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Abstract. This paper describes our experience with symbolic model
checking in an industrial setting. We have proved that the initial boot
code running in data centers at Amazon Web Services is memory safe,
an essential step in establishing the security of any data center. Standard
static analysis tools cannot be easily used on boot code without modifica-
tion owing to issues not commonly found in higher-level code, including
memory-mapped device interfaces, byte-level memory access, and linker
scripts. This paper describes automated solutions to these issues and
their implementation in the C Bounded Model Checker (CBMC). CBMC
is now the first source-level static analysis tool to extract the memory
layout described in a linker script for use in its analysis.

1 Introduction

Boot code is the first code to run in a data center; thus, the security of a data
center depends on the security of the boot code. It is hard to demonstrate boot
code security using standard techniques, as boot code is difficult to test and
debug, and boot code must run without the support of common security miti-
gations available to the operating system and user applications. This industrial
experience report describes work to prove the memory safety of initial boot code
running in data centers at Amazon Web Services (AWS).

We describe the challenges we faced analyzing AWS boot code, some of which
render existing approaches to software verification unsound or imprecise. These
challenges include

1. memory-mapped input/output (MMIO) for accessing devices,
2. device behavior behind these MMIO regions,
3. byte-level memory access as the dominant form of memory access, and
4. linker scripts used during the build process.

Not handling MMIO or linker scripts results in imprecision (false positives), and
not modeling device behavior is unsound (false negatives).

We describe the solutions to these challenges that we developed. We imple-
mented our solutions in the C Bounded Model Checker (CBMC) [20]. We achieve
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soundness with CBMC by fully unrolling loops in the boot code. Our solutions
automate boot code verification and require no changes to the code being ana-
lyzed. This makes our work particularly well-suited for deployment in a continu-
ous validation environment to ensure that memory safety issues do not reappear
in the code as it evolves during development. We use CBMC, but any other
bit-precise, sound, automated static analysis tool could be used.

2 Related Work

There are many approaches to finding memory safety errors in low-level code,
from fuzzing [2] to static analysis [24,30,39,52] to deductive verification [21,34].

A key aspect of our work is soundness and precision in the presence of very
low-level details. Furthermore, full automation is essential in our setting to oper-
ate in a continuous validation environment. This makes some form of model
checking most appealing.

CBMC is a bounded model checker for C, C++, and Java programs, available
on GitHub [13]. It features bit-precise reasoning, and it verifies array bounds
(buffer overflows), pointer safety, arithmetic exceptions, and assertions in the
code. A user can bound the model checking done by CBMC by specifying for a
loop a maximum number of iterations of the loop. CBMC can check that it is
impossible for the loop to iterate more than the specified number of times by
checking a loop-unwinding assertion. CBMC is sound when all loop-unwinding
assertions hold. Loops in boot code typically iterate over arrays of known sizes,
making it possible to choose loop unwinding limits such that all loop-unwinding
assertions hold (see Sect. 5.7). BLITZ [16] or F-Soft [36] could be used in place
of CBMC. SATABS [19], Ufo [3], Cascade [55], Blast [9], CPAchecker [10], Cor-
ral [33,43,44], and others [18,47] might even enable unbounded verification. Our
work applies to any sound, bit-precise, automated tool.

Note that boot code makes heavy use of pointers, bit vectors, and arrays,
but not the heap. Thus, memory safety proof techniques based on three-valued
logic [45] or separation logic as in [8] or other techniques [1,22] that focus on the
heap are less appropriate since boot code mostly uses simple arrays.

