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ABSTRACT

Understanding the detailed behavior of an operating syitemu-
cial for making informed design decisions. But such an ustaeid-
ing is very hard to achieve, due to the increasing complefisuch
systems and the fact that they are implemented and maidthine
large and diverse groups of developers. Tools like KLoggepre-
sented in this paper — can help by enabling fine-grained faggi
of system events and the sharing of a logging infrastrudvere
tween multiple developers and researchers, facilitatimgtnodol-
ogy where design evaluation can be an integral part of kelead|-
opment. We demonstrate the need for such methodology byta hos
of case studies, using KLogger to better understand vasobisys-
tems in the Linux kernel, and pinpointing overheads and lprob
therein.

Categories and Subject Descriptors
D.4.8 [Performancd: Measurements; C.4erformance of Sys-
temg: Design studies

General Terms
Measurement,Performance,Experimentation

Keywords
operating systems, Linux, kernel logging, KLogger, perfance
evaluation, scheduling, locking, overheads

1. INTRODUCTION

In the late 1970s, UNIX version 6 consisted of "60,000 linés o
code [17]. Today, version 2.6 of the Linux kernel consistewdr
5,500,000 lines of code, and almost 15,000 source files. i$tas
great testimony to the complexity of modern operating syste

Modern, general purpose operating systems need to manégearp
of hardware devices: storage devices, networking, humarfate
devices, and the CPU itself. This is done using softwarerfaye
such as device drivers, file-systems, and communicatioo®-pr
cols. The software is designed and implemented by hundreds o
programmers writing co-dependent code. This is especially
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for community-developed operating systems such as Lindxlae
BSD family. While such open-source approaches benefit flem t
talents and scrutiny of multiple avid developers, they mag kead
to situations where different pieces of code clash, and dnier-
operate correctly [2].

Adding to this problem is the power of modern CPUs and the in-
creasing parallelism introduced by symmetric multi-pssirg and
multi-core CPUs. While increasing CPU power might maskquerf
mance problems, the increasing parallelism introducesréachpf
issues system designers need to deal with — most of which stem
from the need to synchronize parallel events.

The resulting software is too complex for a human programmer
to contain, and might even display counter-intuitive bétafi5].
Analyzing system behavior based on measurements is oftemtdd

by measurement overheads that overshadow the effects loeing
vestigated. This sometimes described asHbe&senberg effedor
software [28]. All this has detrimental effects on the eeginng

of critical system components. For example, it is not uncamm
that code is submitted to the Linux kernel, and sometimes ace
cepted, based on a subjectifeels better” argument [19].

This situation raises the need for better system analysis,tthat
will aid developers and researchers in obtaining a bettelern
standing of system behavior. Given systems’ complexitg, cem-
not expect an all encompassing system analyzer, becauseothd
require a full understanding of the operating system'’s cédmaore
promising approach is a framework allowing developers tiddbu
event loggers specific to the subsystem at hand. This frankewo
should be integrated into the kernel development methggoloy
designing a subsystem’s event logger along with the subsyit
self. In fact, an event logger based on the subsystem’s leayic
also complement the subsystem’s documentation. Ultipagath
a framework may facilitate the creation of a collection ofteyn
loggers based on the experience of developers writing tHe oo
the first place.

In this paper we introducKLogger, a fine-grained, scalable, and
highly flexible kernel logger. KLogger is designed for pasbrtem
analysis, logging the configured kernel events with very twer-
head. Itis reliable in the sense that event loss due to bosfenflow

is rare, and can be detected by the user by tracking gaps avéime
serial numbers (indicating a serial number was allocatedHmi
corresponding event not logged for lack of buffer spaceytHeu-
more, events can be logged from any point in the running kerne
Logging is done into per-CPU buffers, making KLogger sciab
a required feature for the increasingly parallel moderrcessors.



KLogger can be specialized for specific subsystems usingemt e
configuration file, which leads to the generation of everesfic
code at kernel compilation time. This structured speciim
mechanism, calleLogger schemataallows kernel developers to
share their expertise and insights, thus allowing otheraehers to
analyze code without having to fully understand its intriea. The
idea behind this design is based on the notion that a high leve
derstanding of a subsystem should be enough to evaluastierr
than having to know the gory details of the implementation.

To better demonstrate the easaisinga schema vs. the difficulties

KLogger currently supports the Linux kernel — both the 2 @nxl
the 2.6.x kernel versions. Although a newer series existscan-
not dismiss the 2.4.x kernel series as it is still favored lanynad-
ministrators, especially since the 2.6.x series has beesidered
unstable for a long time, even by some kernel developers3[5, 3

To demonstrate the power and flexibility of KLogger, we datic
over half of this paper to describing several case studi@ghich

KLogger uncovered bottlenecks or mis-features — including
amples of what we have learned about the behavior of the Linux
kernel using KLogger.

in creatingone, we present the process scheduler as an example.

At the base of every multiprogramming operating systemetiea
point in time where one process is scheduled out (eithennmoésd

or blocked), and another is scheduled in. This operatiomdsvk

as a context switch. However, the exact code snippet peirfigrm
the context switch — saving one process’s state and regtarin
other's — is implementation dependent; in Linux, it is a poaes-
sor macro with different versions for each supported agchitre
(and most versions are implemented using hand crafted &ggsem
code). This is called from a variety of locations, includimgt not
limited to thecontextswitchfunction.

Pinpointing the base code performing a context switch reguier-
nel expertise, but the real problem is verifying that thithisonly

place where a process may be resumed. In Linux, a new process

is created using the fork system call. However, a processthyt
starts running only from inside the context switch code, hickh
one process’s state is saved and another’s state is restOi®ad-
ously, the state saved is the state of a process as seen lpnteatc
switch function. After a process’s state is restored, timetion per-
forming the context switch completes some accounting atoine,
thereby resuming the execution of the newly scheduled psoce
Had the fork system call duplicated the parent’s runnintestathe
child process as seen by the fork system call itself, thalghrib-
cess would have continued to run from inside the fork systahirc
the first time it is scheduled. But this would skip the postteat-
switch accounting, thus threatening the consistency optbeess
scheduler’s internal data structures. Therefore the fodecac-
tually constructs a stack frame for a new process that usps-a s
cialized version of the context switch function for newlyeated
processes — in which the new process will start its first quant
after it is scheduled in. These are extremely intricate @nan-
tation details that anyone placing logging calls must beraved,
but are not relevant for higher level tracking of schedulivents,
either for evaluation of a process scheduler’s performamckr
investigating the interaction of scheduling with other sygtems
such as the file system or memory manager.

We believe that the KLogger framework offers a solution tis th
problem in its formalization of KLogger schemata. Specifict
our example, the scheduler developer — who knows all theampl
mentation intricacies — will create a schema for schedigated
events, including a context switch logging call in the cotreode
snippets. This will enable the community to use that event fo
keeping track of which process is running at each instanfpior
measuring scheduler performance, without having to oveecthe
hurdle of fully understanding the fine implementation dstde-
scribed above. Moreover, once a KLogger schema is avajléble
can be used to shed light on the implementation details afeiee
vant kernel subsystem, acting as code annotations comptamge
the subsystem’s documentation.

The rest of this paper is organized as follows. Section 2evesi
related work. Sections 3, 4, and 5 describe the design piesi
programmer/user interface, and implementation of the Kieodn-
frastructure. Section 6 describes our testbed, after wivighle-
scribe the case studies in sections 7 through 10.

