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Memory maintenance is widely believed to involve long-

term retention of the synaptic weights that are set

within relevant neural circuits during learning. However,

despite recent exciting technical advances, it has not yet

proved possible to confirm experimentally this intui-

tively appealing hypothesis. Artificial neural networks

offer an alternative methodology as they permit con-

tinuous monitoring of individual connection weights

during learning and retention. In such models, ongoing

alterations in connection weights are required if a

network is to retain previously stored material while

learning new information. Thus, the duration of synaptic

change does not necessarily define the persistence of a

memory; rather, it is likely that a regulated balance of

synaptic stability and synaptic plasticity is required for

optimal memory retention in real neuronal circuits.
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Introduction

In Hebb’s theory [1], the neurobiological basis of any
psychological event is the pattern of neuronal activity
within cell assemblies. To remember a previously experi-
enced event, its activity pattern needs to be re-established
within the same cell assemblies. The encoding that allows
long-term memory for an activity pattern is widely
assumed to be the setting of synaptic connection weights,
which we call here a synaptic configuration. But does this
synaptic configuration need to be preserved for the
memory to be retained? We suggest that this relationship
can hold only for networks that do not participate in
further learning. In dynamic learning systems, the
continued ability to establish new synaptic configurations
is fundamental for minimizing memory loss.
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hypothesis

Figure 1. Three distinct models describing the stability or plasticity of synaptic

connection weights underlying a stored activity pattern. Neural units are

represented by circles and their connections by lines. ‘Hotter’ colors represent

more active units or (with thicker lines) stronger connection weights between units.

Encoding of a memory occurs at time t1, and connection weights are modified (i.e. a

synaptic configuration is created) to generate the appropriate activity pattern.

Retention is measured at two later times, t2 and t3. (a) (i) In the strong version of the

synaptic stability hypothesis, weights encoding a memory remain permanently

fixed for times t1, t2 and t3. (ii) In a weaker version of the hypothesis, the encoding

weights vary in strength (e.g. weaken at time t2) but when this happens memory

retrieval is impaired. Full memory retrieval requires the original weight configur-
Competing hypotheses for the synaptic basis of memory

retention

When considering the likely neural mechanism for the
setting of connection weights during storage of long-term
memory (LTM), most authors turn to phenomena such as
long-term potentiation (LTP) and long-term depression
(LTD) [2]. Here we focus on LTP, which exhibits an array
of features (e.g. rapid induction, activity-dependence,
input specificity, associativity and persistence) that are
analogous to the behavioral properties of associative LTM.
One reason for the early and continuing interest in LTP is
its unusual persistence [3,4], founded on the intuitive
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rationale that the sine qua non feature of a memory
storage mechanism should be an ability to persist as long
as its referent memory [5]. We refer to this commonly, if
perhaps implicitly, held position as the ‘synaptic stability
hypothesis’ for LTM. A strong version of this hypothesis
assumes a one-to-one correspondence between a memory
activity pattern and a fixed synaptic weight configuration
in the circuits that encode it (Figure 1a,i). A more realistic
interpretation would allow for some weakening and
strengthening of weights over time (Figure 1a,ii), to
account for the effects of passive decay and homeostatic
adjustments that are nonetheless recoverable through
rehearsal or additional learning episodes. However, a
fundamental corollary of the stability hypothesis is that
when synaptic weights change significantly or revert to
baseline, the stored information becomes degraded and
memory performance is impaired in line with changes to
the functionality of the neural circuit.
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ation to be restored, as in t3. (b) In the synaptic plasticity hypothesis, weights

encoding a memory can change but the memory is retained as long as the

functionality (i.e. the ability to recreate the activity pattern) is preserved.

. doi:10.1016/j.tins.2004.12.003
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Despite the intuitive appeal of the stability hypothesis,
it is conceivable – especially given the well-known capa-
city that synapses have for plasticity in structure and
function [6–11] – that memories can outlast the lifetime of
the specific synaptic configurations that originally
encoded them. In this way of thinking, a given synaptic
configuration does not uniquely define a stored memory
[12]; rather, ongoing synaptic plasticity is in fact vital for
memory retention. We refer to this general conceptual
approach as the ‘synaptic plasticity hypothesis’ for
memory retention (Figure 1b).