KLEE [12] is a symbolic execution engine for C that has been used to find
bugs in firmware. Davidson et al. [25] built the tool FIE on top of KLEE for
detecting bugs in firmware programs for the MSP430 family of microcontrollers
for low-power platforms, and applied the tool to nearly a hundred open source
firmware programs for nearly a dozen versions of the microcontroller to find bugs
like buffer overflow and writing to read-only memory. Corin and Manzano [23]
used KLEE to do taint analysis and prove confidentiality and integrity proper-
ties. KLEE and other tools like SMACK [49] based on the LLVM intermediate
representation do not currently support the linker scripts that are a crucial part
of building boot code (see Sect. 4.5). They support partial linking by concatenat-
ing object files and resolving symbols, but fail to make available to their analysis
the addresses and constants assigned to symbols in linker scripts, resulting in an
imprecise analysis of the code.
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S2E [15] is a symbolic execution engine for x86 binaries built on top of the
QEMU [7] virtual machine and KLEE. S2E has been used on firmware. Parvez
et al. [48] use symbolic execution to generate inputs targeting a potentially buggy
statement for debugging. Kuznetsov et al. [42] used a prototype of S2E to find
bugs in Microsoft device drivers. Zaddach et al. [56] built the tool Avatar on
top of S2E to check security of embedded firmware. They test firmware running
on top of actual hardware, moving device state between the concrete device and
the symbolic execution. Bazhaniuk et al. [6,28] used S2E to search for security
vulnerabilities in interrupt handlers for System Management Mode on Intel plat-
forms. Experts can use S2E on firmware. One can model device behavior (see
Sect. 4.2) by adding a device model to QEMU or using the signaling mechanism
used by S2E during symbolic execution. One can declare an MMIO region (see
Sect. 4.1) by inserting it into the QEMU memory hierarchy. Both require under-
standing either QEMU or S2E implementations. Our goal is to make it as easy
as possible to use our work, primarily by way of automation.

Ferreira et al. [29] verify a task scheduler for an operating system, but that
is high in the software stack. Klein et al. [38] prove the correctness of the seL4
kernel, but that code was written with the goal of proof. Dillig et al. [26] syn-
thesize guards ensuring memory safety in low-level code, but our code is written
by hand. Rakamarić and Hu [50] developed a conservative, scalable approach to
memory safety in low-level code, but the models there are not tailored to our code
that routinely accesses memory by an explicit integer-valued memory address.
Redini et al. [51] built a tool called BootStomp on top of angr [54], a frame-
work for symbolic execution of binaries based on a symbolic execution engine
for the VEX intermediate representation for the Valgrind project, resulting in a
powerful testing tool for boot code, but it is not sound.

3 Boot Code

We define boot code to be the code in a cloud data center that runs from the
moment the power is turned on until the BIOS starts. It runs before the operating
system’s boot loader that most people are familiar with. A key component to
ensuring high confidence in data center security is establishing confidence in boot
code security. Enhancing confidence in boot code security is a challenge because
of unique properties of boot code not found in higher-level software. We now
discuss these properties of boot code, and a path to greater confidence in boot
code security.

3.1 Boot Code Implementation

Boot code starts a sequenced boot flow [4] in which each stage locates, loads,
and launches the next stage. The boot flow in a modern data center proceeds as
follows: (1) When the power is turned on, before a single instruction is executed,
the hardware interrogates banks of fuses and hardware registers for configuration
information that is distributed to various parts of the platform. (2) Boot code
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starts up to boot a set of microcontrollers that orchestrate bringing up the
rest of the platform. In a cloud data center, some of these microcontrollers are
feature-rich cores with their own devices used to support virtualization. (3) The
BIOS familiar to most people starts up to boot the cores and their devices.
(4) A boot loader for the hypervisor launches the hypervisor to virtualize those
cores. (5) A boot loader for the operating system launches the operating system
itself. The security of each stage, including operating system launched for the
customer, depends on the integrity of all prior stages [27].

Ensuring boot code security using traditional techniques is hard. Visibility
into code execution can only be achieved via debug ports, with almost no abil-
ity to single-step the code for debugging. UEFI (Unified Extensible Firmware
Interface) [53] provides an elaborate infrastructure for debugging BIOS, but not
for the boot code below BIOS in the software stack. Instrumenting boot code
may be impossible because it can break the build process: the increased size
of instrumented code can be larger than the size of the ROM targeted by the
build process. Extracting the data collected by instrumentation may be difficult
because the code has no access to a file system to record the data, and memory
available for storing the data may be limited.

Static analysis is a relatively new approach to enhancing confidence in boot
code security. As discussed in Sect. 2, most work applying static analysis to boot
code applies technology like symbolic execution to binary code, either because
the work strips the boot code from ROMs on shipping products for analysis
and reverse engineering [42,51], or because code like UEFI-based implementa-
tions of BIOS loads modules with a form of dynamic linking that makes source
code analysis of any significant functionality impossible [6,28]. But with access
to the source code—source code without the complexity of dynamic linking—
meaningful static analysis at the source code level is possible.