2. RELATED WORK

KLogger is a software tool used to log events from the opegati
system’s kernel, with the developers defining the eventesipé
lation time. This is not a novel approach, and there existrsdv
tools which operate on the same principle. Unfortunatdigse
tools have various limitations, chief among which is higlerhead
that limits the granularity of events that can be invesgdat

The simplest logging tool in Linux iprintk, the kernel’s console
printing utility [4, 18], whose semantics are identicalltose ofC’s
standardorintf. This tool incurs a substantial overhead for format-
ting, and is not reliable — it uses a cyclic buffer which tratéad
by an external unsynchronized daemon. The buffer can threref
be easily overrun, causing event loss.

The most effective Linux tool we have found is theux Trace
Toolkit (LTT) [35]. LTT logs a set of some 45 predefined events,
including interrupts, system calls, network packet atsivatc. The
tool’s effectiveness is enhanced by its relatively low tved and a
visualization tool that helps analyzing the logged dataweler, it

is not flexible nor easily extensible to allow for specifictimsnen-
tation.

IBM’s K42 operating system has an integrated logging toal th
shares some features with KLogger [34]. These featuresdecl
fine-grained logging of events from every point in the keraatiable-
length timestamped events and logging binary data thatcigdzl
post-mortem, among others. There is currently and attemipt-t
tegrate some of this system’s features into LTT, such asieffic
transfer of logged data from the kernel to user-level [36].

A more flexible approach is taken erninst[30], and what seem
to be its successors -BTrace[8] on Sun’s Solaris 10 operating
system, andKprobes[23] from IBM in Linux. These tools dy-
namically modify kernel code in order to instrument it: eitlby
changing the opcode at the requested address to a jumpciitru
or by asserting the processor’s debug registers, thusféraing
control to the instrumentation code. After the data is laygm®mn-
trol returns to the original code. The ability to add eventsiatime
makes these tools more flexible than KLogger.

None of the above tools provide data about the overhead ticey i
per logging a single event (with the exceptionKafrninsj, which

is the principal metric in evaluating a tool’s granularitye there-
fore measured them using the KLogger infrastructure anddou



that their overhead is typically much higher than that of gger.
This measurement is described below (in the section dealitig
KLogger's stopwatclcapabilities), and is summarized in Table 1.

TIPME [10] is a specialized tool aimed at studying system laten-
cies, which logs system state into a memory resident buffema
ever the system’s latencies were perceived as problematiés
tool partly inspired the design of KLogger, which also logsm@s
into a special buffer. It is no longer supported, though.

The Windows family also has a kernel mechanism enablingihagg
some events, callédindows Performance Monitofg9], but very
little is known about its implementation.

An alternative to logging all events is to use sampling [LhisT
approach is used i@Profile which is the underlying infrastruc-
ture for HP'sProspecttool. OProfile uses Intel’s hardware perfor-
mance counters [14] to generate traps ev€rgccurrences of some
hardware event — be it clock cycles, cache misses, etc. Tée ov
head includes a hardware trap and function call, so loggi@QD
events/second can lead to 3-10% overall overhead (depgidin
which hardware counter is being used). Also, this tool isqukc,
and thus bound to miss events whose granularity is finer than t
sampling rate.

Yet another approach for investigating operating systeznis to
simulate the hardware. For examp&mOS[25] was effective in
uncovering couplings between the operating system andhdsru
lying CPU [26], but is less effective when it comes to undamging
the effects of specific workloads on the operating systersper

Finally, architectures with programmable microcode hdedp-
tion to modify the microcode itself to instrument and analyke
operating system, as has been done on the VAX [21]. In princi-
ple, this approach is also viable for Intel’'s Pentium IV m@ssors,
which internally map op-codes foops using some firmware. The
problem is that this firmware is one of Intel's best guardedets,
and is not available for developers.

3. KLOGGER DESIGN PRINCIPLES

KLogger is a framework for logging important events to be-ana
lyzed offline. Events are logged into a memory buffer, whigh i
dumped to disk by a special kernel thread whenever its fraeesp

drops below some low-water mark.

The design of KLogger originated from the need for a tool that
would enable kernel researchers and developers dirediridgad,
access to the “darkest” corners of the operating systenekexone

of the tools surveyed above provides the combination ofitiesl
we required from a fine grained kernel logging tool. Thus, gger
was designed with the following goals in mind:

A Tool for Researchers and Developeksogger is tar-
geted at researchers and developers, and not at fine turddgar
tion systems. This goal forces us to maintain strict evedéng,

platforms, we currently only support the Intel Pentium I\Mfpe-
mance monitoring counters [14].

Low overheadwhen monitoring the behavior of any system,
our goal is “to be but a mere fly on the wall”. Thus overhead
must be extremely low, so as not to perturb the system behavio
The overhead can be categorized into two orthogonal pdiresct
overhead— the time needed to take the measurement,iaicect
overhead— caused by cache lines and TLB entries evicted as a re-
sult of the logging. These issues are discussed below irett®s
dealing with KLogger's stopwatch capabilities.

Flexibility. KLogger must be flexible, in that it can be used in
any part of the kernel, log any event the researcher/degelcgn
think of, and allow simplicity in adding new types of evertdso,

it must allow for researchers to share methodologies: if @me
searcher comes up with a set of events that measure somessubsy
tem, she should be able to easily share her test platformottitr
researchers, who are not familiar with the gritty implenagion
details of that particular subsystem. This goal is impdr&nce

it allows for KLogger users to easily incorporate the idelad -
sights of others. KLogger’s flexibility is further discusisin the
section titled “KLogger Schemata” and demonstrated lateio
several case studies.

Ease of Use Using KLogger should be intuitive. For this reason
we have decided to use semantics similar to printing keral th
the system log, leaving the analysis of the results for |afbese
semantics, along with the strictly ordered, reliable loggimake
KLogger a very handy debugging tool. Another aspect of thil g
is that configuration parameters should be settable whesygiem

is up, avoiding unnecessary reboots or recompilations. ggeds
programmer/user interface is further discussed below.

The design goals are specified with no particular order. Evengh
we have found them to be conflicting at times, we believe we hav
managed to combine them with minimal tradeoffs.

4. THE PROGRAMMER/USER INTERFACE

This section will discuss the business end of KLogger — how to
operate and configure this tool.

KLogger’s operation philosophy is quite simple: when desig a
measurement we first need to define what we want to log. In KLog-
ger’s lingo, this means defining an event and the data it h&@ds-
ond, we need to declare when we want this event logged. Third,
we have to configure runtime parameters, the most important o
which is the toggle switch — start and stop the measuremémg. T
last step is analyzing the data, the only part in which the igsen

her own. Since analyzing the data is task specific to the ddta g
ered, the user needs to write a specific analyzing programtriact
whatever information she chooses, be it averaging some valu
replaying a set of events to evaluate an alternate algorifiansim-

so events are logged in the same order as executed by the hardplify analysis, KLogger's log is text based, and formattecadPerl

ware. Also, events must not get lost so logging must be feliab

array of events, each being a Perl hash (actually, the logriged

These two features also make KLogger a very handy debug tool. in binary format for efficiency, and later converted intotiégtual

On the other hand, this goal also allows for event loggingeciad
incur some minimal overhead even when logging is disableal. A
additional requirement was support for logging the harevggper-
formance counters. While such counters are now availabieast

form using a special filter).

To simplify the description of the interface, we will go ovre
different components with a step by step example: defining an



event that logs which process is scheduled to run. The etientd

be logged each time the process scheduler chooses a prandss,
should hold thepid of the selected process and the number of L2
cache misses processes experienced since the measuréartedt s
(granting a glimpse into the processes’ cache behavior).

4.1 Event Configuration File

The event configuration file is located at the root of the kerne
source tree. A kernel can have multiple configuration filese— t
allow for modular event schemata — all of which must be named
with the same prefixklogger.conf(unlisted dot-files, following the
UNIX convention for configuration files). The configuratiotefi
contains both the event definitions and the hardware pedoce
counters definitions (if needed).