In the following sections we will review recent experi-
mental and modeling research on the stability of connection
weights, and re-evaluate the basic premise that the
persistence of LTM needs to equate with the persistence of
a synaptic weight configuration. We propose that memory
retention actually requires a regulated balance between
stability and plasticity to solve the trade-off between the
stability required to retain information and the plasticity
required for new learning within the network – a dilemma
faced by all learning systems [13].

The synaptic stability hypothesis

As already mentioned, the conventional wisdom under-
pinning experimental models ranging from simple
invertebrates to higher mammals is that LTM storage
and retention entail stable, activity-dependent changes in
synaptic transmission within the relevant neural circuits.
Is it possible to confirm this hypothesis experimentally?
Good progress has been made in invertebrate systems,
such as sensorimotor synapses of the sea slug Aplysia,
where the close relationship of synaptic morphology,
physiology and behavior has permitted demonstration
that facilitation and depression at a population of these
synapses closely parallels the corresponding learned
reflex changes [14–16]. Nonetheless, the time-course of
changes at individual synapses remains an enigma even
for this simple neural circuit.

The mammalian hippocampus offers a more complex
system, and here it has not yet been possible to identify
the precise role played by any subset of synapses in a
particular behavioral response. Nonetheless, the fact that
LTP in the hippocampus can reliably persist for days or
weeks has provided sufficient grounds for hypothesizing
that LTP is a mechanism underlying hippocampus-
dependent memories [3,5]. In most studies LTP eventually
declines to baseline [17–19] and, although this fact has
worried some theorists about its relationship to LTM
generally [20], it is consistent with theories that the
hippocampus has a time-limited role in memory consoli-
dation [21–23]. This begs the question, however, whether
LTP can last long enough to support very long-term
memory (vLTM) as stored in either neocortical or
subcortical brain regions [23,24]. Indeed, combined imag-
ing and recording from single synapses in organotypic
hippocampal slice cultures has revealed a set of large
synapses that appear resistant to LTP induction, a
property interpreted to be ideal for LTM [25]. Recently,
we have shown in vivo that LTP in the rat hippocampal
dentate gyrus does in fact have the capacity to last stably
for many months or longer [26,27] (Figure 2a), extending a
www.sciencedirect.com
previous report of stable LTP lasting weeks in area CA1
[28]. Thus, even hippocampal LTP appears to have the
capacity for the extreme persistence necessary to store
hippocampus-dependent vLTM [29] and, if this property is
shared by neocortical and other synapses, a key premise of
the synaptic stability hypothesis would be experimentally
confirmed.

Recent studies utilizing in vivo imaging of spine
morphology now offer a second line of evidence in support
of the synaptic stability hypothesis. Two-photon laser-
scanning imaging in transgenic mice expressing fluor-
escent proteins in principal neurons has demonstrated
remarkable stability of a considerable proportion of spines
in neocortex. In the barrel cortex of adult mice, w50% of
the imaged spines were shown to be stably retained for at
least a month, with a mean lifetime calculated to be w120
days [30]. Large mushroom-shaped spines were the most
stable. Even more strikingly, an estimated 96% of layer 1
and layer 2 spines of adult visual cortical pyramidal
cells were retained over a one-month interval, and
spines overall persisted with a half-life O13 months [31]
(Figure 2c). These findings, together with evidence for
stable synaptic density, dendritic arborization and axonal
projections [30,31], are indicative of a general long-term
stability of cortical wiring in adults, but leave open the
question of the functional stability of the imaged synapses.

If long-term memories are stored as stable synaptic
weight changes, it follows that disrupting those configur-
ations should cause loss of memories previously formed
and stored in that neural circuit. Indeed, retrograde
amnesia for spatial memory can be evoked by induction
of saturated LTP in the dentate gyrus [32]. Interestingly,
the converse is also true. Exposure of animals to a novel or
enriched environment, and the presumed associated new
learning, can cause a persistent reversal of stable LTP
that had been previously induced [26,33,34] (Figure 2b).
Taken together, these data support the synaptic stability
hypothesis that memory storage and retention involve
enduring changes in transmission at specific synapses.