3.2 Boot Code Security

Boot code is a foundational component of data center security: it controls what
code is run on the server. Attacking boot code is a path to booting your own
code, installing a persistent root kit, or making the server unbootable. Boot code
also initializes devices and interfaces directly with them. Attacking boot code
can also lead to controlling or monitoring peripherals like storage devices.

The input to boot code is primarily configuration information. The run-
time behavior of boot code is determined by configuration information in fuses,
hardware straps, one-time programmable memories, and ROMs.

From a security perspective, boot code is susceptible to a variety of events
that could set the configuration to an undesirable state. To keep any malicious
adversary from modifying this configuration information, the configuration is
usually locked or otherwise write-protected. Nonetheless, it is routine to dis-
cover during hardware vetting before placing hardware on a data center floor
that some BIOS added by a supplier accidentally leaves a configuration register
unlocked after setting it. In fact, configuration information can be intentionally
unlocked for the purpose of patching and then be locked again. Any bug in a
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patch or in a patching mechanism has the potential to leave a server in a vulner-
able configuration. Perhaps more likely than anything is a simple configuration
mistake at installation. We want to know that no matter how a configuration
may have been corrupted, the boot code will operate as intended and without
latent exposures for potential adversaries.

The attack surface we focus on in this paper is memory safety, meaning
there are no buffer overflows, no dereferencing of null pointers, and no pointers
pointing into unallocated regions of memory. Code written in C is known to
be at risk for memory safety, and boot code is almost always written in C, in
part because of the direct connection between boot code and the hardware, and
sometimes because of space limitations in the ROMs used to store the code.

There are many techniques for protecting against memory safety errors and
mitigating their consequences at the higher levels of the software stack. Lan-
guages other than C are less prone to memory safety errors. Safe libraries can do
bounds checking for standard library functions. Compiler extensions to compil-
ers like gcc and clang can help detect buffer overflow when it happens (which is
different from keeping it from happening). Address space layout randomization
makes it harder for the adversary to make reliable use of a vulnerability. None of
these mitigations, however, apply to firmware. Firmware is typically built using
the tool chain that is provided by the manufacturer of the microcontroller, and
firmware typically runs before the operating system starts, without the benefit of
operating system support like a virtual machine or randomized memory layout.

4 Boot Code Verification Challenges

Boot code poses challenges to the precision, soundness, and performance of any
analysis tool. The C standard [35] says, “A volatile declaration may be used to
describe an object corresponding to an MMIO port” and “what constitutes an
access to an object that has volatile-qualified type is implementation-defined.”
Any tool that seeks to verify boot code must provide means to model what the
C standard calls implementation-defined behavior. Of all such behavior, MMIO
and device behavior are most relevant to boot code. In this section, we discuss
these issues and the solutions we have implemented in CBMC.

4.1 Memory-Mapped I/O

Boot code accesses a device through memory-mapped input/output (MMIO).
Registers of the device are mapped to specific locations in memory. Boot code
reads or writes a register in the device by reading or writing a specific location in
memory. If boot code wants to set the second bit in a configuration register, and if
that configuration register is mapped to the byte at location 0x1000 in memory,
then the boot code sets the second bit of the byte at 0x1000. The problem
posed by MMIO is that there is no declaration or allocation in the source code
specifying this location 0x1000 as a valid region of memory. Nevertheless accesses
within this region are valid memory accesses, and should not be flagged as an
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out-of-bounds memory reference. This is an example of implementation-defined
behavior that must be modeled to avoid reporting false positives.

To facilitate analysis of low-level code, we have added to CBMC a built-in
function

__CPROVER_allocated_memory(address , size)

to mark ranges of memory as valid. Accesses within this region are exempt
from the out-of-bounds assertion checking that CBMC would normally do. The
function declares the half-open interval [address, address+size) as valid memory
that can be read and written. This function can be used anywhere in the source
code, but is most commonly used in the test harness. (CBMC, like most program
analysis approaches, uses a test harness to drive the analysis.)

4.2 Device Behavior

An MMIO region is an interface to a device. It is unsound to assume that the
values returned by reading and writing this region of memory follow the seman-
tics of ordinary read-write memory. Imagine a device that can generate unique
ids. If the register returning the unique id is mapped to the byte at location
0x1000, then reading location 0x1000 will return a different value every time,
even without intervening writes. These side effects have to be modeled. One
easy approach is to ‘havoc’ the device, meaning that writes are ignored and
reads return nondeterministic values. This is sound, but may lead to too many
false positives. We can model the device semantics more precisely, using one of
the options described below.