Performance counter definitions are a binding between aalirt
counter number and an event type. The number of counters-s li
ited only by the underlying hardware, which has a limited bem
of registers. Sometimes certain events can only be coursied a
specific subset of those registers, further limiting thefqrerance
counters variety. The KLogger infrastructure defines a tetedl
known event names as abstractions, and allows the userdwigin
tual counters to these event types. When reading the coafigar
files, the KLogger code generator uses a set of architespaetfic
modules to generate the correct (mostly assembly) codaédaur-
derlying hardware. In our example we set virtual hardwarenter
0 to count L2 cache misses:

arch PentiumV {
counter0 | 2_cache_m sses
}

Accessing a predefined hardware counter is described below.

Event definitions ar€-like structure entities, declaring the event’s
name and the data fields it contains. The data types are simila
primitive C types, and the names can be any lggalentifier. The
event used in our example is

event SCHEDI N {
int pid
ul ongl ong L2_cache_ni sses

}

This defines an event call&ICHEDINthat has three fields — the
two specified, and a generic header which contains the eypef t
its serial number in the log, and a timestamp indicating witnen
event occurred. The timestamp is taken from the underlyarg-h
ware’s cycle counter, which produces the best possiblengmes-
olution. This event will appear in the log file as the follogiRerl
hash:

{
header => {
"type" => " SCHEDI N',
"serial" => "119",
"timestamp" => "103207175760",
1
"pid" => "1073",
"L2_cache_ni sses" => "35678014",
I

A more detailed description of the configuration file is beydine
scope of this paper.

4.2 Event Logging

Logging events inside the kernel code is similar to usingkiee
nel’s printk function. KLogger calls are made using a spe€al
macro calledklogger, which is mapped at preprocessing time to
aninlined logging function specific to the event. This optimiza-
tion saves the function call overhead, as the klogger laggode
simply stores the logged data on the log buffer.

The syntax of the logging call is:
kl ogger (EVENT, fieldl, field2, ...);

where the arguments are listed in the same order as they are de
clared in the event definition. KLogger us€s standard type
checks. In our scheduler example, the logging command would
be:

kl ogger (SCHEDI N, t ask->pid,
kl ogger _get _| 2_cache_ni sses());

with the last argument being a specially auto-generatéukifiinc-
tion that reads the appropriate hardware counter.

Note that when KLogger is disabled in the kernel configuratio
(e.g. not compiled in the kernel), the logging calls are &lated
using C's preprocessor, so as not to burden the kernel with any
overhead.

4.3 Runtime-Configurable Parameters

KLogger has a number of parameters that are tunable at rentim
rather than compile time. These parameters are accessibtgthe
Linux sysctlinterface, or its equivaleriproc filesystem counterpart
— namely by writing values into files in thigroc/sys/kloggerdi-
rectory. Accessing these parameters using the generalsfiten
abstraction greatly simplifies KLogger usage, as it enaless to
write shell scripts executing specific scenarios to be Idgdfealso
allows a running program to turn on logging when a certairspha
of the computation is reached.

The most important parameter is KLogger’s general on/oftcw
Logging is enabled by simply writing “1” into thiproc/sys/klogger/enable
file. Writing “0” into that file turns logging off. This file caalso

be read to determine whether the system is currently logging

Even though the kernel is capable of logging a variety of ts/en

at times we want to disable some so only a subset of the events
actually get logged. Each event is associated with a file dafter

the event in théproc/sys/kloggertirectory. Like the main toggle
switch, writing a value of 0 or 1 to this file disables or enaltlee
logging of that event, respectively.

Another important configuration parameter is the buffee sieet

by default to 4MB. However, as the periodic flushing of theféuf

to disk obviously perturbs the system, a bigger buffer isdeddn
scenarios where a measurement might take longer to run and th
user does not want it disturbed. Theroc/sys/klogger/buffesize

file shows the size of each CPU’s buffer (in MBs). Writing a new
number into that file reallocates each CPU’s buffer to theested
number of MBs (if enough memory is not available an error is
logged in the system log).

The last parameter we review is the low-water mark. Thismpara
ter determines when the buffer will be flushed to disk, andriiiss
are percents of the full buffer. KLogger’s logging buffetsas an



asymmetric double buffer, where the part above the low-wvaterk
is the main buffer, and the part below the low-water mark ésri+
serve buffer that is only used when during flushing. This ihier
explained in Section 5.2. By default, the buffer is flushe@&mits
free space drops below 10%. In some scenarios the flushifmpact
itself may generate events, therefore the threshold shosilah-
creased to avoid overflowing the buffer. If an overflow doesuoc
the kernel simply starts skipping event serial numbers space
is available, allowing verification of the log’s integrithanging
the parameter’s value is done by simply writing the new lewel
mark (in percents) to thproc/sys/klogger/lowwatefle.

4.4 Internal Benchmarking Mechanism
The final part of KLogger's interface is its internal benchkiiag

construct required. In fact, since the buffer is only writtmearly,
maintaining acurrent positionpointer to the first free byte in the
buffer is all the accounting needed, and safely allocagventsize
bytes on the buffer only requires the following operations:

block local interrupts
eventptr = nextfree byte ptr
nextfree byte ptr += eventsize
unblock local interrupts

rpwbdE

Interrupt blocking is required to prevent the same spaceatéd to
several events, since tmextfree byteptr pointer is incremented
on every event allocation. Furthermore, we want to prevenpbs-
sibility that the buffer will be flushed between the evenbedition
and the actual event logging. As flushing requires the keongdn-

mechanism. When designing a benchmark, one needs to pay atyeyt switch into the kernel thread in charge of flushing theciffc

tention to the overhead incurred by the logging itself, idesrto

per-CPU buffer (Section 5.2), disabling kernel preemptioning

evaluate the quality of the data collected. When KLogger-gen  he |ogging operation assures reliability. This simplecsypniza-

erates its logging code, it also generates benchmarking md
each event that iteratively logs this event using dummy,datd
measures the aggregate time using the hardware’s cyclgeroun
The number of iterations defaults to 1000, and is settabifgyuke
sysctl/proc interface at runtime. The average overheadr(aste-
gral division) for each event is reported using per-eveasfih the
Iproc/sys/klogger/benchmarkslirectory. This estimate can then
be used by the developer/researcher to evaluate whetherah e
incurs an intolerable overhead, in which case it can be simligt
abled at runtime with no need to recompile the kernel.

The calculated average overhead gives a good estimatesfové-
head incurred by KLogger, but it is important to remembet this
overhead only accounts for the time splgging the information,
but not the time sperdbtainingthe real information to be logged
from kernel data structures, or even directly from the hamdwEs-
timating the overhead of the latter is not feasible withia Kiog-
ger framework, and is left for the user to cautiously evauat

Finishing with ourSCHEDIN example, the event’s logging over-

tion imposes minimal interference with the kernel’s normpéra-
tion, as it only involves intra-CPU operations — allowing &dger
to be efficiently used in SMP environmehts

Logging buffers are written-to sequentially, and only réaan at
flush time. With these memory semantics caching does notwepr
performance, but quite the contrary: it can only pollute riem-

ory caches. We therefore set the buffers’ cache policWide-
Combining(WC). This semantics, originally introduced by Intel
with its Pentium-Proprocessor [14], is intended for memory that
is sequentially written-to and is rarely read-from, suchframe
buffers. WC does not cache data on reads, and accumulates adj
cent writes in a CPU internal buffer, issuing them in one hurst

5.2 Per-CPU Threads

During the boot process, KLogger spawns per-CPU kernehttae
that are in charge of flushing the buffers when the low-watarkm
is reached. Although the logging operation should not disthe
logged system, flushing the buffer to disk obviously doesmilio-

head takes less than 200 cycles on our 2.8GHz Pentium IV ma- iMmize the disturbance KLogger threads run at the highesrifyi

chine — or70 nanosecondsin fact, we have found this value to
be typical for logging events containing up to 32 byt&s«(32bit
integers). The overhead incurrebtitainingthe information in this
case cannot be neglected, and is mainly attributed to rgatim
number of cache misses from the hardware’s performancetanoni
ing counters — measured at another 180 cycles. Neverthéhess
measurement is a demonstrates KLogger’s low logging oeerhe

5. KLOGGER IMPLEMENTATION

In this section we discuss the details of KLogger's impletatan
and how its design principles — mainly the low overhead and fle
ibility — were achieved.