The synaptic plasticity hypothesis

The synaptic stability hypothesis implies a kind of
synaptic phrenology, in the sense that memory activity
patterns are encoded by fixed synaptic weight configur-
ations in specific neural circuits. However, it is certainly
conceivable that information storage could outlast
specific synaptic weight changes. For example, reactiva-
tion and rehearsal of previously acquired information
could update what would otherwise be decaying synaptic
weight changes [35,36] (c.f. Figure 1a,ii). This view
nonetheless equates a specific configuration of synaptic
weights with a specific memory. Alternatively, one
common system theory for memory consolidation is that
information moves from a temporary holding store to an
anatomically separate permanent store [37–39]. If this is
plausible, further shifts during LTM retention could also
occur and the association between specific weights and a
specific memory is broken down. The latter view implies
that widespread synaptic plasticity is vital to memory
retention. But is there evidence to support the synaptic
plasticity hypothesis?
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Figure 2. Electrophysiological and morphological examples of synaptic stability and plasticity in whole animals. (a) Both decremental and stable LTP lasting months can be

induced in the dentate gyrus of awake freely moving rats. The persistence of LTP depends on the number of stimulus trains delivered, the pattern of train delivery and the

degree of animal handling before and after LTP induction [26]. ‘Control hemi’ refers to recordings taken from non-tetanized hemispheres contralateral to the tetanized

hemispheres. Abbreviations: fEPSP, field excitatory postsynaptic potential; HFS, high-frequency stimulation. (b) Stable LTP in the dentate gyrus is reversible if animals are

given opportunities for new experiences through repeated overnight exposures to an enriched environment (EE) containing novel objects, a novel food and conspecific

animals [26]. (c) Results from two-photon imaging of layer 1 and layer 2 visual cortical spines in transgenic mice expressing yellow fluorescent protein [31]. For spines imaged

across a one-month interval, there is a remarkable stability in spine presence, regardless of the starting age, with the exception of one-month-old animals where spine

elimination is somewhat more prominent. (d,e) Despite stability of their presence, there is ongoing plasticity in the shape of adult spines, suggesting possible functional

changes [31]. Arrows point to adult spines repeatedly imaged before (d) and after (e) a one-month period. Scale bars, 1 mm. Panels (a,b) are reproduced, with permission,

from Ref. [26] q (2002) the Society of Neuroscience. Panels (c–e) are reproduced, with permission, from Ref. [31].
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One of the abiding features of consolidated memory
that has been a fundamental element of the synaptic
stability hypothesis is its imperviousness to amnestic
treatments such as electroconvulsive shock, protein
synthesis inhibitors, cooling and a variety of receptor
agonists and antagonists. Yet it is well known that
experimental reactivation of a memory renders it labile
to disruption [40,41] or, alternatively, to further consolida-
tion. This implies that reactivation can institute a new
wave of synaptic plasticity. Thus, during the naturally
occurring memory retrieval that can occur during related
behaviors or sleep [42,43], it is possible that significant
plasticity updates or reorganizes synaptic weights and
thus retains the memory trace.

Elegant experiments using conditional knockout
strains of transgenic mice have revealed that ongoing
NMDA-receptor-mediated processes do indeed operate to
consolidate and retain memories over weeks and months.
Conditional knockout of the NR1 subunit during the first
week following contextual fear conditioning or water-
www.sciencedirect.com
maze training caused retrograde amnesia when measured
approximately two weeks post-training [44]. Even more
strikingly, NR1 knockout for 30 days beginning six months
post-training impaired the retention of cued and contex-
tual fear conditioning measured at nine months [36].
These intriguing experiments provide strong evidence
that both the consolidation of memory in the early post-
training period and the stable maintenance of remote
memory require continued neural activity and NMDA
receptor activation. Insofar as this is indicative of ongoing
synaptic plasticity, these findings appear to support the
synaptic plasticity hypothesis for memory retention.
However, they do not answer the question of whether
the ongoing plasticity merely refreshes the weights for
those synapses that were originally modified during initial
memory storage [45] (cf. Figure 1a,ii), or whether there
are more widespread changes in synaptic structure and
function (cf. Figure 1b).