If the device has an API, we havoc the device by making use of a more general
functionality we have added to CBMC. We have added a command-line option

--remove -function -body device_access

to CBMC’s goto-instrument tool. When used, this will drop the implemen-
tation of the function device access from compiled object code. If there is
no other definition of device access, CBMC will model each invocation of
device access as returning an unconstrained value of the appropriate return
type. Now, to havoc a device with an API that includes a read and write method,
we can use this command-line option to remove their function bodies, and CBMC
will model each invocation of read as returning an unconstrained value.

At link time, if another object file, such as the test harness, provides a second
definition of device access, CBMC will use this definition in its place. Thus, to
model device semantics more precisely, we can provide a device model in the test
harness by providing implementations of (or approximations for) the methods
in the API.

If the device has no API, meaning that the code refers directly to the address
in the MMIO region for the device without reference to accessor functions, we
have another method. We have added two function symbols

__CPROVER_mm_io_r(address , size)

__CPROVER_mm_io_w(address , size , value)
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to CBMC to model the reading or writing of an address at a fixed integer address.
If the test harness provides implementations of these functions, CBMC will use
these functions to model every read or write of memory. For example, defining

char __CPROVER_mm_io_r(void *a, unsigned s) {

if(a == 0x1000) return 2;

}

will return the value 2 upon any access at address 0x1000, and return a non-
deterministic value in all other cases.

In both cases—with or without an API—we can thus establish sound and, if
needed, precise analysis about an aspect of implementation-defined behavior.

4.3 Byte-Level Memory Access

It is common for boot code to access memory a byte at a time, and to access a
byte that is not part of any variable or data structure declared in the program
text. Accessing a byte in an MMIO region is the most common example. Boot
code typically accesses this byte in memory by computing the address of the
byte as an integer value, coercing this integer to a pointer, and dereferencing
this pointer to access that byte. Boot code references memory by this kind of
explicit address far more frequently than it references memory via some explicitly
allocated variable or data structure. Any tool analyzing boot code must have a
method for reasoning efficiently about accessing an arbitrary byte of memory.

The natural model for memory is as an array of bytes, and CBMC does
the same. Any decision procedure that has a well-engineered implementation
of a theory of arrays is likely to do a good job of modeling byte-level memory
access. We improved CBMC’s decision procedure for arrays to follow the state-
of-the-art algorithm [17,40]. The key data structure is a weak equivalence graph
whose vertices correspond to array terms. Given an equality a = b between two
array terms a and b, add an unlabeled edge between a and b. Given an update
a{i ← v} of an array term a, add an edge labeled i between a and a{i ← v}.
Two array terms a and b are weakly equivalent if there is a path from a to b
in the graph, and they are equal at all indices except those updated along the
path. This graph is used to encode constraints on array terms for the solver. For
simplicity, our implementation generates these constraints eagerly.

4.4 Memory Copying

One of the main jobs of any stage of the boot flow is to copy the next stage
into memory, usually using some variant of memcpy. Any tool analyzing boot
code must have an efficient model of memcpy. Modeling memcpy as a loop iterating
through a thousand bytes of memory leads to performance problems during
program analysis. We added to CBMC an improved model of the memset and
memcpy library functions.

Boot code has no access to a C library. In our case, the boot code shipped
an iterative implementation of memset and memcpy. CBMC’s model of the C
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library previously also used an iterative model. We replaced this iterative
model of memset and memcpy with a single array operation that can be han-
dled efficiently by the decision procedure at the back end. We instructed CBMC
to replace the boot code implementations with the CBMC model using the
--remove-function-body command-line option described in Sect. 4.2.

4.5 Linker Scripts

Linking is the final stage in the process of transforming source code into an
executable program. Compilation transforms source files into object files, which
consist of several sections of related object code. A typical object file contains
sections for executable code, read-only and read-write program data, debugging
symbols, and other information. The linker combines several object files into a
single executable object file, merging similar sections from each of the input files
into single sections in the output executable. The linker combines and arranges
the sections according to the directives in a linker script. Linker scripts are
written in a declarative language [14].