5.1 Per-CPU Buffers

As noted in previously, KLogger's buffer operates as an asgtric
double buffer, with the low-water mark separating the maifidy
from the reserve, flush time, buffer.

KLogger employs per-CPU, logically contiguous, memorykkxt
buffers. In this manner allocating buffer space need natlig/any
inter-CPU locks, but only care for local CPU synchronizat{as

opposed to the physical memory buffer used in [9]). On a singl

under the real time SCHEBIFO scheduler class. This class, man-
dated by Posix, has precedence over all other schedulisgeda
preventing other processes from interfering with KLoggénreads.

Each thread dumps the per-CPU buffer to a per-CPU file. The sep
arate files can be interleaved using timestamps in the eéerdasd-

ers, as Linux synchronizes the per-CPU cycle counters on SMP
machines [4, 18].

Flushing the buffer might cause additional events to beddggo
the buffer should be flushed before it is totally full. As déised
above, KLogger's full buffer is split into an asymmetric dhbe
buffer by the low-water parameter. This split enables thshilg
thread to safely dump the two parts of the buffer. The fulkfetep
flushing process is described in Figure 1.

To prevent the logged data from being tainted by KLogget+iradl
events, the log is annotated when the flush begins and finigttes
two special eventdDUMP_BEGINandDUMP_FINISH. The pres-
ence of these two events in the log allows for cleaning the filatn
artifacts introduced by the logging function itself, fugttdiminish-
ing the Heisenberg effect.

YIn fact, locking interrupts is only needed because therecis n

CPU, race conditions can only occur between system contekt a  atomic “fetch and add” operation in the x86 ISA. Such an ogeco

interrupt context, so blocking interrupts is the only symctization

could have further reduced the overhead
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5.5 KLogger Schemata

KLogger’'s schemata are its most powerful mode of operatidn.
schema is simply a set of complementary events, that prodde
prehensive coverage of a certain subsystem or issue. Fompéxa
if KLogger is set up to log all kernel interrupts, we say it Eng
the Interrupt Logging Schema (our own Interrupt Logging Sua
is described later on). Such schemata turn KLogger into &ftex
framework enabling easy instrumentation of kernel sulesystand
provide a platform with which the research community caculs

Figure 1: The four steps of the flush operation: (1) The log buffer anq standardize the evaluation of these subsystems. Ttislato
reaches the low-water mark and wakes up the dump thread. (Z)design enables the evaluation of separate subsystemsdinally,

Thread writes the data between the beginning of the buffdr an
the current position, possibly causing new events to bedddgg
the reserve part. (3) Atomically resetting the buffer’sreat po-
sition (with interrupts disabled). (4) Events from the mesepart
are flushed to disk, possibly causing new events to be logtbe a
beginning of the buffer.

When KLogger is being disabled, the KLogger threads are awak
ened in order to empty all CPU buffers, and only then is KLagge
ready for another logging session.

5.3 Low Overhead Through Code Generation
KLogger generates specific encoding and decoding code &r ea
user defined event, as two complementing inliGef@inctions.

The decision to generate specific code for each event, rdthar
use generic code, is motivated by the desire to reduce thbeng

as much as possible. An important part of KLogger is its sim-
ple, yet powerful code generator. The generator producasaly
crafted code for each event that simply allocates spacesc@ftU’s
buffer and copies the logged data field by field. The code auasd

ing any taken branches or extra memory which might causescach
misses, in order to reduce the uncertainty induced by thgirog
action as much as possible. It is optimized for the commore cod
path: successfully allocating space and logging the dathowi
any branches. The resulting overhead is indeed minimalgas r
ported in Section 7.1. Moreover, if the event is disableddbee
incurs an overhead of only a few ALU operation and one forward
branch, resulting in minimal runtime interference.

Neither the code generation nor executing the event specitie
requires intervention from the user — generating the codanis
implicit part of the compilation process, and event loggsmgone
using the generiklogger Cmacro which is replaced with the event-
specific inlined function by th€ preprocessor.

5.4 Extent of Changes to the Linux Kernel
Knowing the complexity of the Linux kernel, and the rate ofleo
evolution therein, we have tried to make KLogger’s code seif-
tained in its own files, non-intrusive to the kernel sources.

The full KLogger patch consists of about 4600 lines of code, o
which, under 40 lines modify kernel sources, and 13 modifné&e
Makefiles. The rest of the patch consists of KLogger's owrsfile
This fact makes KLogger highly portable between kernelives
— the same patch can apply to several minor kernel revisions.

Moreover, KLogger only uses a minimal set of kernel congsruc
kernel thread creation, memory allocation, atomic bit afiens,
and just a few others. As such, porting it to other operatyrstiesns
should be a feasible task.

but also as a whole.

In practice, a KLogger schema is composed of one or more config
uration files, and a kernel patch incorporating the necgd€ang-

ger calls. Such a kernel patch is considered a light patch just
places KLogger calls in strategic locations. This combaragives
KLogger schemata the power of simplicity: first, it is verysga

to create new schemata, assuming one knows his way around the
kernel well enough to place the KLogger calls. Second, uaing
schema only involves copying its configuration files and gippl

its kernel patch.

Even though KLogger simplifies the process of evaluatingéder
subsystems, creating a new schema requires a good undimgtan
of the subsystem at hand, as demonstrated by the procesxicont
switch example described earlier. Similar circumstanggsyato
almost all the kernel subsystems. For example, the netwdrk s
system is based on a stack of protocols. A network researcher
may want to study network latencies, in which case she mustkn
when a packet was received at the Ethernet layer, subméteebt

IP layer and so on, until finally the user process is schedateti
reads the payload. While this high level understanding @igh

for most studies, having to find the exact places in the nétsob-
system code when the described events occur is an ardudus tas
But this task can be avoided once the proper Klogger scheists ex
— hopefully even created by the developer. Note that thisngta
involves two subsystem — the network and the process soedul
— each with its own intricacies and the resulting code leagni
curve.

Our vision is to collect a host of schemata, created by kemmel
searchers and developers, incorporating their knowledgeira
sights. In particular, developers of new kernel facilitiest need
to write a schema able to log and evaluate their work. We \lie
such a collection can be a valuable asset for the operatstgray
research community.

The following sections will describe some case studieszing a
few of the basic schemata we designed, and show some imbgrest
findings and insights we have gathered when using KLogger.

6. TESTBED

Our case studies demonstrating KLogger’s abilities wenelaoted
on klogger-enhanced 2.6.9 and 2.4.29 Linux kernels, reptewgy
the 2.6 and 2.4 kernel series, respectively. KLogger watosgte
a 128MB memory buffer, to avoid buffer flushing during measur
ments.

Our default hardware was a 2.8GHz Pentium IV machine, egdipp
with 512KB L2 cache, 16KB L1 data cache, 126ps L1 instruc-
tion cache, and 512MB RAM. Other hardware used is specified
when relevant.