The long-term two-photon imaging experiments pre-
viously described, although providing evidence for
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prolonged retention of a high percentage of spines and a
stability of overall spine density in adult animals, also
demonstrated a significant capacity for ongoing synaptic
change. Time-lapse imaging in somatosensory cortex
revealed that w17% of spines had lifetimes !1 day, and
23% had a mean lifetime of 2–3 days [30], indicating
significant spine turnover. Turnover increased substan-
tially if cortical reorganization was induced by whisker
trimming. In visual cortex, where 96% of spines had
estimated half-lives of 13 months, there were nonetheless
changes in length or diameter of a significant proportion of
these spines over a one-month interval [31] (Figure 2d,e).
Thus, even in these sensory cortical areas where one
might expect considerable wiring stability under normal
conditions, there appears to be a clear capacity for
structural change that could underpin the synaptic
plasticity hypothesis of memory retention. Unfortunately,
although the capacity for ongoing synaptic change
appears to be present, it has not yet proved possible to
record from or image single synapses during memory
storage and retention to document their functional state
across time. Improvements in the imaging techniques
could yet offer ways forward in addressing this key issue
but, in the meantime, the plasticity–stability dilemma
remains an experimentally unresolved issue for
neurobiologists.

Insights from artificial neural networks

Artificial neural networks (ANNs) provide an alternative
methodology for addressing the plasticity–stability issue.
To the extent that these models capture the computation-
ally significant aspects of the underlying biology, the
weighted connections between units in ANNs serve the
same function as the synaptic connections between
neurons, with the advantage that they can be monitored
continuously during learning and retention. In accord
with neurobiological theories [1,12], memory retention in
ANNs entails preservation of the functionality of the
network such that the correct output pattern can be
generated in response to its input cue.

Most ANN learning algorithms (e.g. backpropagation
[46]) implement a concurrent learning process. Infor-
mation (i.e. a set of activity patterns) is presented as a
whole and processed in one session until a correct output
pattern is given for each input. Training is then regarded
as finished. After such training the stability of the learned
activity patterns rests simply and directly on the stability
of the weights. However, this is stability only in the trivial
sense that the network remains forever ‘frozen’ in its
current state and no further learning is attempted.

Any useful model of memory needs to account for
sequential learning, where new information can be
integrated with old information at any time. Standard
models typically cannot cope with this task demand, being
subject to a rapid loss or ‘catastrophic forgetting’ of
previously stored information as new patterns are learned
[47–49]. One effective means of modifying standard
algorithms to allow sequential learning is to incorporate
partial rehearsal of old patterns while learning new ones.
Rehearsal was first explored by Ratcliff [50] and Murre
[51]. Robins [52] described a particularly effective ‘sweep’
www.sciencedirect.com
rehearsal regime, and showed that rehearsal can use
internally generated approximations of patterns instead
of using the actual old patterns themselves. Importantly,
rehearsal was found to be effective because it maintains
the function (input–output behavior) of the network
everywhere except the local region of the function within
which change is necessary to accommodate a new pattern.
This preserves previously learned patterns while incor-
porating new ones, but the complexity of the task requires
a high degree of flexibility and significant change in the
weights of the network [49,53] (Box 1).

In short, ANN simulations demonstrate that preser-
ving the contents of memory during ongoing learning
requires an active maintenance process (e.g. via rehear-
sal), which in turn requires considerable flexibility in the
connection weights. From these simulations (Box 1), we
predict that specific memory patterns in the brain can be
encoded by different synaptic weight configurations that
are computed as required to accommodate new learning.

Synthesis of the synaptic stability and plasticity

hypotheses

Memory storage in the mammalian brain is generally
thought to involve synaptic plasticity in extensive neural
networks, cortical and subcortical. Despite the size and
complexity of the brain, it seems highly likely that an
individual cell or network participates in storing many
activity patterns. Because memories are formed sequen-
tially rather than all at once, it is difficult to imagine how
the synaptic stability hypothesis can by itself account for
memory retention in real life unless a separate network
were to be used for each memory. Although this could
happen in regions such as the olfactory bulb, higher
centers do not have this luxury. Indeed, as reviewed here,
the neocortex clearly retains substantial capacity for
ongoing synaptic plasticity, and ANNs must significantly
adapt their connection weights to retain old information in
the face of new learning. However, it is obvious that
synapses cannot randomly reset their weights on any
large scale and yet preserve information. Thus, there is a
clear need for stability in the weights throughout the
memory network during the intervals between learning or
rehearsal episodes, coupled with a capacity for further
plasticity to accommodate learning of new information.
Previous models of cortical function have incorporated
such stability–plasticity considerations either explicitly or
implicitly. Hebb [1], for example, viewed activity within
the cell assembly as the defining event for memory
expression, not the specific configuration of synaptic
weights between the individual neurons. Although not
discussed by Hebb, it is certainly conceivable that there
are multiple solutions for the pattern of synaptic weights
that will reinstate the key pattern of activity within a cell
assembly. This has been confirmed in the ANN modeling
(Box 1). Other theories have emphasized the need for the
neocortex to be a slow learner so that information can be
incorporated into the existing structure without causing
catastrophic loss of earlier learned information [22,37,54].
This implies the need for iterative processing, as is
characteristic of ANNs, so that a new synaptic weight
configuration can be resolved that retains both old and
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Box 1. Memory retention and weight plasticity in ANN simulations