The functionality of most programs is not sensitive to the exact layout of the
executable file; therefore, by default, the linker uses a generic linker script1 the
directives of which are suited to laying out high-level programs. On the other
hand, low-level code (like boot loaders, kernels, and firmware) must often be
hard-coded to address particular memory locations, which necessitates the use
of a custom linker script.

One use for a linker script is to place selected code into a specialized memory
region like a tightly-coupled memory unit [5], which is a fast cache into which
developers can place hot code. Another is device access via memory-mapped I/O
as discussed in Sects. 4.1 and 4.2. Low-level programs address these hard devices
by having a variable whose address in memory corresponds to the address that
the hardware exposes. However, no programming language offers the ability to
set a variable’s address from the program; the variable must instead be laid out
at the right place in the object file, using linker script directives.

While linker scripts are essential to implement the functionality of low-level
code, their use in higher-level programs is uncommon. Thus, we know of no
work that considers the role of linker scripts in static program analysis; a recent
formal treatment of linkers [37] explicitly skips linker scripts. Ensuring that
static analysis results remain correct in the presence of linker scripts is vital
to verifying and finding bugs in low-level code; we next describe problems that
linker scripts can create for static analyses.

Linker Script Challenges. All variables used in C programs must be defined
exactly once. Static analyses make use of the values of these variables to decide
program correctness, provided that the source code of the program and libraries
used is available. However, linker scripts also define symbols that can be accessed
as variables from C source code. Since C code never defines these symbols, and

1 On Linux and macOS, running ld --verbose displays the default linker script.
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linker scripts are not written in C, the values of these symbols are unknown to
a static analyzer that is oblivious to linker scripts. If the correctness of code
depends on the values of these symbols, it cannot be verified. To make this
discussion concrete, consider the code in Fig. 1.

/* main.c */
#include <string.h>

extern char text_start;

extern char text_size;

extern char scratch_start;

int main() {

memcpy (&text_start ,

&scratch_start ,

(size_t )& text_size );

}

/* link.ld */
SECTIONS {

.text : {

text_start =.;

*(. text)

}

text_size=SIZEOF (.text);

.scratch : {

scratch_start =.;

.=.+0 x1000;

scratch_end =.;

}

}

Fig. 1. A C program using variables whose addresses are defined in a linker script.

This example, adapted from the GNU linker manual [14], shows the common
pattern of copying an entire region of program code from one part of memory to
another. The linker writes an executable file in accordance with the linker script
on the right; the expression “.” (period) indicates the current byte offset into
the executable file. The script directs the linker to generate a code section called
.text and write the contents of the .text sections from each input file into that
section; and to create an empty 4 KiB long section called .scratch. The symbols
text_start and scratch_start are created at the address of the beginning of
the associated section. Similarly, the symbol text_size is created at the address
equal to the code size of the .text section. Since these symbols are defined in
the linker script, they can be freely used from the C program on the left (which
must declare the symbols as extern, but not define them). While the data at the
symbols’ locations is likely garbage, the symbols’ addresses are meaningful; in
the program, the addresses are used to copy data from one section to another.

Contemporary static analysis tools fail to correctly model the behavior of this
program because they model symbols defined in C code but not in linker scripts.
Tools like SeaHorn [32] and KLEE [12] do support linking of the intermediate
representation (IR) compiled from each of the source files with an IR linker. By
using build wrappers like wllvm [46], they can even invoke the native system
linker, which itself runs the linker script on the machine code sections of the
object files. The actions of the native linker, however, are not propagated back to
the IR linker, so the linked IR used for static analysis contains only information
derived from C source, and not from linker scripts. As a result, these analyzers
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lack the required precision to prove that a safe program is safe: they generate
false positives because they have no way of knowing (for example) that a memcpy

is walking over a valid region of memory defined in the linker script.

Information Required for Precise Modeling. As we noted earlier in this
section, linker scripts provide definitions to variables that may only be declared
in C code, and whose addresses may be used in the program. In addition, linker
scripts define the layout of code sections; the C program may copy data to and
from these sections using variables defined in the linker script to demarcate valid
regions inside the sections. Our aim is to allow the static analyzer to decide the
memory safety of operations that use linker script definitions (if indeed they
are safe, i.e., don’t access memory regions outside those defined in the linker
script). To do this, the analyzer must know (referencing our example in Fig. 1
but without loss of generality):

1. that we are copying &text_size bytes starting from &text_start;
2. that there exists a code section (i.e., a valid region of memory) whose starting

address equals &text_start and whose size equals &text_size;
3. the concrete values of that code section’s size and starting address.