[ Tool | Direct Overhead L1 Cache Misseg
KLogger 32143566 6.55+0.56
LTT 1844+1090.24 69.03:25.94
printk 4250+40.80 227.4Q:2.73
H/W Trap 392+1.95 N/A

Table 1: The mean overhead+ standard deviation incurred
by different logging facilities, measured using theStopwatch
schema. Direct overheads are shown in cycles, after sanitiz
ing the worst 0.1% of the results for each measurement and
subtracting the Stopwatch events’ overhead.

7. CASE STUDY: STOPWATCH SCHEMA
The Stopwatctschema defines two event typ&EARTandSTOR
As the name suggests, it is used to measure the time it takes-to
form an action, simply by locating the two events before dtera
the action takes place. In fact, when used in conjunctioh e
hardware performance counters it can measure almost aayofyp
system metric: cache misses, branch mis-prediction, astduiry
tions per cycle (IPC), just to name a few.

7.1 Measuring Kernel Loggers

A good demonstration of KLogger's flexibility is its abilitp mea-
sure the overhead incurred by other logging tools. We haed us
three interference metricdirect overheadthe number of comput-
ing cycles consumed by the logging action, dridandL2 cache
misses estimating thadirect overheaccaused by cache pollution
— a well known cause of uncertainty in fine grained computatio
and in operating systems in general [31].

The logging tools measured are Linux’s system log prinprigtk
[18] (whose intuitive semantics KLogger uses), thaux Trace
Toolkit (LTT)[35], a well known logging tool in the Linux commu-
nity, and KLogger itself. In order to create a meaningful mwa-

the x86 architecture — we only see a small difference in thectli
overhead. DTrace however, is based on a virtualized envieo,
so its direct overhead is assumed to be considerably greater

8. CASE STUDY: LOCKING SCHEMA

Modern operating systems employ fine grained mutual exafusi
mechanisms in order to avoid inter-CPU race conditions of?SM
[3, 27]. KLogger'slocking schemas intended to explore the over-
heads of using inter-CPU locks.

Fine grained mutual exclusion in Linux is done through tweiba
busy-wait locks:spinlockandrwlock [4, 18]. The first is the sim-
plest form of busy-wait mutual exclusion, where only one GBU
allowed inside the critical section at any given time. Theosel
lock separates code that does not modify the critical resour a
reader— from code that modifies that resource —water, allow-
ing multiple readers to access the resource simultaneowbije
writers are granted exclusive access.

The goal of the locking schema is to measure lock contention,
and identify bottlenecks and scalability issues in the &eriThe
schema tracks the locks by the locking variable’s memoryesi]
and is composed of 5 events. The first two are initializatienés
(RWINIT/SPININIT) which are logged whenever KLogger first en-
counters a lock — these events log the lock’s address and name
(throughC macro expansion). The three other eventsREAD,
WRITE andSPIN— are logged whenever a lock is acquired. Each
log entry logs the lock’'s address and the number of cycleatspe
spinning on the lock. The lock’s memory address is logged to
uniquely identify the lock, and to allow correlation withethker-
nel’'s symbol table. This schema is the most intrusive asapsithe
kernel's inlined lock functions with macros to allow for acmting.
Still, its overhead is only "10% of the cycles required toldrg a
free lock (let alone a busy one).

ment, we needed the logging mechanisms to log the same infor-8 1 QOverhead of Locking
mation, so we implemented a subset of LTT's events as a Klrogge How many cycles are spent by the kernel spinning on locks9 Ver

schema. Another promising tool is SuJrace[8], which is an
integral part of the new Solaris 10 operating system. At bmet
of writing, however, we did not have access to its source ctide
stead, we estimated its direct overhead by measuring theewof
cycles consumed by a hardware trap (which is the logging odeth
used in thex86 version of Solaris). A hardware trap is also at the
core of Linux’sKprobestool.

little data is known on the matter: Bryant and Hawkes [7] \wrot
a specialized tool to measure lock contention in the Linunék
which they used to analyze filesystem performance [6]. Kmave
and Franke [16] focused on contention in the 2.4.x kernel CPU
scheduler, which has since been completely rewritten. Aemor
general approach was taken by Mellor-Crummey and Scott [20]
Their goal however was to measure the time for aquiring a inck

a Non-Uniform Memory Architecture (NUMA). Unrau et al. [32]

Table 1 shows the results of one of the most common and sim- exiended this work for the experimentddirricane operating sys-
ple events — checking if there is any delayed work pending in e Both papers did not address the overall overhead oirigck

the kernel (softirg). This event is logged at a rate of 1000z
the 2.6.x Linux kernel series, each time saving just twogeis

to the log. To eliminate suspicious outliers we have remdhed
worst 0.1% (ﬁth) of the results for each measurement. This
greatly reduced the standard deviation for all measuresnastthe
removed samples contained extremely high values reflesting
tem interference. For example, the removed samples of tkié H/
trap measurements — which mostly contained nested intsrrep
reduced the standard deviation fr@6b to 1.9.

The table shows that KLogger incurs much less overhead tiean t
other tools: by a factor of 5 less than LTT, and more than aarastl
magnitude for printk. The difference between indirect beads is
even greater (we only show L1 misses, as L2 misses were ii#glig
for all tools). As for Dtrace, while KLogger incurs less olread
than a single hardware trap — DTrace’s basic building blogk o

on common workloads, hardware, and operating systems. &uch
evaluation is becoming important with the increasing papty of
SMP (and the emerging multi-core) architectures both inessr
and on the desktop.

Locking is most pronounced with applications that accessezh
resources, such as the virtual filesystem (VFS) and netvand,
applications that spawn many processes. In order to igecif-
tended locks, we chose a few applications that stress thésgs
tems, using varying degrees of parallelization.

e Make, running a parallel compilation of the Linux kernel.
This application is intended to uncover bottlenecks in the
VFES subsystem. In order to isolate the core VFS subsys-
tem from the hardware, compilations were performed both



T T
apache -+ =1
make from RAM
make from disk - ¥-
netperf Tx100B,Rx200B -B- o
Lnetperf Tx128B,Rx8KB - |+ DO

20

15

Locking Overhead [%]

Competing Processes

15
M Others

) O BKL
ho]
<
O
=
2 5
o

0 T T T T |

1 2 4 8 16 32

Competing Processes

Figure 2: Percentage of cycles spent spinning on locks for each of Figure 3: Portion of the cycles spend on BKL and other locks, for

the test applications.

on memory resident and disk based filesystems.

e Netperf, a network performance evaluation tool. We mea-
sured the server side, with multiple clients sending corimun

cations using the message sizes in Netperf’s standard +ound

robin TCP benchmark — 1:1, 64:64, 100:200, and 128:8192,

where the first number is the size of the message sent by the

client, and the second is the size of the reply. Each con-
necting client causes the creation of a corresponding Ketpe
process on the server machine.

ramdisk-based Make.

Using the logged data, we aggregated the total number oésycl
spent spinning on locks in the kernel, as percents of theativer
number of cycles used. The results are shown in Figure 2.

At the highest level of parallelism, running Apache has tffJg
spend over 20% of their cycles waiting for locks, and both mea
surements of Make exceed 15% overhead. Netperf however, suf
fers from only a little more than 6% overhead — simply because
the 100Mb/s network link gets saturated.

e Apache, the popular web server was used to stress both the _If we focus on the point of full utilization, which is at 4 corsfp
network and the filesystem. Apache was using the default ing processes for our 4-way SMP, we see that Apache loses "9%

configuration, serving Linux kernel source files from a RAM

to spinning. This is a substantial amount of cycles that tR&JE

based filesystem. To simulate dynamic content generation spend waiting.