The first formal method for setting the weights of a network was

Rosenblatt’s ‘perceptron convergence procedure’ [55]. Minsky and

Papet’s [56] analysis of this algorithm, however, exposed such serious

limitations that research in the newly emerging field of ANNs was

largely stalled for decades. The re-emergence of ANNs in the late

1980s was triggered in part by the publication of the backpropagation

algorithm [46]. Backpropagation addressed the limitations of Rosen-

blatt’s original method by enabling learning in powerful multilayer

networks. A typical example is shown in Figure Ia. Such networks can

serve as classifiers, function approximators or content-addressable

memories, and exhibit desirable properties such as good generaliz-

ation and robustness to noise or damage. Today, backpropagation is

the most widely studied, extended and practically applied ANN

learning algorithm.

We can use a typical backpropagation ANN to illustrate the

relationship between the retention of memory patterns and the

plasticity of weights. The network described in Figure Ia was trained

on a base population of patterns, and then subsequently on a

sequence of new patterns. If the new patterns are trained using

standard backpropagation, then we observe a sharp rise in error, that

is catastrophic forgetting of the base population [47–50] (Figure Ib).

Note that the weights, which change only a little to accommodate each

most recently trained pattern, remain stable (Figure Ic). By contrast,

learning new patterns using backpropagation with rehearsal main-

tains good retention of all patterns, whereas the underlying weights

change significantly [53] (Figure Ib,c). In short, for this typical ANN,

relative weight stability is associated with memory loss in the face

of new learning, whereas weight plasticity is required for memory

retention.
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Figure I. Memory versus connection weight stability during sequential learning.

(a) A typical backpropagation network consisting of input units, hidden units and

output units. Units in each layer have weighted feedforward connections to units

in the subsequent layer; that is there are input–hidden layer connections (IH) and

hidden–output layer (HO) connections. The particular network used in this

simulation had 32 input units, 16 hidden units and 32 output units (learning

constant 0.3, momentum 0.5, and a normalized summed squared error measure).

(b) The network was trained on a base population of ten activity patterns

(i.e. randomly generated real valued inputs and associated outputs). From this

starting point (0 on the x-axis), 40 new patterns were trained one at a time. New

patterns were trained using either standard backpropagation methods or

backpropagation with sweep rehearsal of old patterns. The graphs show the

average error of the base population patterns as each new pattern was trained.

A plot of the average error for the patterns learned previously in the sequence

would be almost identical (i.e. there is no effective difference in performance for

the different kinds of old pattern). The blue broken line represents random

performance. (c) During this learning sequence, the weights of the network

change from the starting point established by the base population. The graphs

illustrate the stability of IH and HO weights (i.e. their correlation with the weights

established after initial learning). Note the high correlation, that is weight

stability, for the standard no-rehearsal method, for which catastrophic forgetting

nonetheless occurs. Note that the connection weights changed dramatically

(i.e. showed a sharply decreasing correlation) for the rehearsal paradigm that

preserves old information. Thus, there are multiple synaptic weight configur-

ations that can generate the required output activity pattern, and the network

must compute a new one each time a new item is learned. Results shown in (b)

and (c) are averages of ten runs of the simulation, using different random patterns

for each run.
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new information. If synaptic phrenology were true, and a
network of synapses and neurons were indeed committed
to only one memory, such iterative processing would be
unnecessary.
Concluding remarks

There is growing evidence from empirical, theoretical and
modeling approaches that memory retention does not
require the maintenance of a specific configuration of
synaptic weights for the lifetime of the memory. Rather,
retention is likely to be an active process and memory-
www.sciencedirect.com
storing synapses must retain the capacity for ongoing
plasticity if old information is to be preserved in the face of
new learning. Experimental confirmation of this view,
however, awaits techniques that can monitor over time
both memory strength and the strengths of those synapses
mediating memory storage.
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