Fact 1 is derived from the source code; Fact 2—from parsing the linker script;
and Fact 3—from disassembling the fully-linked executable, which will have had
the sections and symbols laid out at their final addresses by the linker.

Extending CBMC. CBMC compiles source files with a front-end that emu-
lates the native compiler (gcc), but which adds an additional section to the end
of the output binary [41]; this section contains the program encoded in CBMC’s
analysis-friendly intermediate representation (IR). In particular, CBMC’s front-
end takes the linker script as a command-line argument, just like gcc, and del-
egates the final link to the system’s native linker. CBMC thus has access to the
linker script and the final binary, which contains both native executable code
and CBMC IR. We send linker script information to CBMC as follows:

1. use CBMC’s front end to compile the code, producing a fully-linked binary,
2. parse the linker script and disassemble the binary to get the required data,
3. augment the IR with the definitions from the linker script and binary, and
4. analyze the augmented intermediate representation.

Our extensions are Steps 2 and 3, which we describe in more detail below. They
are applicable to tools (like SeaHorn and KLEE) that use an IR linker (like
llvm-link) before analyzing the IR.

Extracting Linker Script Symbols. Our extension to CBMC reads a linker
script and extracts the information that we need. For each code section, it
extracts the symbols whose addresses mark the start and end of the section,
if any; and the symbol whose address indicates the section size, if any. The
sections key of Fig. 2 shows the information extracted from the linker script in
Fig. 1.
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Extracting Linker Script Symbol Addresses. To remain architecture inde-
pendent, our extension uses the objdump program (part of the GNU Binutils [31])
to extract the addresses of all symbols in an object file (shown in the addresses

key of Fig. 2). In this way, it obtains the concrete addresses of symbols defined
in the linker script.

"sections" : {

".text": {

"start": "text_start",

"size": "text_size"

},

".scratch" : {

"start": "scratch_start",

"end": "scratch_end"

}

},

"addresses" : {

"text_start": "0x0200",

"text_size": "0x0600",

"scratch_start": "0x1000",

"scratch_end": "0x2000",

}

Fig. 2. Output from our linker script parser when run on the linker script in Fig. 1, on
a binary with a 1 KiB .text section and 4 KiB .scratch section.

Augmenting the Intermediate Representation. CBMC maintains a sym-
bol table of all the variables used in the program. Variables that are declared
extern in C code and never defined have no initial value in the symbol table.
CBMC can still analyze code that contains undefined symbols, but as noted ear-
lier in this section, this can lead to incorrect verification results. Our extension
to CBMC extracts information described in the previous section and integrates
it into the target program’s IR. For example, given the source code in Fig. 1,
CBMC will replace it with the code given in Fig. 3.

In more detail, CBMC

1. converts the types of linker symbols in the IR and symbol table to char *,
2. updates all expressions involving linker script symbols to be consistent with

this type change,
3. creates the IR representation of C-language definitions of the linker script

symbols, initializing them before the entry point of main(), and
4. uses the __CPROVER_allocated_memory API described in Sect. 4.1 to mark code

sections demarcated by linker script symbols as allocated.

The first two steps are necessary because C will not let us set the address of
a variable, but will let us store the address in a variable. CBMC thus changes
the IR type of text_start to char *; sets the value of text_start to the address
of text_start in the binary; and rewrites all occurrences of “&text_start” to
“text_start”. This preserves the original semantics while allowing CBMC to
model the program. The semantics of Step 4 is impossible to express in C,
justifying the use of CBMC rather than a simple source-to-source transformation.
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#include <string.h>

extern char text_start;

extern char text_size;

extern char scratch_start;

int main() {

memcpy (&text_start ,

&scratch_start ,

(size_t )& text_size );

}

#include <string.h>

char *text_start = 0x0200;

char *text_size = 0x0600;

char *scratch_start = 0x1000;

int main() {

__CPROVER_allocated_memory(

0x0200 , 0x0600);

__CPROVER_allocated_memory(

0x1000 , 0x1000);

memcpy(text_start ,

scratch_start ,

(size_t)text_size );

}

Fig. 3. Transformation performed by CBMC for linker-script-defined symbols.