(a common web server configuration), the files are filtered

through a Perl CGlI script that annotates the source files with The case of the Make benchmarks is especially interestirigeriv
line numbers. Stressing was done using the Apache project’s using a memory based filesystem vs. a disk based one, we would

own floodtool. Its performance peaked at 117Req/s

In this case study we used the largest SMP available to usvay4-
Pentium Il Xeon processors (512KB L2 cache), equipped with
2GB of RAM. lIts network interface card (NIC) is 100Mb/s Eth-
ernet card. The stressing clients are a cluster of 2-wayilrent/
3.06GHz machines (512KB L2 cache, 4GB RAM), equipped with
1Gb/s Ethernet cards. KLogger was set with a 128MB buffer for
each of the server's CPUs. To verify the results obtainedhan t
somewhat aging hardware, we repeated all measurementsgunn
the box with only 2 CPUs, and compared the results with thdése o
the modern 2-way SMP. The similarity of these results ingi¢aat
although the processors are older, the SMP behavior of Btersg
has not changed. For lack of space, we only show the results fo
the 4-way SMP hardware.

Tests consisted of running each application with diffetentls of
parallelism — 1, 2, 4, 8, 16, and 32 concurrent processesnwhe
N was the degree of parallelism, Make was run with {ieflag
spawningN parallel jobs, while Apache and Netperf simply served
N clients. During test execution KLogger logged all lockinvgets
within a period of 30 seconds. The reason for this methodolog
is that the kernel uses locks very frequently, generatingigeh
amounts of data. The 30 seconds period was set so KLogget coul
maximize its buffer utilization, while avoiding flushingahd inter-
fering with the measurement.

expect better performance from the memory based filesystgin,
does not involve accessing the slower hard disk media. Benwh
using 4 processes, the results for both mediums were rougaly
same. The answer lies in the locking overhead: while the igind
based Make loses just over 3% to spinning, the disk basedeas |
just over 1%. It appears time spent by processes waitingigbr d
data actually eases the load on the filesystem locks, thup&mm
sating for the longer latencies.

The next step was to identify the bottlenecks: which loclesrmaost
contended? It seems the cause of this behavior in all but¢tyedxf
example is just one lock — LinuxBig Kernel Lock(BKL).

The BKL is a relic from the early days of Linux’s SMP support.
When SMP support was first introduced to the kernel, only one
processor was allowed to run kernel code at any given time Th
BKL was introduced somewhere between the 2.0.x and 2.2:x ker
nel versions as a hybrid solution that will ease the tramsifrom

this earlier monolithic SMP support, to the modern, fine rgdi
support. Its purpose was to serve as a wildcard lock for sibsy
tems not yet modified for fine-grained locking. The BKL hasrbee
deemed a deprecated feature for quite some time, and develop
are instructed not to use it in new code. It is still extengivesed,
however, in filesystem code, and in quite a few device drivers

Figure 3 shows the portion of the BKL in the overall lock over-
head for the ramdisk based Make benchmark. Results for se di
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Figure 4: Overheads of different lock types for the Netperf bench-
mark, using the 100:200 message sizes.

based version and Apache are similar. Obviously BKL acsount
for the lion’s share of the overhead, with all other locksittgkno
more than 2% of the overall cycles, and only roughly 0.5% & th
common case. In addition, we found that the memory-basecMak
accesses BKL twice as often as the disk-based one.

The picture is completely different for the Netperf benchikn(&ig-

ure 4). BKL is completely missing from this picture, as bdtle t
networking and scheduling subsystems were completelyittewr
since the introduction of BKL, and have taken it out of usetéad,
locking overhead is shared by the device driver lock, soldais,

and all other locks. The device driver lock protects the etts/
private settings and is locked whenever a packet is tratesndr
received and when driver settings change — even when thealgvi
LED blinks. basically, this lock is held almost every time ttie-
vice driver code is executed. In fact, it is locked more tirtiemn
any other lock in the system by a factor of almost 3. The socket
locks refer toall the sockets in the system, meaning at least the
number of running Netperf processes: each Netperf proaess o
one socket. This figure is a rough estimate of the aggregeke lo
ing overhead caused by the networking subsystem. Both theade
driver lock and the socket locks indicate the saturatiorhefriet-
working link when running somewhere between 8-16 competing
processes. All other locks in the system are responsibl&3fo

of all the locking activity, peaking when running 8 competioro-
cesses. The majority of those cycles are spent on varioue§so
wait queues, probably related to the networking subsyst¥endid

not, however, find any group of locks causing the 8 procesk.pea

In conclusion, our measurements demonstrate the congjtiaioil-
ities caused by BKL even in the recent 2.6.9 kernel, and thatuh
effects of device drivers with a questionable design. Thigsist a
simple analysis of critical fine-grained locking mecharssmthe
Linux kernel, made possible by KLogger’s low overhead. Tdu f
that we immediately came by such bottlenecks only stremgthe
the assumption that many more of these performance protzdems
found in the kernel, but we simply lack the tools and the méttho
ogy to identify them.

9. CASE STUDY: SCHEDULER SCHEMA
Thescheduler schemeonsists of 8 basic events which allow for an
accurate replay of process CPU consumption. Essentiainiafo
tion about each event is also logged. The events are:

1. TRY.TO.WAKEUP— some process has been awakened.

2. REMOVEFROMRUNQ— a process has been removed from
the run queue.

. ADD_TO_RUNQ— a process has been added to the run queue.

. SCHEDOUT— the running process has been scheduled off
a CPU.

. SCHEDIN— a process has been scheduled to run.

FORK— a new process has been forked.

. EXEC— the execsystem call was called

. EXIT — process termination.

AW

o~ ;g

Using KLogger, creating these events is technically vesyeldow-
ever, designing this schema and the data it logs requirégth
knowledge about the design and behavior of the Linux CPUdsche
uler, as described above.

9.1 Evaluating the Scheduler’s

Maximal Time Quantum
KLogger’s scheduling schema can be used to empiricallyueval
aspects of the Linux scheduler’s design. The maximal CPlggim
lice is an example of a kernel parameter that has changedaseve
times in the past few years. It was 200ms by default in thex2.2.
kernels. The 2.4.x kernels set it to a default 60ms, but itccbe
changed in the 10-110ms range based on the process’s dynamic
priority. Today, the 2.6.x kernels set it to a value in thegeuof 5—
800ms based omice(the static priority),with a 100ms default when
nice is 0, which it nearly always is. When searching the Likex
nel mailing list we failed to find any real reasoning behindsih
decisions.

An interesting question is whether these settings mattall.atVe
refer to aneffective quanturas the time that passed from the mo-
ment the process was chosen to run on a processor, until the mo
ment the processor was given to another process (eithemteoily

or as a result of preemption). In this case study, we wish terde
mine whether the effective quanta of various common woddoa
correspond to the maximum quantum length.

Using KLogger’s scheduling schema, determining the adsgaé
the maximum quanta is very simple. The applications werseho
as representatives of a few common workloads:

e Multimedia — Playing a 45 second MPEG2 clip using the
multithreadedXine and the single threadddPlayer movie
players. Both players are popular in the Linux community,
with xine’s library being the display engine behind many
other movie players.

e Network — Downloading a "30MB kernel image using the
wgetnetwork downloader.

e Disk Utilities — Copying a 100MB file, and usinfind to
search for a filename pattern on a subtree oftisefilesys-
tem.

e Computation+Disk — Kernel compilation.

e Pure Computation— A synthetic CPU-bound program, con-
tinuously adding integers and never yielding the CPU volun-
tarily, running for 60 seconds.

Measurements were run with the defanite value, meaning a
100ms maximum time quantum on the 2.6.9 Linux kernel. We ran



9.2 How Adding Load Can Actually

e Improve Performance
mplayer - The advent of chip multiprocessors (CMP) and symmetric imult
. xine threading (SMT) has raised the question whether modernrgene
:‘(’;"ga """ purpose operating systems are capable of adequately hartié

resulting increase in software parallelism [12]. To eviduhe ad-
equacy of the scheduler to such workloads we used the Xine mul
tithreaded movie player and the synthetic CPU-bound sireske-
scribed in the previous section.

