Inertimoment
Et inertimoment er inden for rotationsmekanik en størrelse, der beskriver trægheden i et roterende legeme; dvs. dets modstand mod at få ændret sin rotationsbevægelse.
Inertimomentet er for roterende legemer, hvad masse er for legemer, der kan forskydes lineært (translateres), f.eks. togvogne: Ligesom det kræver en større kraft for at få en tung vogn til at accelerere lige så hurtigt som en lettere vogn, så kræver et svinghjul med et stort inertimoment et større drejningsmoment for at accelerere lige så hurtigt som et hjul med mindre inertimoment.
Den fysiske dimension for inertimoment er masse gange længde i anden, hvoraf SI-enheden for inertimoment bliver kg·m².
Beregning af inertimoment
[redigér | rediger kildetekst]Inertimomentet for et givent legeme afhænger af legemets dimensioner og geometriske udformning i forhold til omdrejningsaksen, samt mængden og fordelingen af masse i legemet.
Den generelle metode
[redigér | rediger kildetekst]Inertimomentet kan beregnes ved at legemet matematisk set opløses i utallige, bittesmå "partikler" med forskellige masser mn, i forskellige afstande rn fra rotationsaksen. Den enkelte partikel har inertimomentet In=mn·rn², og hele legemets samlede inertimoment er således summen af samtlige partiklers "bidrag".
Inertimoment for visse homogene legemer
[redigér | rediger kildetekst]Den generelle beregningsmetode kan bruges for alle legemer med veldefineret geometrisk udformning, massefordeling og rotationsakse, men gør brug af bl.a. kompliceret integralregning. I følgende tabel findes en række formler som gælder for legemer med ensartet massefordeling (dvs. massefylden er konstant overalt i legemet), og med bestemte udformninger og rotationsakser:
Det ses af formlerne, at en tyndvægget cylinder giver det største mulige inertimoment I for en given mængde "byggemateriale" (massen m): Dette forklarer hvorfor svinghjul på f.eks. dampmaskiner udformes med en kraftig (dvs. tung) og udpræget bred "fælg".
Parallelforskudt omdrejningsakse
[redigér | rediger kildetekst]Hvis rotationsaksen går igennem et legemes tyngdepunkt (massecenter), hænger det populært sagt "i balance"; så kan legemet bringes til hvile i enhver stilling uden brug af bremse- eller låsemekanismer, og uden at tyngdekraften får legemet til at dreje "af sig selv".
Legemet har omkring denne "balancerede" omdrejningsakse et vist inertimoment IT. Parallelforskyder man nu omdrejningsaksen til en vis afstand r, får man en art pendul som på grund af tyngdekraften søger tilbage mod en ligevægtsstilling. Den "lange ende" af pendulet forøger legemets inertimoment omkring den forskudte akse, set i forhold til inertimomentet for aksen gennem legemets tyngdepunkt, så pendulets inertimoment I bliver:
,
hvor m er massen af det roterende legeme/pendulet.