5 Industrial Boot Code Verification

In this section, we describe our experience proving memory safety of boot code
running in an AWS data center. We give an exact statement of what we proved,
we point out examples of the verification challenges mentioned in Sect. 4 and our
solutions, and we go over the test harness and the results of running CBMC.

Boot sourcesBoot configuration

NAND8

UART

SNOR

Stage 2

Any binary

A
ny

so
ur
ce

Straps OTP

Stage 1

Device configuration

Any boot configuration

Any device configuration

No memory
safety errors

Fig. 4. Boot code is free of memory safety errors.

We use CBMC to prove that 783 lines of AWS boot code are memory safe.
Soundness of this proof by bounded model checking is achieved by having CBMC
check its loop unwinding assertions (that loops have been sufficiently unwound).
This boot code proceeds in two stages, as illustrated in Fig. 4. The first stage
prepares the machine, loads the second stage from a boot source, and launches
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the second stage. The behavior of the first stage is controlled by configuration
information in hardware straps and one-time-programmable memory (OTP),
and by device configuration. We show that no configuration will induce a memory
safety error in the stage 1 boot code.

More precisely, we prove:

Assuming
– a buffer for stage 2 code and a temporary buffer are both 1024 bytes,
– the cryptographic, CRC computation, and printf methods have no side

effects and can return unconstrained values,
– the CBMC model of memcpy and memset, and
– ignoring a loop that flashes the console lights when boot fails;

then
– for every boot configuration,
– for every device configuration,
– for each of the three boot sources, and
– for every stage 2 binary,

the stage 1 boot code will not exhibit any memory safety errors.

Due to the second and third assumptions, we may be missing memory safety
errors in these simple procedures. Memory safety of these procedures can be
established in isolation. We find all memory safety errors in the remainder of the
code, however, because making buffers smaller increases the chances they will
overflow, and allowing methods to return unconstrained values increases the set
of program behaviors considered.

The code we present in this section is representative of the code we ana-
lyzed, but the actual code is proprietary and not public. The open-source project
rBoot [11] is 700 lines of boot code available to the public that exhibits most of
the challenges we now discuss.

5.1 Memory-Mapped I/O

MMIO regions are not explicitly allocated in the code, but the addresses of
these regions appear in the header files. For example, an MMIO region for the
hardware straps is given with

#define REG_BASE (0x1000)

#define REG_BOOT_STRAP (REG_BASE + 0x110)

#define REG_BOOT_CONF (REG_BASE + 0x124)

Each of the last two macros denotes the start of a different MMIO region, leav-
ing 0x14 bytes for the region named REG_BOOT_STRAP. Using the builtin function
added to CBMC (Sect. 4.1), we declare this region in the test harness with

__CPROVER_allocated_memory(REG_BOOT_STRAP , 0x14);
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5.2 Device Behavior

All of the devices accessed by the boot code are accessed via an API. For example,
the API for the UART is given by

int UartInit(UART_PORT port , unsigned int baudRate );

void UartWriteByte(UART_PORT port , uint8_t byte);

uint8_t UartReadByte(UART_PORT port);

In this work, we havoc all of the devices to make our result as strong as
possible. In other words, our device model allows a device read to return any
value of the appropriate type, and still we can prove that (even in the context
of a misbehaving device) the boot code does not exhibit a memory safety error.
Because all devices have an API, we can havoc the devices using the command
line option added to CBMC (Sect. 4.2), and invoke CBMC with

--remove -function -body UartInit

--remove -function -body UartReadByte

--remove -function -body UartWriteByte

5.3 Byte-Level Memory Access

All devices are accessed at the byte level by computing an integer-valued address
and coercing it to a pointer. For example, the following code snippets from
BootOptionsParse show how reading the hardware straps from the MMIO region
discussed above translates into a byte-level memory access.

#define REG_READ(addr) (*( volatile uint32_t *)( addr))

regVal = REG_READ(REG_BOOT_STRAP );

In CBMC, this translates into an access into an array modeling memory at loca-
tion 0x1000 + 0x110. Our optimized encoding of the theory of arrays (Sect. 4.3)
enables CBMC to reason more efficiently about this kind of construct.

5.4 Memory Copying

The memset and memcpy procedures are heavily used in boot code. For example,
the function used to copy the stage 2 boot code from flash memory amounts to
a single, large memcpy.

int SNOR_Read(unsigned int address ,

uint8_t* buff ,

unsigned int numBytes) {

...

memcpy(buff ,

(void *)( address + REG_SNOR_BASE_ADDRESS),

numBytes );

...