. find

. make
.CPU-bound — |:
. 10xCPU-bound---- |

CDF

In our experiment, we ran Xine alongside an increasing nurobe
stressors on a 4-way, 550MHz Pentium Il machine. The machin
was chosen so that together, Xine and the X server (the twié app
0.01 0.1 1 10 100 cations involved in displaying the movie) consume less 12006
Effective Quantum [ms,logscale] of a single CPU’s cycles. However, since they are both gzl
by the scheduler as interactive applications, assigniamtto the
same CPU causes them to compete with each other every time a
frame is to be displayed — potentially resulting in failucedis-
play the frame on time. In contradistinction, when assigteed
CPU alongside a stressor, their identification as intaragtields a
priority boost over a competing stressor.

Figure 5: Cumulative distribution function (CDF) of the effective
quanta for the different workloads. Quantum length is 1Q0is
axis is logarithmic.

each application on a dedicated machine, competing only thvé The results of this experiment are shown in Figure 6. This fig-

default system daemons. The results are shown in Figure 5. ure shows that using the default Linux scheduler Xine’s grerf
mance degrades as the load increases. Surprisingly thohigh,

Let us first discuss the synthetic CPU-bound applicatioenetis degradation is not monotonic in the number of CPU stressors —

synthetic workload only reaches the maximum quantum in “40% we observe temporary performaniass of Xine when running 3

of its runs, with a similar percentage not even reaching thesf stressors, whereas running 10 stressors results in tergpoea
maximal quantum. Thus 60 % of the quanta were shortened by formancegain (this is consistent in repeated runs). Using KLog-
some system daemon waking up — the only background load in ger's scheduler schema we analysed the migration patteral 4

the system. These interruptions hardly consumed any CPly: on CPUs, and how each CPU’s cycles were allocated to the differe
0.00675% of the total run. They occured at an average rate of 5 processes.

times per second. With the maximal quantum set at 100ms, stt mo

50% of the quanta should have been affected, contrary toethe r When running less than 3 stressors, both Xine and the X server
sults displayed in figure 5 which show that 60% were affectdu: get a dedicated CPU each. When running 3 stressors howeeer, t

explanation is simple: an interrupted quantum is split mtt¢east scheduler attempts to balance the load by pushing both Xide a
two effective quanta (a quantum can be broken down more than X onto the same processor — as each consumes less than 100% of
once), so the effect of the noise generated by system apiptisas a CPU's cycles — making them compete against each other, and
actually amplified. leading to degraded performance. When running 4-7 streskser

scheduler is unable to balance the load and again separates X
As for the other workloads, it is clear that the maximum quemt and X, letting each compete with a different stressor; butesiit
is almost a theoretical bound that is never reached: “90%ef t considers both Xine and the X server to be interactive, tha b
effective quanta of all applications but Make and the CPUHab receive an interactive priority gain, giving them priorityer the
are shorter then 1Q& — a thousandth of the maximum quantum. co-located stressors. Note that while intuitively runnistressors

The kernel Make is an exception, with its 90th percentiledyat may seem similar to running only 3, that is not the case froen th
1ms (this is still a negligible 1% of the maximum quantum). In scheduler’s point of view: the scheduler sees all CPUs estjag
fact, if not for the logarithmic scaling of th& axis we would not in computation and that some imbalance is necessary. Thé res
have been able to show any differences. is that Xine and the X server are not pushed to the same CPU, but
rather compute on different CPUs with one or two stressors/er o
Our conclusion is that although required to prevent stamathe which they have priority. Conversely, when running 10 stoes
actual length of the time quantum has little importance irdera the same imbalance leads to a positive effect when Xinesatts

systems. The only workload affected by it is CPU-bound. ltildo and the X server align on different CPUs, achieving a muctebet
need to be shortened by more than 100 to affect other apiplicat ~ performance than expected.

types (regardless of what the effect would actually be)asutinux

currently uses a 1000Hz clock (on tk86 architecture) it cannot  This case study exemplifies how KLogger can uncover mignatio
support a sub-millisecond quantum. Lengthening the maximu  patterns in multiprocessing environments, explainingraxpected
time quantum on CPU servers in an attempt to reduce the dontex behaviour that at a first glance may indicate that increasied¢pad
switch overhead (measured using KLogger to be 36880 cycles on a multiprocessor may actually improve performance. i, fa
and 14Q:3s L1 misses) is also futile in light of the scheduling noise this result suggests that Linux’s process scheduler miglindde-
generated by system daemons. This is an example of how a con-quate for non-trivial parallel workloads.

sistent use of logging tools such as KLogger by kernel dpexo

can help make more informed decisions about parametengstti

adapting them to common workloads.
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Figure 6: Aggregate CPU percentage utilized by each applicatiomgaiole the frame loss experienced by Xine.

9.3 When 8 Competitors Are — 3000

100 —

(Slightly) Better Than 1 $ recalc events
During our work we needed to evaluate the effects of multipro & 80 B recalc cycles | 5400 "
gramming on the overall throughput of the computation. @sttted 5 sched cycles c
was the Linux 2.4.29 kernel, and the benchmark we used was a si = 60 - 1800 2
gle threaded program sorting an integer array whose sizeds o £ 8
half the L2 cache. Our throughput metric is simple: how many 8 40 — 1200 t_g
times was the array sorted during a specified time frame?afthe g &
ray was reinitialized to the same random values after eath ¥de O 20 — 600
expected that this CPU-bound benchmark would achieve lager
gregate throughput if we ran several competing copies afrige 0 | | | | 2%
that would require the operating system to spend CPU timeon ¢ 1 2 4 8 16 132

text switching (with its corresponding cache pollution).

Processes

Our results, however, showed that throughput improvechtlig

with more processors, and peaked at 8 — a "0.3% improvement. | Figure 7: Analysis of the scheduling overhead into its components:
fact, this slight difference almost tempted us to dismigdut since choosing a new process to run (bottom) and recalculatirmgipeis.

it was consistent we decided to check whether KLogger cam hel Also shown are the number of recalculations for each run.

explain this discrepancy. Using the scheduler schema, we me

sured the CPU scheduling overhead, only to find it has a U shape ) ) )

(Figure 7). In particular, the total time spent on contexttsies between 2.4.x and 2.6.x versions. Still, this case studyeseas a
(accumulating the time between SCHEDOUTevents and their ~ 900d example of how KLogger was used to understand extremely
immediately followingSCHEDINevents) was much greater for the fine inconsistencies in results which were initially attitibd to com-

single process case than for the 8 process case: 30.2ms24nk3 ~ MON system noise. Using KLogger we were able to correctly lin
respectively. these results to a specific design issue.

