this is that running a specific piece of code can vary in time bya
factor of over 2.5 (0.78ms vs. 1.96ms).

The only interrupts that occurred during the measurements were
the timer and network interrupts. As KLogger and the applica-
tion use the same cycle counter, we can identify repetitionsthat
included specific interrupts and subtract them. However, Figure 8
also shows us that removing the direct overhead of these interrupts
did not affect the measurement. Where did the cycles go, then?

The solution is apparent when measuring the cache misses caused
by the interrupts. Figure 9 shows the number of cache misses
caused by interrupts, when running the timer at both 100Hz and
1000Hz (100Hz is standard in the 2.4.x kernel), for perspective.
It is clear that the number of cache misses caused by interrupts
increases significantly with the increase in timer frequency, sug-
gesting cache misses might cause the 1ms loop overhead. And in-
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Figure 10: The measurements of Figure 8 repeated with caches
disabled.

deed, when repeating the previous measurements with both the L1
and L2 caches disabled (Figure 10), subtracting the direct overhead
leads to consistent measurements, indicating that the variability in
the original measurements resulted from indirect overheaddue to
cache interference.

Identifying system noise is becoming a real problem for parallel
and distributed computing [24]. This case study shows how KLog-
ger’s tight coupling with the underlying hardware can be used to
pinpoint the computational noise generated by common operating
system interrupts.

10.2 Keeping Time in the Kernel
Operating systems keep track of time using the standard8253 pro-
grammable interrupt timer(PIT). PIT has been used with several
generations of processors for over 10 years.

In principle, whenever the kernel needs the wall clock time,it can
simply access the 8253 through its I/O bus and read the data. This is
done from thedo gettimeofdaykernel function (of which theget-
timeofdaysystem call is just a wrapper). Reading the time from
the 8253 PIT is a relatively expensive operation, so Linux isopti-
mized (on machines which have a hardware cycle counter) to ac-
cesses the 8253 on every timer interrupt, and interpolate using the
cycle counter indo gettimeofday. Accessing the hardware’s cycle
counter is much faster than accessing the 8253 PIT, so this mode
of operation limits the overhead incurred by the PIT to the number
of timer interrupts per second. The two modes, common to both
the 2.4.x and the 2.6.x kernel series, are calledPIT mode andTSC
mode.

Using KLogger’s interrupt schema we have measured the overhead
of the timer interrupt handler in both modes, on various genera-
tions of Intel processors. The results (originally presented in [11])
are shown in Figure 11. When running the kernel in PIT mode, the
timer interrupt handler does not access the 8253 PIT. It consumes
roughly the same number of cycles over all the hardware genera-
tions, so itsµs overhead decreases as the hardware speed increases.
When running the kernel in TSC mode, however, the 8253 is ac-
cessed from the timer interrupt handler. As access time to the PIT
has not changed over the years, the time consumed by the handler
remain roughly the same, and the number of cycles actually grows
with the increase in CPU speed [22].

Given that TSC mode is the default, the timer interrupt handler is in
fact becoming a liability — the more so as the timer interruptrate
increases (2.4 used 100Hz, whereas 2.6 uses either 100Hz, 250Hz,
or 1000Hz). The TSC optimization, aimed at reducing the over-
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Figure 11: Overhead of the timer interrupt when using the TSC
and PIT modes. Note that theY axis is log scaled.

head of thegettimeofdaysystem call, is actually workload depen-
dent. It only helps for workloads that callgettimeofdayat a higher
frequency than the kernel’s timer frequency. The solution should be
accessing the 8253 PIT on demand, but only if it was not accessed
recently, and interpolating if it was.

These results demonstrate why measurements and tools are needed
for kernel development. One kernel developer changed something
in the kernel (the timer frequency) but is unaware of its effect on an-
other mechanism (thegettimeofdayoptimization). A simple perfor-
mance measurement tool such as KLogger can help uncover such
cases, allowing for more informed design decisions.

11. CONCLUSIONS
We have presentedKLogger, a low overhead, fine grained logging
tool for the Linux kernel. KLogger’s prime objective is to help an-
alyze kernel behavior, and help researchers and developersunder-
stand what is really happening under the operating system’sprover-
bial hood. Such support is required due to the increasing number
of developers working on the Linux kernel, and situations inwhich
modules are inter-dependent in unexpected ways.

Making efficient use of the underlying hardware features, KLog-
ger is able to achieve much finer granularity and lower overheads
than any other kernel logging tool. KLogger’s fine granularity and
flexibility enables it to be used in the tightest corners of the kernel,
and shed light on the operating system’s nuts and bolts. More-
over, KLogger allows devlopers to create subsystem-specific log-
ging schemata that can be used out-of-the-box by others. Another
of KLogger uses is for kernel debugging. Although not discussed
in the case studies, it is also a very efficient debugging tool.

Using KLogger and its schemata in our research has helped us un-
derstand some interesting and sometime unexpected phenomena in
the kernel. These case studies, which are the bulk of this paper,
both demonstrate the tool’s abilities, and more importantly sug-
gest some major design problems in the Linux kernel. We have
shown how locking issues can seriously limit the kernel’s ability to
handle SMP environments, and how both its scheduler and timing
services’ parameters are less than optimal for modern hardware.

Kernel developers and the research community should aspireto bet-
ter understand the operating system kernels’ intricacies.We hope
a tool such as KLogger would be integrated into operating system
development process by having developers write performance ana-

lyzing schemata for the subsystems they code. KLogger, its manual
and the schemata described in this paper are available for download
at www.cs.huji.ac.il/labs/parallel/klogger. It is our hope kernel re-
searchers and developers will use this tool and create schemata for
other subsystems — such as the filesystem, network, and others
— through which we can all share our insights about the operating
system’s kernel operation.

KLogger is currently used by a few of our research colleages,who
provide us with feedback about it interface and capabilities. The
reviews so far are very encouraging.
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