}

CBMC reasons more efficiently about this kind of code due to our loop-free
model of memset and memcpy procedures as array operations (Sect. 4.4).
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5.5 Linker Scripts

Linker scripts allocate regions of memory and pass the addresses of these regions
and other constants to the code through the symbol table. For example, the linker
script defines a region to hold the stage 2 binary and passes the address and size
of the region as the addresses of the symbols stage2_start and stage2_size.

.stage2 (NOLOAD) : {

stage2_start = .;

. = . + STAGE2_SIZE;

stage2_end = .;

} > RAM2

stage2_size = SIZEOF (. stage2 );

The code declares the symbols as externally defined, and uses a pair of macros
to convert the addresses of the symbols to an address and a constant before use.

extern char stage2_start [];

extern char stage2_size [];

#define STAGE2_ADDRESS (( uint8_t *)(& stage2_start ))

#define STAGE2_SIZE (( unsigned )(& stage2_size ))

CBMC’s new approach to handling linker scripts modifies the CBMC interme-
diate representation of this code as described in Sect. 4.5.

5.6 Test Harness

The main procedure for the boot code begins by clearing the BSS section, copying
a small amount of data from a ROM, printing some debugging information, and
invoking three functions

SecuritySettingsOtp ();

BootOptionsParse ();

Stage2LoadAndExecute ();

that read security settings from some one-time programmable memory, read the
boot options from some hardware straps, and load and launch the stage 2 code.

The test harness for the boot code is 76 lines of code that looks similar to

void environment_model () {

__CPROVER_allocated_memory(REG_BOOT_STRAP , 0x14);

__CPROVER_allocated_memory(REG_UART_UART_BASE ,

UART_REG_OFFSET_LSR +

sizeof(uint32_t ));

__CPROVER_allocated_memory(REG_NAND_CONFIG_REG ,

sizeof(uint32_t ));

}

void harness () {

environment_model ();
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SecuritySettingsOtp ();

BootOptionsParse ();

Stage2LoadAndExecute ();

}

The environment_model procedure defines the environment of the software under
test not declared in the boot code itself. This environment includes more than
30 MMIO regions for hardware like some hardware straps, a UART, and some
NAND memory. The fragment of the environment model reproduced above uses
the __CPROVER_allocated_memory built-in function added to CBMC for this work
to declare these MMIO regions and assign them unconstrained values (model-
ing unconstrained configuration information). The harness procedure is the test
harness itself. It builds the environment model and calls the three procedures
invoked by the boot code.

5.7 Running CBMC

Building the boot code and test harness for CBMC takes 8.2 s compared to
building the boot code with gcc in 2.2 s.

Running CBMC on the test harness above as a job under AWS Batch, it
finished successfully in 10:02 min. It ran on a 16-core server with 122 GiB of
memory running Ubuntu 14.04, and consumed one core at 100% using 5 GiB of
memory. The new encoding of arrays improved this time by 45 s.

The boot code consists of 783 lines of statically reachable code, meaning the
number of lines of code in the functions that are reachable from the test harness
in the function call graph. CBMC achieves complete code coverage, in the sense
that every line of code CBMC fails to exercise is dead code. An example of dead
code found in the boot code is the default case of a switch statement whose cases
enumerate all possible values of an expression.

The boot code consists of 98 loops that fall into two classes. First are for-
loops with constant-valued expressions for the upper and lower bounds. Second
are loops of the form while (num) {...; num--} and code inspection yields a
bound on num. Thus, it is possible to choose loop bounds that cause all loop-
unwinding assertions to hold, making CBMC’s results sound for boot code.

6 Conclusion

This paper describes industrial experience with model checking production code.
We extended CBMC to address issues that arise in boot code, and we proved that
initial boot code running in data centers at Amazon Web Services is memory safe,
a significant application of model checking in the industry. Our most significant
extension to CBMC was parsing linker scripts to extract the memory layout
described there for use in model checking, making CBMC the first static analysis
tool to do so. With this and our other extensions to CBMC supporting devices
and byte-level access, CBMC can now be used in a continuous validation flow to
check for memory safety during code development. All of these extensions are in
the public domain and freely available for immediate use.
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