Unearthing the reason for this required a careful exanonadif 10. CASE STUDY: INTERRUPT SCHEMA

the kernel's scheduling code. The 2.4.x scheduler linetetates KLogger'sinterrupt schemaneasures the start and finish of all in-
over all the runnable processes to choose the one with thes$tig  terrupts in the system, including IRQs, traps, and excepti@as
priority. If no runnable process exists, the scheduleatss over  well as L1 and L2 cache misses caused by the operating system
all existing processes, recalculating their CPU timegd¢eWhen code.

running the benchmark with a single process this recaliculabok
place at almost every scheduling point. This is inefficiaatit con- : ;
siders dozens of system daemons which are dormant most of the’:ll'o.':L Opdega;[:lng Sy?tem I:IOIS.eb . .
time. With more user processes the frequency of these rgaalc OIS€ caused by Ihe operaling sysiem IS becoming a growing co

tions was decreased, saving much overhead (even thoughrie n cern. Interrupts, sc_heduling, TL.B and ca_che cor)_tentionadire
ber of cycles consumed by each recalculation increased)th©n causes for computational uncertainty, affecting multimeshd HPC
other hand, the time to recalculate priorities, and the tiongelect applications [13, 24, 31].

a runnable process became longer — but these only grew enoug
to dominate the overhead at more than 8 processes — leadég to
being the sweet spot.

r\n order to characterize interrupt noise we designed a syicthp-
plication, based on a calibrated loop taking 1ms on averdage.
only memory activity is reading the counting index from tiec,
incrementing it, and writing it back to the stack. This logpré-
peated 1,000,000 times, keeping track of the number of CRlésy
consumed by each repetition. We ran the application on agkiog

Both the recalculation and the process selection loops alere-
nated from the kernel as part of a complete scheduler rau&ssj
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Figure 8: CDF of the iteration times for a loop calibrated to take
1ms, running with the FIFO scheduler (left), and zooming in o
the the head (center) and the tail (right) of the distributibiead
and tail are shown using a log scalédaxis. The graphs illustrate
the raw intervals (“Noisy”), the intervals after removirfetdirect
overhead of the timer ticks (“w/o Timer”), and the intervafih all
interrupts’ direct overhead removed (“Clean”).
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Figure 9: Number of L1 and L2 cache misses, when running a
2.6.9 Linux kernel with 100Hz and 1000Hz timer frequency.

enabled 2.6.9 Linux kernel under the Posix FIFO schedubeihe
only operating system noise that can disrupt the applicasibard-
ware interrupts.

Figure 8 shows a CDF of the repetition’s times, zooming inta t
head and tail. The figure shows that over 40% of the repesition
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Figure 10: The measurements of Figure 8 repeated with caches
disabled.

deed, when repeating the previous measurements with bethlth
and L2 caches disabled (Figure 10), subtracting the direrthead
leads to consistent measurements, indicating that thahibity in
the original measurements resulted from indirect overltkagto
cache interference.

Identifying system noise is becoming a real problem for ara
and distributed computing [24]. This case study shows howd<L
ger’s tight coupling with the underlying hardware can beduge
pinpoint the computational noise generated by common tpgra
system interrupts.

10.2 Keeping Time in the Kernel

Operating systems keep track of time using the stan8253 pro-
grammable interrupt time(PIT). PIT has been used with several
generations of processors for over 10 years.

In principle, whenever the kernel needs the wall clock tithean
simply access the 8253 through its I/O bus and read the datsisT
done from thedo_gettimeofdaykernel function (of which theet-
timeofdaysystem call is just a wrapper). Reading the time from
the 8253 PIT is a relatively expensive operation, so Linusgs-
mized (on machines which have a hardware cycle counter)-to ac
cesses the 8253 on every timer interrupt, and interpolaieg tise
cycle counter irdao_gettimeofday Accessing the hardware’s cycle
counter is much faster than accessing the 8253 PIT, so thie mo
of operation limits the overhead incurred by the PIT to thmbar

of timer interrupts per second. The two modes, common to both

exceed 1ms, and about 1% of them even exceed 1.5ms, reaching ¢he 2.4.x and the 2.6.x kernel series, are caR€f mode andlrSC
maximum of 2ms. When examining the head we notice that more mode.

than Tlooth of the iterations took less than 8@8 The meaning of
this is that running a specific piece of code can vary in timaby

factor of over 2.5 (0.78ms vs. 1.96ms).

The only interrupts that occurred during the measuremeet® w
the timer and network interrupts. As KLogger and the applica
tion use the same cycle counter, we can identify repetittbas
included specific interrupts and subtract them. Howeveyuie 8
also shows us that removing the direct overhead of theseupts
did not affect the measurement. Where did the cycles gothen

The solution is apparent when measuring the cache missesdau
by the interrupts.
caused by interrupts, when running the timer at both 100HEZ an
1000Hz (100Hz is standard in the 2.4.x kernel), for perspect

It is clear that the number of cache misses caused by intsrrup
increases significantly with the increase in timer freqyescg-
gesting cache misses might cause the 1ms loop overhead.nAnd i

Using KLogger’s interrupt schema we have measured the ewerh
of the timer interrupt handler in both modes, on various gene
tions of Intel processors. The results (originally presdrin [11])
are shown in Figure 11. When running the kernel in PIT mode, th
timer interrupt handler does not access the 8253 PIT. Itwoes
roughly the same number of cycles over all the hardware gener
tions, so itsus overhead decreases as the hardware speed increases.
When running the kernel in TSC mode, however, the 8253 is ac-
cessed from the timer interrupt handler. As access timegdti

has not changed over the years, the time consumed by theghandl
remain roughly the same, and the number of cycles actuadwgr

Figure 9 shows the number of cache misseswith the increase in CPU speed [22].

Given that TSC mode is the default, the timer interrupt haniglin
fact becoming a liability — the more so as the timer interngte
increases (2.4 used 100Hz, whereas 2.6 uses either 1008t1z 25
or 1000Hz). The TSC optimization, aimed at reducing the -over
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Figure 11: Overhead of the timer interrupt when using the TSC
and PIT modes. Note that the axis is log scaled.

head of thegettimeofdaysystem call, is actually workload depen-
dent. It only helps for workloads that caéttimeofdayat a higher
frequency than the kernel’s timer frequency. The soluttayudd be
accessing the 8253 PIT on demand, but only if it was not aedess
recently, and interpolating if it was.

These results demonstrate why measurements and toolsemteche
for kernel development. One kernel developer changed $oinget
in the kernel (the timer frequency) but is unaware of its@fée an-
other mechanism (thgettimeofdayptimization). A simple perfor-

mance measurement tool such as KLogger can help uncover such

cases, allowing for more informed design decisions.

11. CONCLUSIONS

We have presentedLogger, a low overhead, fine grained logging
tool for the Linux kernel. KLogger’s prime objective is tolpan-
alyze kernel behavior, and help researchers and developdes-
stand what is really happening under the operating systemnger-
bial hood. Such support is required due to the increasingoeum
of developers working on the Linux kernel, and situations/rich
modules are inter-dependent in unexpected ways.

Making efficient use of the underlying hardware featurespédl
ger is able to achieve much finer granularity and lower ovalke
than any other kernel logging tool. KLogger’s fine grandjaand
flexibility enables it to be used in the tightest corners efkkrnel,
and shed light on the operating system’s nuts and bolts. More
over, KLogger allows devlopers to create subsystem-spdoiff-
ging schemata that can be used out-of-the-box by othersthano
of KLogger uses is for kernel debugging. Although not diseas

in the case studies, it is also a very efficient debugging tool

Using KLogger and its schemata in our research has helped-us u
derstand some interesting and sometime unexpected pheaame
the kernel. These case studies, which are the bulk of thisrpap
both demonstrate the tool’s abilities, and more imporiastig-
gest some major design problems in the Linux kernel. We have
shown how locking issues can seriously limit the kerneliitstio
handle SMP environments, and how both its scheduler andgimi
services’ parameters are less than optimal for modern teaedw

Kernel developers and the research community should asyes-
ter understand the operating system kernels’ intricadiés.hope
a tool such as KLogger would be integrated into operatingesys
development process by having developers write performane-

lyzing schemata for the subsystems they code. KLogger,atsual

and the schemata described in this paper are availableioridad
atwww.cs.huji.ac.il/labs/parallel/kloggetit is our hope kernel re-
searchers and developers will use this tool and create stheor
other subsystems — such as the filesystem, network, andsother
— through which we can all share our insights about the operat
system’s kernel operation.

KLogger is currently used by a few of our research colleagbs,
provide us with feedback about it interface and capalsliti¢he
reviews so far are very encouraging.
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